135
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Calibration Sources for Gaseous Oxidized Mercury: A Review of Source Design, Performance, and Operational Parameters

ORCID Icon &

References

  • Beckers, F.; Rinklebe, J. Cycling of Mercury in the Environment: Sources, Fate, and Human Health Implications: A Review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 693–794. DOI: 10.1080/10643389.2017.1326277.
  • UNEP. Global Mercury Assessment 2018. 2019.
  • Kos, G.; Ryzhkov, A.; Dastoor, A.; Narayan, J.; Steffen, A.; Ariya, P. A.; Zhang, L. Evaluation of Discrepancy between Measured and Modelled Oxidized Mercury Species. Atmos. Chem. Phys. 2013, 13, 4839–4863. DOI: 10.5194/acp-13-4839-2013.
  • Landis, M. S.; Stevens, R. K.; Schaedlich, F.; Prestbo, E. M. Development and Characterization of an Annular Denuder Methodology for the Measurement of Divalent Inorganic Reactive Gaseous Mercury in Ambient Air. Environ. Sci. Technol. 2002, 36, 3000–3009. DOI: 10.1021/es015887t.
  • Munthe, J.; Wängberg, I.; Pirrone, N.; Iverfeldt, Å.; Ferrara, R.; Ebinghaus, R.; Feng, X.; Gårdfeldt, K.; Keeler, G.; Lanzillotta, E.; et al. Intercomparison of Methods for Sampling and Analysis of Atmospheric Mercury Species. Atmos. Environ. 2001, 35, 3007–3017. DOI: 10.1016/S1352-2310(01)00104-2.
  • Senior, C. L.; Sarofim, A. F.; Zeng, T.; Helble, J. J.; Mamani-Paco, R. Gas-Phase Transformations of Mercury in Coal-Fired Power Plants. Fuel Process Technol. 2000, 63, 197–213. DOI: 10.1016/S0378-3820(99)00097-1.
  • Schroeder, W. H.; Anlauf, K. G.; Barrie, L. A.; Lu, J. Y.; Steffen, A.; Schneeberger, D. R.; Berg, T. Arctic Springtime Depletion of Mercury. Nature 1998, 394, 331–332. DOI: 10.1038/28530.
  • Osterwalder, S.; Dunham-Cheatham, S. M.; Ferreira Araujo, B.; Magand, O.; Thomas, J. L.; Baladima, F.; Pfaffhuber, K. A.; Berg, T.; Zhang, L.; Huang, J.; et al. Fate of Springtime Atmospheric Reactive Mercury: Concentrations and Deposition at Zeppelin, Svalbard. ACS Earth Space Chem. 2021, 5, 3234–3246. DOI: 10.1021/acsearthspacechem.1c00299.
  • Horowitz, H. M.; Jacob, D. J.; Zhang, Y.; Dibble, T. S.; Slemr, F.; Amos, H. M.; Schmidt, J. A.; Corbitt, E. S.; Marais, E. A.; Sunderland, E. M.; et al. A New Mechanism for Atmospheric Mercury Redox Chemistry: Implications for the Global Mercury Budget. Atmos. Chem. Phys. 2017, 17, 6353–6371. DOI: 10.5194/acp-17-6353-2017.
  • Saiz-Lopez, A.; Sitkiewicz, S. P.; Roca-Sanjuán, D.; Oliva-Enrich, J. M.; Dávalos, J. Z.; Notario, R.; Jiskra, M.; Xu, Y.; Wang, F.; Thackray, C. P.; et al. Photoreduction of Gaseous Oxidized Mercury Changes Global Atmospheric Mercury Speciation, Transport and Deposition. Nat. Commun. 2018, 9, 4796. DOI: 10.1038/s41467-018-07075-3.
  • Gay, D. A.; Schmeltz, D.; Prestbo, E.; Olson, M.; Sharac, T.; Tordon, R. The Atmospheric Mercury Network: Measurement and Initial Examination of an Ongoing Atmospheric Mercury Record across North America. Atmos. Chem. Phys. 2013, 13, 11339–11349. DOI: 10.5194/acp-13-11339-2013.
  • Pandey, S. K.; Kim, K. H.; Brown, R. J. C. Measurement Techniques for Mercury Species in Ambient Air. TrAC Trends Anal. Chem. 2011, 30, 899–917. DOI: 10.1016/j.trac.2011.01.017.
  • Huang, J.; Gustin, M. S. Uncertainties of Gaseous Oxidized Mercury Measurements Using KCL-Coated Denuders, Cation-Exchange Membranes, and Nylon Membranes: Humidity Influences. Environ. Sci. Technol. 2015, 49, 6102–6108. DOI: 10.1021/acs.est.5b00098.
  • Cheng, I.; Zhang, L. Uncertainty Assessment of Gaseous Oxidized Mercury Measurements Collected by Atmospheric Mercury Network. Environ. Sci. Technol. 2017, 51, 855–862. DOI: 10.1021/acs.est.6b04926.
  • Lyman, S. N.; Cheng, I.; Gratz, L. E.; Weiss-Penzias, P.; Zhang, L. An Updated Review of Atmospheric Mercury. Sci. Total Environ. 2020, 707, 135575. DOI: 10.1016/j.scitotenv.2019.135575.
  • Lyman, S. N.; Gratz, L. E.; Dunham-Cheatham, S. M.; Gustin, M. S.; Luippold, A. Improvements to the Accuracy of Atmospheric Oxidized Mercury Measurements. Environ. Sci. Technol. 2020, 54, 13379–13388. DOI: 10.1021/acs.est.0c02747.
  • Ambrose, J. L.; Lyman, S. N.; Huang, J.; Gustin, M. S.; Jaffe, D. A. Fast Time Resolution Oxidized Mercury Measurements during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX). Environ. Sci. Technol. 2013, 47, 7285–7294. DOI: 10.1021/es303916v.
  • Swartzendruber, P. C.; Jaffe, D. A.; Finley, B. Development and First Results of an Aircraft-Based, High Time Resolution Technique for Gaseous Elemental and Reactive (Oxidized) Gaseous Mercury. Environ. Sci. Technol. 2009, 43, 7484–7489. DOI: 10.1021/es901390t.
  • Miller, M. B.; Dunham-Cheatham, S. M.; Gustin, M. S.; Edwards, G. C. Evaluation of Cation Exchange Membrane Performance under Exposure to High Hg0 and HgBr2 Concentrations. Atmos. Meas. Tech. 2019, 12, 1207–1217. DOI: 10.5194/amt-12-1207-2019.
  • Huang, J.; Miller, M. B.; Weiss-Penzias, P.; Gustin, M. S. Comparison of Gaseous Oxidized Hg Measured by KCl-Coated Denuders, and Nylon and Cation Exchange Membranes. Environ. Sci. Technol. 2013, 47, 7307–7316. DOI: 10.1021/es4012349.
  • Lyman, S.; Jones, C.; O’Neil, T.; Allen, T., Miller, M., Gustin, M. S., Pierce, A. M., Luke, W., Ren, X., and Kelley, P. Automated Calibration of Atmospheric Oxidized Mercury Measurements. Environ. Sci. Technol. 2016, 50, 12911–12927. DOI: 10.1021/acs.est.6b04211.
  • Jones, C. P.; Lyman, S. N.; Jaffe, D. A.; Allen, T.; O'Neil, T. L. Detection and Quantification of Gas-Phase Oxidized Mercury Compounds by GC/MS. Atmos. Meas. Tech. 2016, 9, 2195–2205. DOI: 10.5194/amt-9-2195-2016.
  • Gačnik, J.; Živković, I.; Guevara, S. R.; Jaćimović, R.; Kotnik, J.; Horvat, M. Validating an Evaporative Calibrator for Gaseous Oxidized Mercury. Sensors 2021, 21, 2501. DOI: 10.3390/s21072501.
  • Feng, X.; Sommar, J.; Lindqvist, O.; Gardfeldt, K. Improved Determination of Gaseous Divalent Mercury in Ambient Air Using KCl Coated Denuders. Fresenius J. Anal. Chem. 2000, 366, 423–428. DOI: 10.1007/s002160050086.
  • McClure, C. D.; Jaffe, D. A.; Edgerton, E. S. Evaluation of the KCl Denuder Method for Gaseous Oxidized Mercury Using HgBr2 at an in-Service AMNet site. Environ. Sci. Technol. 2014, 48, 11437–11444. DOI: 10.1021/es502545k.
  • Feng, X.; Lu, J. Y.; Hao, Y.; Banic, C.; Schroeder, W. H. Evaluation and Applications of a Gaseous Mercuric Chloride Source. Anal. Bioanal. Chem. 2003, 376, 1137–1140. DOI: 10.1007/s00216-003-2034-7.
  • Larjava, K.; Laitinen, T.; Vahlman, T.; Artmann, S.; Siemens, V.; Broekaert, J. A. C.; Klockow, D. Measurement and Control of Mercury Species in Flue Gases from Liquid Waste Incineration. Int. J. Environ. Anal. Chem. 1992, 49, 73–85. DOI: 10.1080/03067319208028128.
  • Wang, J.; Xiao, Z.; Lindqvist, O. On-Line Measurement of Mercury in Simulated Flue Gas. Water. Air. Soil Pollut. 1995, 80, 1217–1226. DOI: 10.1007/BF01189785.
  • Xiao, Z.; Sommar, J.; Wei, S.; Lindqvist, O. Sampling and Determination of Gas Phase Divalent Mercury in the Air Using a KCl Coated Denuder. Fresenius J. Anal. Chem. 1997, 358, 386–391. DOI: 10.1007/s002160050434.
  • Deeds, D. A.; Ghoshdastidar, A.; Raofie, F.; Guérette, É. A.; Tessier, A.; Ariya, P. A. Development of a Particle-Trap Preconcentration-Soft Ionization Mass Spectrometric Technique for the Quantification of Mercury Halides in Air. Anal. Chem. 2015, 87, 5109–5116. DOI: 10.1021/ac504545w.
  • O'Keeffe, A. E.; Ortman, G. C. Primary Standards for Trace Gas Analysis. Anal. Chem. 1966, 38, 760–763. DOI: 10.1021/ac60238a022.
  • Finley, B. D.; Jaffe, D. A.; Call, K.; Lyman, S.; Gustin, M. S.; Peterson, C.; Miller, M.; Lyman, T. Development, Testing, and Deployment of an Air Sampling Manifold for Spiking Elemental and Oxidized Mercury during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX). Environ. Sci. Technol. 2013, 47, 7277–7284. DOI: 10.1021/es304185a.
  • Stratton, W. J.; Lindberg, S. E.; Perry, C. J. Atmospheric Mercury Speciation: Laboratory and Field Evaluation of a Mist Chamber Method for Measuring Reactive Gaseous Mercury. Environ. Sci. Technol. 2001, 35, 170–177. DOI: 10.1021/es001260j.
  • Petrov, P.; Rajamäki, T.; Corns, W. T.; Goenaga-Infante, H. Evaluating the Performance of Oxidized Hg Reference Gas Generators in the Range ng m−3 to μg m−3 by Improved Coupling with ICP-MS. Atmos. Environ. X 2020, 8, 100090. DOI: 10.1016/j.aeaoa.2020.100090.
  • Tong, Y.; Zhang, H.; Lin, H.; de Foy, B.; Chen, L.; Zhang, W.; Wang, X.; Guan, C. A Potential Route for Photolytic Reduction of HgCl2 and HgBr2 in Dry Air and Analysis about the Impacts from Ozone. Atmos. Res. 2021, 249, 105310. DOI: 10.1016/j.atmosres.2020.105310.
  • Wilbring, P.; Schmaeh, M. 2001 A Portable Calibration Gas Generator for H2O, HCl, NH3 and Mercury. In: International Conference on Emissions Monitoring, Arnheim, Netherlands. DOI: 10.1017/s1539299600000356.
  • Sari, S.; Timo, R.; Jussi, H.; Panu, H. Dynamic Calibration Method for Reactive Gases. Meas. Sci. Technol. 2019, 31, 034001. DOI: 10.1088/1361-6501/ab4d68.
  • EURAMET. EURAMET 2017 Publishable Summary for 16ENV01 MercOx–Metrology for Oxidized Mercury Report 16ENV01. 2017.
  • L’vov, B. V. Kinetics and Mechanism of Thermal Decomposition of Mercuric Oxide. Thermochim. Acta 1999, 333, 21–26. DOI: 10.1016/S0040-6031(99)00086-6.
  • Wilcox, J.; Blowers, P. Decomposition of Mercuric Chloride and Application to Combustion Flue Gases. Environ. Chem. 2004, 1, 166–171. DOI: 10.1071/EN04036.
  • Niksa, S.; Fujiwara, N. A Predictive Mechanism for Mercury Oxidation on Selective Catalytic Reduction Catalysts under Coal-Derived Flue Gas. J. Air Waste Manag. Assoc. 2005, 55, 1866–1875. DOI: 10.1080/10473289.2005.10464779.
  • Mao, H.; Cheng, I.; Zhang, L. Current Understanding of the Driving Mechanisms for Spatiotemporal Variations of Atmospheric Speciated Mercury: A Review. Atmos. Chem. Phys. 2016, 16, 12897–12924. DOI: 10.5194/acp-16-12897-2016.
  • Gačnik, J.; Živković, I.; Ribeiro Guevara, S. Calibration Approach for Gaseous Oxidized Mercury Based on Nonthermal Plasma Oxidation of Elemental Mercury. Anal. Chem. 2022, 94, 23, 8234–8240. DOI: 10.1021/acs.analchem.2c00260.
  • Chen, Z.; Mannava, D. P.; Mathur, V. K. Mercury Oxidization in Dielectric Barrier Discharge Plasma System. Ind. Eng. Chem. Res. 2006, 45, 6050–6055. DOI: 10.1021/ie0603666.
  • Quétel, C. R.; Zampella, M.; Brown, R. J. C.; Ent, H.; Horvat, M.; Paredes, E.; Tunc, M. International System of Units Traceable Results of Hg Mass Concentration at Saturation in Air from a Newly Developed Measurement Procedure. Anal. Chem. 2014, 86, 7819–7827. DOI: 10.1021/ac5018875.
  • Ent, H.; Andel, I. v.; Heemskerk, M.; Otterloo, P. v.; Bavius, W.; Baldan, A.; Horvat, M.; Brown, R. J. C.; Quétel, C. R. A Gravimetric Approach to Providing SI Traceability for Concentration Measurement Results of Mercury Vapor at Ambient Air Levels. Meas. Sci. Technol. 2014, 25, 115801. DOI: 10.1088/0957-0233/25/11/115801.
  • Dumarey, R.; Brown, R. J. C.; Corns, W. T.; Brown, A. S.; Stockwell, P. B. Elemental Mercury Vapour in Air: The Origins and Validation of the “Dumarey Equation” Describing the Mass Concentration at Saturation. Accred. Qual. Assur. 2010, 15, 409–414. DOI: 10.1007/s00769-010-0645-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.