192
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advancement in Analytical Techniques for Determining the Activity of β-Site Amyloid Precursor Protein Cleaving Enzyme 1

, ORCID Icon, , , , & show all

References

  • Querfurth, H. W.; LaFerla, F. M. Alzheimer’s Disease. N. Engl. J. Med. 2010, 362, 329–344. DOI: 10.1056/NEJMra0909142.
  • Mattson, M. P. Pathways towards and Away from Alzheimer’s Disease. Nature 2004, 430, 631–639. DOI: 10.1038/nature02621.
  • Poeck, B.; Strauss, R.; Kretzschmar, D. Analysis of Amyloid Precursor Protein Function in Drosophilamelanogaster. Exp. Brain Res. 2012, 217, 413–421. DOI: 10.1007/s00221-011-2860-3.
  • Nangare, S.; Patil, P. Chitosan Mediated Layer-by-Layer Assembly Based Graphene Oxide Decorated Surface Plasmon Resonance Biosensor for Highly Sensitive Detection of β-Amyloid. Int. J. Biol. Macromol. 2022, 214, 568–582. DOI: 10.1016/j.ijbiomac.2022.06.129.
  • Crouch, P. J.; Harding, S. M. E.; White, A. R.; Camakaris, J.; Bush, A. I.; Masters, C. L. Mechanisms of Aβ Mediated Neurodegeneration in Alzheimer’s Disease. Int. J. Biochem. Cell Biol. 2008, 40, 181–198. DOI: 10.1016/j.biocel.2007.07.013.
  • Wilhelm, G. B.; Sunit, M.; Sven, T.; Katharina, K.; Christina, S.; Burkhard, R.; Joo, K. S.; A, C. G.; Michael, K.; Volker, H.; et al. Composition of Isolated Synaptic Boutons Reveals the Amounts of Vesicle Trafficking Proteins. Science (80-.) 2014, 344, 1023–1028. DOI: 10.1126/science.1252884.
  • Kim, T. W.; Wu, K.; Xu, J. L.; McAuliffe, G.; Tanzi, R. E.; Wasco, W.; Black, I. B. Selective Localization of Amyloid Precursor-like Protein 1 in the Cerebral Cortex Postsynaptic Density. Brain Res. Mol. Brain Res. 1995, 32, 36–44. DOI: 10.1016/0169-328X(95)00328-P.
  • Martin, K. Neuronal Function of Alzheimer’s Protein. Science (80-.) 2019, 363, 123–124. DOI: 10.1126/science.aaw0636.
  • Thathiah, A.; De Strooper, B. The Role of G Protein-Coupled Receptors in the Pathology of Alzheimer’s Disease. Nat. Rev. Neurosci. 2011, 12, 73–87. DOI: 10.1038/nrn2977.
  • Takami, M.; Nagashima, Y.; Sano, Y.; Ishihara, S.; Morishima-Kawashima, M.; Funamoto, S.; Ihara, Y. γ-Secretase: Successive Tripeptide and Tetrapeptide Release from the Transmembrane Domain of β-Carboxyl Terminal Fragment. J. Neurosci. 2009, 29, 13042–13052. DOI: 10.1523/JNEUROSCI.2362-09.2009.
  • Haass, C.; Lemere, C. A.; Capell, A.; Citron, M.; Seubert, P.; Schenk, D.; Lannfelt, L.; Selkoe, D. J. The Swedish Mutation Causes Early-Onset Alzheimer’s Disease by β-Secretase Cleavage within the Secretory Pathway. Nat. Med. 1995, 1, 1291–1296. DOI: 10.1038/nm1295-1291.
  • Hick, M.; Herrmann, U.; Weyer, S. W.; Mallm, J. P.; Tschäpe, J. A.; Borgers, M.; Mercken, M.; Roth, F. C.; Draguhn, A.; Slomianka, L.; et al. Acute Function of Secreted Amyloid Precursor Protein Fragment APPsα in Synaptic Plasticity. Acta Neuropathol. 2015, 129, 21–37. DOI: 10.1007/s00401-014-1368-x.
  • Weyer, S. W.; Zagrebelsky, M.; Herrmann, U.; Hick, M.; Ganss, L.; Gobbert, J.; Gruber, M.; Altmann, C.; Korte, M.; Deller, T.; et al. Comparative Analysis of Single and Combined APP/APLP Knockouts Reveals Reduced Spine Density in APP-KO Mice That is Prevented by APPsα Expression. Acta Neuropathol. Commun. 2014, 2, 36. DOI: 10.1186/2051-5960-2-36.
  • Willem, M.; Tahirovic, S.; Busche, M. A.; Ovsepian, S. V.; Chafai, M.; Kootar, S.; Hornburg, D.; Evans, L. D. B.; Moore, S.; Daria, A.; et al. η-Secretase Processing of APP Inhibits Neuronal Activity in the Hippocampus. Nature 2015, 526, 443–447. DOI: 10.1038/nature14864.
  • Citron, M.; Oltersdorf, T.; Haass, C.; McConlogue, L.; Hung, A. Y.; Seubert, P.; Vigo-Pelfrey, C.; Lieberburg, I.; Selkoe, D. J. Mutation of the β-Amyloid Precursor Protein in Familial Alzheimer’s Disease Increases β-Protein Production. Nature 1992, 360, 672–674. DOI: 10.1038/360672a0.
  • Seilheimer, B.; Bohrmann, B.; Bondolfi, L.; Müller, F.; Stüber, D.; Döbeli, H. The Toxicity of the Alzheimer’s β-Amyloid Peptide Correlates with a Distinct Fiber Morphology. J. Struct. Biol. 1997, 119, 59–71. DOI: 10.1006/jsbi.1997.3859.
  • Selkoe, D. J. Alzheimer’s Disease: Genes, Proteins, and Therapy. Physiol. Rev. 2001, 81, 741–766. DOI: 10.1152/physrev.2001.81.2.741.
  • Sinha, S.; Anderson, J. P.; Barbour, R.; Basi, G. S.; Caccavello, R.; Davis, D.; Doan, M.; Dovey, H. F.; Frigon, N.; Hong, J.; et al. Purification and Cloning of Amyloid Precursor Protein β-Secretase from Human Brain. Nature 1999, 402, 537–540. DOI: 10.1038/990114.
  • Yan, R.; Bienkowski, M. J.; Shuck, M. E.; Miao, H.; Tory, M. C.; Pauley, A. M.; Brashier, J. R.; Stratman, N. C.; Mathews, W. R.; Buhl, A. E.; et al. Membrane-Anchored Aspartyl Protease with Alzheimer’s Disease β-Secretase Activity. Nature 1999, 402, 533–537. DOI: 10.1038/990107.
  • Zhu, K.; Xiang, X.; Filser, S.; Marinković, P.; Dorostkar, M. M.; Crux, S.; Neumann, U.; Shimshek, D. R.; Rammes, G.; Haass, C.; et al. Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 Inhibition Impairs Synaptic Plasticity via Seizure Protein 6. Biol. Psychiatry 2018, 83, 428–437. DOI: 10.1016/j.biopsych.2016.12.023.
  • Fukumoto, H.; Rosene, D. L.; Moss, M. B.; Raju, S.; Hyman, B. T.; Irizarry, M. C. Secretase Activity Increases with Aging in Human, Monkey, and Mouse Brain. Am. J. Pathol. 2004, 164, 719–725. DOI: 10.1016/S0002-9440(10)63159-8.
  • Ahmed, R. R.; Holler, C. J.; Webb, R. L.; Li, F.; Beckett, T. L.; Murphy, M. P. BACE1 and BACE2 Enzymatic Activities in Alzheimer’s Disease. J. Neurochem. 2010, 112, 1045–1053. DOI: 10.1111/j.1471-4159.2009.06528.x.
  • Chen, Y.; Huang, X.; Zhang, Y.; Rockenstein, E.; Bu, G.; Golde, T. E.; Masliah, E.; Xu, H. Alzheimer’s β-Secretase (BACE1) Regulates the CAMP/PKA/CREB Pathway Independently of β-Amyloid. J. Neurosci. 2012, 32, 11390–11395. DOI: 10.1523/JNEUROSCI.0757-12.2012.
  • Sadleir, K. R.; Kandalepas, P. C.; Buggia-Prévot, V.; Nicholson, D. A.; Thinakaran, G.; Vassar, R. Presynaptic Dystrophic Neurites Surrounding Amyloid Plaques Are Sites of Microtubule Disruption, BACE1 Elevation, and Increased Aβ Generation in Alzheimer’s Disease. Acta Neuropathol. 2016, 132, 235–256. DOI: 10.1007/s00401-016-1558-9.
  • Cai, H.; Wang, Y.; McCarthy, D.; Wen, H.; Borchelt, D. R.; Price, D. L.; Wong, P. C. BACE1 is the Major β-Secretase for Generation of Aβ Peptides by Neurons. Nat. Neurosci. 2001, 4, 233–234. DOI: 10.1038/85064.
  • Luo, Y.; Bolon, B.; Kahn, S.; Bennett, B. D.; Babu-Khan, S.; Denis, P.; Fan, W.; Kha, H.; Zhang, J.; Gong, Y.; et al. Mice Deficient in BACE1, the Alzheimer’s β-Secretase, Have Normal Phenotype and Abolished β-Amyloid Generation. Nat. Neurosci. 2001, 4, 231–232. DOI: 10.1038/85059.
  • Cai, J.; Qi, X.; Kociok, N.; Skosyrski, S.; Emilio, A.; Ruan, Q.; Han, S.; Liu, L.; Chen, Z.; Bowes Rickman, C.; et al. β-Secretase (BACE1) Inhibition Causes Retinal Pathology by Vascular Dysregulation and Accumulation of Age Pigment. EMBO Mol. Med. 2012, 4, 980–991. DOI: 10.1002/emmm.201101084.
  • Kobayashi, D.; Zeller, M.; Cole, T.; Buttini, M.; McConlogue, L.; Sinha, S.; Freedman, S.; Morris, R. G. M.; Chen, K. S. BACE1 Gene Deletion: Impact on Behavioral Function in a Model of Alzheimer’s Disease. Neurobiol. Aging 2008, 29, 861–873. DOI: 10.1016/j.neurobiolaging.2007.01.002.
  • Harrison, S. M.; Harper, A. J.; Hawkins, J.; Duddy, G.; Grau, E.; Pugh, P. L.; Winter, P. H.; Shilliam, C. S.; Hughes, Z. A.; Dawson, L. A.; et al. BACE1 (β-Secretase) Transgenic and Knockout Mice: Identification of Neurochemical Deficits and Behavioral Changes. Mol. Cell Neurosci. 2003, 24, 646–655. DOI: 10.1016/S1044-7431(03)00227-6.
  • May, P. C.; Willis, B. A.; Lowe, S. L.; Dean, R. A.; Monk, S. A.; Cocke, P. J.; Audia, J. E.; Boggs, L. N.; Borders, A. R.; Brier, R. A.; et al. The Potent BACE1 Inhibitor LY2886721 Elicits Robust Central Aβ Pharmacodynamic Responses in Mice, Dogs, and Humans. J. Neurosci. 2015, 35, 1199–LP1210. DOI: 10.1523/JNEUROSCI.4129-14.2015.
  • Sakamoto, K.; Matsuki, S.; Matsuguma, K.; Yoshihara, T.; Uchida, N.; Azuma, F.; Russell, M.; Hughes, G.; Haeberlein, S. B.; Alexander, R. C.; et al. BACE1 Inhibitor Lanabecestat (AZD3293) in a Phase 1 Study of Healthy Japanese Subjects: Pharmacokinetics and Effects on Plasma and Cerebrospinal Fluid Aβ Peptides. J. Clin. Pharmacol. 2017, 57, 1460–1471. DOI: 10.1002/jcph.950.
  • Kennedy, E.; Stamford, A.; Xia, C.; Kathleen, C.; Cumming, J. N.; Dockendorf, M. F.; Egan, M.; Larry, E.; A.; Hodgson, H. A.; Hyde, L. A.; et al. The BACE1 Inhibitor Verubecestat (MK-8931) Reduces CNS β-Amyloid in Animal Models and in Alzheimer’s Disease Patients. Sci. Transl. Med. 2016, 8, 363ra150–363ra150. DOI: 10.1126/scitranslmed.aad9704.
  • Ming-Hsuan, O. E.; Toshihiro, K. J.; Jelena, N.; ; W, P.; Hongxin, R. T.; Anis, D.; ; M, C.; D.; G, C.; Robert, T. W. V. Axonal Organization Defects in the Hippocampus of Adult Conditional BACE1 Knockout Mice. Sci. Transl. Med. 2018, 10, eaao5620. DOI: 10.1126/scitranslmed.aao5620.
  • Hong, P.; Li, W. L.; Li, J. M. Applications of Aptasensors in Clinical Diagnostics. Sensors (Basel) 2012, 12, 1181–1193. DOI: 10.3390/s120201181.
  • Han, K.; Liang, Z. Q.; Zhou, N. Design Strategies for Aptamer-Based Biosensors. Sensors (Basel) 2010, 10, 4541–4557. DOI: 10.3390/s100504541.
  • Chauhan, N.; Tiwari, S.; Narayan, T.; Jain, U. Bienzymatic Assembly Formed @ Pt Nano Sensing Framework Detecting Acetylcholine in Aqueous Phase. Appl. Surf. Sci. 2019, 474, 154–160. DOI: 10.1016/j.apsusc.2018.04.056.
  • Chauhan, N.; Balayan, S.; Jain, U. Sensitive Biosensing of Neurotransmitter: 2D Material Wrapped Nanotubes and MnO2 Composites for the Detection of Acetylcholine. Synth. Met. 2020, 263, 116354. DOI: 10.1016/j.synthmet.2020.116354.
  • Bungon, T.; Haslam, C.; Damiati, S.; O'Driscoll, B.; Whitley, T.; Davey, P.; Siligardi, G.; Charmet, J.; Awan, S. A. Graphene FET Sensors for Alzheimer’s Disease Protein Biomarker Clusterin Detection. Front. Mol. Biosci. 2021, 8, 651232–651213. DOI: 10.3389/fmolb.2021.651232.
  • Esteves-Villanueva, J. O.; Trzeciakiewicz, H.; Martic, S. A Protein-Based Electrochemical Biosensor for Detection of Tau Protein, a Neurodegenerative Disease Biomarker. Analyst 2014, 139, 2823–2831. DOI: 10.1039/C4AN00204K.
  • Yi, X.; Han, H.; Zhang, Y.; Wang, J.; Zhang, Y.; Zhou, F. Amplified Voltammetric Characterization of Cleavage of the Biotinylated Peptide by BACE1 and Screening of BACE1 Inhibitors. Biosens Bioelectron 2013, 50, 224–228. DOI: 10.1016/j.bios.2013.06.047.
  • Qu, F.; Yang, M.; Rasooly, A. Dual Signal Amplification Electrochemical Biosensor for Monitoring the Activity and Inhibition of the Alzheimer’s Related Protease β-Secretase. Anal. Chem. 2016, 88, 10559–10565. DOI: 10.1021/acs.analchem.6b02659.
  • Palmer, L. C.; Newcomb, C. J.; Kaltz, S. R.; Spoerke, E. D.; Stupp, S. I. Biomimetic Systems for Hydroxyapatite Mineralization Inspired by Bone and Enamel. Chem. Rev. 2008, 108, 4754–4783. DOI: 10.1021/cr8004422.
  • Syamchand, S. S.; Sony, G. Multifunctional Hydroxyapatite Nanoparticles for Drug Delivery and Multimodal Molecular Imaging. Microchim. Acta 2015, 182, 1567–1589. DOI: 10.1007/s00604-015-1504-x.
  • Gao, X.; Song, J.; Ji, P.; Zhang, X.; Li, X.; Xu, X.; Wang, M.; Zhang, S.; Deng, Y.; Deng, F.; Wei, S. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering. ACS Appl. Mater. Interfaces 2016, 8, 3499–3515. DOI: 10.1021/acsami.5b12413.
  • Xia, N.; Zhang, Y.; Guan, P.; Hao, Y.; Liu, L. A Simple and Label-Free Electrochemical Method for Detection of Beta-Site Amyloid Precursor Protein Cleaving Enzyme and Screening of Its Inhibitor. Sens. Actuat. B Chem. 2015, 213, 111–115. DOI: 10.1016/j.snb.2015.02.081.
  • Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z.; Sheehan, P. E. Reduced Graphene Oxide Molecular Sensors. Nano Lett. 2008, 8, 3137–3140. DOI: 10.1021/nl8013007.
  • Mahari, S.; Gandhi, S. Electrochemical Immunosensor for Detection of Avian Salmonellosis Based on Electroactive Reduced Graphene Oxide (RGO) Modified Electrode. Bioelectrochemistry 2022, 144, 108036. DOI: 10.1016/j.bioelechem.2021.108036.
  • Roberts, A.; Chauhan, N.; Islam, S.; Mahari, S.; Ghawri, B.; Gandham, R. K.; Majumdar, S. S.; Ghosh, A.; Gandhi, S. Graphene Functionalized Field-Effect Transistors for Ultrasensitive Detection of Japanese Encephalitis and Avian Influenza Virus. Sci. Rep. 2020, 10, 14546. DOI: 10.1038/s41598-020-71591-w.
  • Roberts, A.; Tripathi, P. P.; Gandhi, S. Graphene Nanosheets as an Electric Mediator for Ultrafast Sensing of Urokinase Plasminogen Activator Receptor-A Biomarker of Cancer. Biosens. Bioelectron. 2019, 141, 111398. DOI: 10.1016/j.bios.2019.111398.
  • Dey, J.; Roberts, A.; Mahari, S.; Gandhi, S.; Tripathi, P. P. Electrochemical Detection of Alzheimer’s Disease Biomarker, β-Secretase Enzyme (BACE1), with One-Step Synthesized Reduced Graphene Oxide. Front. Bioeng. Biotechnol. 2022, 10, 873811–873811. DOI: 10.3389/fbioe.2022.873811.
  • Xia, N.; Peng, P.; Wang, S.; Du, J.; Zhu, G.; Du, W.; Liu, L. A Signal-on Electrochemical Strategy for Protease Detection Based on the Formation of ATCUN-Cu(II). Sens. Actuat. B Chem. 2016, 232, 557–563. DOI: 10.1016/j.snb.2016.03.144.
  • Dwivedi, H. P.; Smiley, R. D.; Jaykus, L.-A. Selection and Characterization of DNA Aptamers with Binding Selectivity to Campylobacter Jejuni Using Whole-Cell SELEX. Appl. Microbiol. Biotechnol. 2010, 87, 2323–2334. DOI: 10.1007/s00253-010-2728-7.
  • Ohk, S. H.; Koo, O. K.; Sen, T.; Yamamoto, C. M.; Bhunia, A. K. Antibody–Aptamer Functionalized Fibre-Optic Biosensor for Specific Detection of Listeria Monocytogenes from Food. J. Appl. Microbiol. 2010, 109, 808–817. DOI: 10.1111/j.1365-2672.2010.04709.x.
  • Jeong, Y.; Kook, Y.; Lee, K.; Koh, G. Metal Enhanced Fluorescence (MEF) for Biosensors: General Approaches and a Review of Recent Developments. Biosens. Bioelectron. 2018, 111, 102–116. DOI: 10.1016/j.bios.2018.04.007.
  • Rahmati, M.; Silva, E. A.; Reseland, J. E.; A.; Heyward, C.; Haugen, H. J. Biological Responses to Physicochemical Properties of Biomaterial Surface. Chem. Soc. Rev. 2020, 49, 5178–5224. DOI: 10.1039/D0CS00103A.
  • Alyassin, M. A.; Moon, S.; Keles, H. O.; Manzur, F.; Lin, R. L.; Haeggstrom, E.; Kuritzkes, D. R.; Demirci, U. Rapid Automated Cell Quantification on HIV Microfluidic Devices. Lab. Chip 2009, 9, 3364–3369. DOI: 10.1039/B911882A.
  • Navarro, E.; Serrano-Heras, G.; Castaño, M. J.; Solera, J. Real-Time PCR Detection Chemistry. Clin. Chim. Acta 2015, 439, 231–250. DOI: 10.1016/j.cca.2014.10.017.
  • Hitti, F. L.; Siegelbaum, S. A. The Hippocampal CA2 Region is Essential for Social Memory. Nature 2014, 508, 88–92. DOI: 10.1038/nature13028.
  • Wallace, B.; Atzberger, P. J. Förster Rster Resonance Energy Transfer: Role of Diffusion of Fluorophore Orientation and Separation in Observed Shifts of FRET Efficiency. PLoS One 2017, 12, e0177122. DOI: 10.1371/journal.pone.0177122.
  • Margineanu, A.; Chan, J. J.; Kelly, D. J.; Warren, S. C.; Flatters, D.; Kumar, S.; Katan, M.; Dunsby, C. W.; French, P. M. W. Screening for Protein-Protein Interactions Using Förster Resonance Energy Transfer (FRET) and Fluorescence Lifetime Imaging Microscopy (FLIM). Sci. Rep. 2016, 6, 28186–28201. DOI: 10.1038/srep28186.
  • Zhao, M.; Wan, X.; Li, Y.; Zhou, W.; Peng, L. Multiplexed 3D FRET Imaging in Deep Tissue of Live Embryos. Sci. Rep. 2015, 5, 13991. DOI: 10.1038/srep13991.
  • Lu, S.; Wang, Y. Fluorescence Resonance Energy Transfer Biosensors for Cancer Detection and Evaluation of Drug Efficacy. Clin. Cancer Res. 2010, 16, 3822–3824. DOI: 10.1158/1078-0432.CCR-10-1333.
  • Li, Y.; Miao, X.; Chen, T.; Yi, X.; Wang, R.; Zhao, H.; Lee, S. M.-Y.; Wang, X.; Zheng, Y. Zebrafish as a Visual and Dynamic Model to Study the Transport of Nanosized Drug Delivery Systems across the Biological Barriers. Colloids Surf. B Biointerfaces 2017, 156, 227–235. DOI: 10.1016/j.colsurfb.2017.05.022.
  • Kennedy, M. E.; Wang, W.; Song, L.; Lee, J.; Zhang, L.; Wong, G.; Wang, L.; Parker, E. Measuring Human β-Secretase (BACE1) Activity Using Homogeneous Time-Resolved Fluorescence. Anal. Biochem. 2003, 319, 49–55. DOI: 10.1016/S0003-2697(03)00253-7.
  • Liu, L.; Xia, N.; Yu, J. A Graphene Oxide-Based Fluorescent Scheme for the Determination of the Activity of the β-Site Amyloid Precursor Protein (BACE1) and Its Inhibitors. Microchim. Acta 2016, 183, 265–271. DOI: 10.1007/s00604-015-1647-9.
  • Zuo, X.; Dai, H.; Zhang, H.; Liu, J.; Ma, S.; Chen, X. A Peptide–WS2 Nanosheet Based Biosensing Platform for Determination of β-Secretase and Screening of Its Inhibitors. Analyst 2018, 143, 4585–4591. DOI: 10.1039/C8AN00132D.
  • Lee, J.; Samson, A. A. S.; Song, J. M. Inkjet Printing-Based β-Secretase Fluorescence Resonance Energy Transfer (FRET) Assay for Screening of Potential β-Secretase Inhibitors of Alzheimer’s Disease. Anal. Chim. Acta 2018, 1022, 89–95. DOI: 10.1016/j.aca.2018.03.033.
  • Lee, J.; Samson, A. A. S.; Song, J. M. Inkjet-Printing Enzyme Inhibitory Assay Based on Determination of Ejection Volume. Anal. Chem. 2017, 89, 2009–2016. DOI: 10.1021/acs.analchem.6b04585.
  • Halima, S.; Ben; Rajendran, L. Membrane Anchored and Lipid Raft Targeted β-Secretase Inhibitors for Alzheimer’s Disease Therapy. JAD 2011, 24, 143–152. DOI: 10.3233/JAD-2011-110269.
  • Folk, D. S.; Torosian, J. C.; Hwang, S.; McCafferty, D. G.; Franz, K. J. Monitoring β-Secretase Activity in Living Cells with a Membrane-Anchored FRET Probe. Angew. Chem. Int. Ed. Engl. 2012, 51, 10795–10799. DOI: 10.1002/anie.201206673.
  • Laude, A. J.; Prior, I. A. Plasma Membrane Microdomains: Organization, Function and Trafficking (Review). Mol. Membr. Biol. 2004, 21, 193–205. DOI: 10.1080/09687680410001700517.
  • Choi, Y.; Cho, Y.; Kim, M.; Grailhe, R.; Song, R. Fluorogenic Quantum Dot-Gold Nanoparticle Assembly for Beta Secretase Inhibitor Screening in Live Cell. Anal. Chem. 2012, 84, 8595–8601. DOI: 10.1021/ac301574b.
  • Ge, L.; Liu, Z.; Tian, Y. A Novel Two-Photon Ratiometric Fluorescent Probe for Imaging and Sensing of BACE1 in Different Regions of AD Mouse Brain. Chem. Sci. 2020, 11, 2215–2224. DOI: 10.1039/C9SC05256A.
  • Deng, D.; Hao, Y.; Yang, P.; Xia, N.; Yu, W.; Liu, X.; Liu, L. Single-Labeled Peptide Substrates for Detection of Protease Activity Based on the Inherent Fluorescence Quenching Ability of Cu2+. Anal. Methods 2019, 11, 1248–1253. DOI: 10.1039/C8AY02650E.
  • Luo, J.; Rasooly, A.; Wang, L.; Zeng, K.; Shen, C.; Qian, P.; Yang, M.; Qu, F. Fluorescent Turn-on Determination of the Activity of Peptidases Using Peptide Templated Gold Nanoclusters. Microchim. Acta 2016, 183, 605–610. DOI: 10.1007/s00604-015-1683-5.
  • Nguyen, H. H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors (Basel) 2015, 15, 10481–10510. DOI: 10.3390/s150510481.
  • Nangare, S. N.; Patil, P. O. Affinity-Based Nanoarchitectured Biotransducer for Sensitivity Enhancement of Surface Plasmon Resonance Sensors for in Vitro Diagnosis: A Review. ACS Biomater. Sci. Eng. 2021, 7, 2–30. DOI: 10.1021/acsbiomaterials.0c01203.
  • Zhang, J.; Sun, Y.; Wu, Q.; Gao, Y.; Zhang, H.; Bai, Y.; Song, D. Preparation of Graphene Oxide-Based Surface Plasmon Resonance Biosensor with Au Bipyramid Nanoparticles as Sensitivity Enhancer. Colloids Surf. B Biointerfaces 2014, 116, 211–218. DOI: 10.1016/j.colsurfb.2014.01.003.
  • Nangare, S.; Patil, P. Nanoarchitectured Bioconjugates and Bioreceptors Mediated Surface Plasmon Resonance Biosensor for in Vitro Diagnosis of Alzheimer’s Disease: Development and Future Prospects. Crit. Rev. Anal. Chem. 2022, 52, 1139–1169. DOI: 10.1080/10408347.2020.1864716.
  • Kim, H. J.; Sohn, Y.-S.; Kim, C.; Jang, D. Surface Plasmon Resonance Sensing of a Biomarker of Alzheimer Disease in an Intensity Measurement Mode with a Bimetallic Chip. J. Korean Phys. Soc. 2016, 69, 793–797. DOI: 10.3938/jkps.69.793.
  • Ramakrishnan, M.; Kandimalla, K. K.; Wengenack, T. M.; Howell, K. G.; Poduslo, J. F. Surface Plasmon Resonance Binding Kinetics of Alzheimer’s Disease Amyloid β Peptide-Capturing and Plaque-Binding Monoclonal Antibodies. Biochemistry 2009, 48, 10405–10415. DOI: 10.1021/bi900523q.
  • Yi, X.; Hao, Y.; Xia, N.; Wang, J.; Quintero, M.; Li, D.; Zhou, F. Sensitive and Continuous Screening of Inhibitors of β-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) at Single SPR Chips. Anal. Chem. 2013, 85, 3660–3666. DOI: 10.1021/ac303624z.
  • Xiao, L.; Zhu, A.; Xu, Q.; Chen, Y.; Xu, J.; Weng, J. Colorimetric Biosensor for Detection of Cancer Biomarker by Au Nanoparticle-Decorated Bi2Se3 Nanosheets. ACS Appl. Mater. Interfaces 2017, 9, 6931–6940. DOI: 10.1021/acsami.6b15750.
  • Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. DOI: 10.3322/caac.21492.
  • Teixeira, L.; Agnol, D. Recent Advances in Biosensor Technology for Potential Applications – An Overview. Front. Bioeng. Biotechnol. 2016, 4, 1–9. DOI: 10.3389/fbioe.2016.00011.
  • Bai, Y.; Li, H.; Xu, J.; Huang, Y.; Zhang, X.; Weng, J.; Li, Z.; Sun, L. Ultrasensitive Colorimetric Biosensor for BRCA1 Mutation Based on Multiple Signal Amplification Strategy. Biosens. Bioelectron. 2020, 166, 112424. DOI: 10.1016/j.bios.2020.112424.
  • Chen, C.; Li, N.; Lan, J.; Ji, X.; He, Z. A Label-Free Colorimetric Platform for DNA via Target-Catalyzed Hairpin Assembly and the Peroxidase-like Catalytic of Graphene/Au-NPs Hybrids. Anal. Chim. Acta 2016, 902, 154–159. DOI: 10.1016/j.aca.2015.10.030.
  • Dehghani, Z.; Hosseini, M.; Mohammadnejad, J.; Ganjali, M. R. New Colorimetric DNA Sensor for Detection of Campylobacter Jejuni in Milk Sample Based on Peroxidase-Like Activity of Gold/Platinium Nanocluster. ChemistrySelect 2019, 4, 11687–11692. DOI: 10.1002/slct.201901815.
  • Liu, L.; Deng, D.; Wang, Y.; Song, K.; Shang, Z.; Wang, Q.; Xia, N.; Zhang, B. A Colorimetric Strategy for Assay of Protease Activity Based on Gold Nanoparticle Growth Controlled by Ascorbic Acid and Cu(II)-Coordinated Peptide. Sens. Actuat. B Chem. 2018, 266, 246–254. DOI: 10.1016/j.snb.2018.03.116.
  • Schejbal, J.; Slezáčková, L.; Řemínek, R.; Glatz, Z. A Capillary Electrophoresis-Mass Spectrometry Based Method for the Screening of β-Secretase Inhibitors as Potential Alzheimer’s Disease Therapeutics. J. Chromatogr. A 2017, 1487, 235–241. DOI: 10.1016/j.chroma.2017.01.057.
  • Ferreira Lopes Vilela, A.; Cardoso, C. L. An on-Flow Assay for Screening of β-Secretase Ligands by Immobilised Capillary Reactor-Mass Spectrometry. Anal. Methods 2017, 9, 2189–2196. DOI: 10.1039/C7AY00284J.
  • Schejbal, J.; Šefraná, Š.; Řemínek, R.; Glatz, Z. Capillary Electrophoresis Integrated Immobilized Enzyme Reactor for Kinetic and Inhibition Assays of β-Secretase as the Alzheimer’s Disease Drug Target. J. Sep. Sci. 2019, 42, 1067–1076. DOI: 10.1002/jssc.201800947.
  • Machálková, M.; Schejbal, J.; Glatz, Z.; Preisler, J. A Label-Free MALDI TOF MS-Based Method for Studying the Kinetics and Inhibitor Screening of the Alzheimer’s Disease Drug Target β-Secretase. Anal. Bioanal. Chem. 2018, 410, 7441–7448. DOI: 10.1007/s00216-018-1354-6.
  • Xu, M.; Yang, L.; Wang, Q. Quantification of Selenium-Tagged Proteins in Human Plasma Using Species-Unspecific Isotope Dilution ICP-DRC-QMS Coupled on-Line with Anion Exchange Chromatography. J. Anal. At. Spectrom. 2008, 23, 1545–1549. DOI: 10.1039/b804935a.
  • Calderón-Celis, F.; Encinar, J. R.; Sanz-Medel, A. Standardization Approaches in Absolute Quantitative Proteomics with Mass Spectrometry. Mass Spectrom. Rev. 2018, 37, 715–737. DOI: 10.1002/mas.21542.
  • Luo, Y.; Yan, X.; Huang, Y.; Wen, R.; Li, Z.; Yang, L.; Yang, C. J.; Wang, Q. ICP-MS-Based Multiplex and Ultrasensitive Assay of Viruses with Lanthanide-Coded Biospecific Tagging and Amplification Strategies. Anal. Chem. 2013, 85, 9428–9432. DOI: 10.1021/ac402446a.
  • Prange, A.; Pröfrock, D. Chemical Labels and Natural Element Tags for the Quantitative Analysis of Bio-Molecules. J. Anal. At. Spectrom 2008, 23, 432–459. DOI: 10.1039/b717916m.
  • Jin, X.; Yang, L.; Yan, X.; Wang, Q. Screening Platform Based on Inductively Coupled Plasma Mass Spectrometry for β-Site Amyloid Protein Cleaving Enzyme 1 (BACE1) Inhibitors. ACS Chem. Neurosci. 2021, 12, 1093–1099. DOI: 10.1021/acschemneuro.0c00816.
  • Liu, R.; Liu, Y. C.; Meng, J.; Zhu, H.; Zhang, X. A Microfluidics-Based Mobility Shift Assay to Identify New Inhibitors of β-Secretase for Alzheimer’s Disease. Anal. Bioanal. Chem. 2017, 409, 6635–6642. DOI: 10.1007/s00216-017-0617-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.