426
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Comprehensive Review on Biopolymer Mediated Nanomaterial Composites and Their Applications in Electrochemical Sensors

, , , , , & show all

References

  • Pohanka, M.; Skládal, P. Electrochemical Biosensors - Principles and Applications. J. Appl. Biomed. 2008, 6, 57–64. DOI: 10.32725/jab.2008.008.
  • Torati, S. R.; Reddy, V.; Yoon, S. S.; Kim, C. G. Electrochemical Biosensor for Mycobacterium Tuberculosis DNA Detection Based on Gold Nanotubes Array Electrode Platform. Biosens. Bioelectron. 2016, 78, 483–488. 10.1016/j.bios.2015.11.098.
  • Yoon, H.; Nah, J.; Kim, H.; Ko, S.; Sharifuzzaman, M.; Barman, S. C.; Xuan, X.; Kim, J.; Park, J. Y. Chemically Modified Laser-Induced Porous Graphene Based Flexible and Ultrasensitive Electrochemical Biosensor for Sweat Glucose Detection. Sens. Actuators B: Chem. A 2020, 311, 127866. DOI: 10.1016/j.snb.2020.127866.
  • Goud, K. Y.; Reddy, K. K.; Satyanarayana, M.; Kummari, S.; Gobi, K. V. A Review on Recent Developments in Optical and Electrochemical Aptamer-Based Assays for Mycotoxins Using Advanced Nanomaterials. Microchim. Acta 2020, 187, 29. DOI: 10.1007/s00604-019-4034-0.
  • Xue, Q. The Development and Application of Geosynthetics. AMM 2012, 253–255, 489–492. DOI: 10.4028/www.scientific.net/AMM.253-255.489.
  • Forouzanfar, S.; Alam, F.; Pala, N.; Wang, C. A Review of Electrochemical Aptasensors for Label-Free Cancer Diagnosis. J. Electrochem. Soc. 2020, 167, 067511. DOI: 10.1149/1945-7111/ab7f20.
  • Zamay, G. S.; Zamay, T. N.; Kolovskii, V. A.; Shabanov, A. V.; Glazyrin, Y. E.; Veprintsev, D. V.; Krat, A. V.; Zamay, S. S.; Kolovskaya, O. S.; Gargaun, A. et al. Electrochemical Aptasensor for Lung Cancer-Related Protein Detection in Crude Blood Plasma Samples. Sci. Rep. 2016, 6, 34350. https://doi.org/10.1038/srep34350.
  • Cesewski, E.; Johnson, B. N. Electrochemical Biosensors for Pathogen Detection. Biosens. Bioelectron. 2020, 159, 112214. 10.1016/j.bios.2020.112214.
  • Habib, S.; Ghodsi, E.; Abdollahi, S.; Nadri, S. Porous Graphene Oxide Nanostructure as an Excellent Scaffold for Label-Free Electrochemical Biosensor: Detection of Cardiac Troponin I. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 447–452. DOI: 10.1016/j.msec.2016.07.005.
  • Chang, I.; Jeon, M.; Cho, G. C. Application of Microbial Biopolymers as an Alternative Construction Binder for Earth Buildings in Underdeveloped Countries. Int. J. Polym. Sci. 2015, 2015, 1–9. DOI: 10.1155/2015/326745.
  • Kumar, S.; Sarita; Nehra, M.; Dilbaghi, N.; Tankeshwar, K.; Kim, K.-H. Recent Advances and Remaining Challenges for Polymeric Nanocomposites in Healthcare Applications. Prog. Polym. Sci. 2018, 80, 1–38. DOI: 10.1016/j.progpolymsci.2018.03.001.
  • Selvaraj, T.; Perumal, V.; Khor, S. F.; Anthony, L. S.; Gopinath, S. C.; Muti Mohamed, N. The Recent Development of Polysaccharides Biomaterials and Their Performance for Supercapacitor Applications. Mater. Res. Bull. 2020, 126, 110839. DOI: 10.1016/j.materresbull.2020.110839.
  • Lahcen, A. A.; Rauf, S.; Beduk, T.; Durmus, C.; Aljedaibi, A.; Timur, S.; Alshareef, H. N.; Amine, A.; Wolfbeis, O. S.; Salama, K. N. Electrochemical Sensors and Biosensors Using Laser-Derived Graphene: A Comprehensive Review. Biosens. Bioelectron. 2020, 168, 112565. 10.1016/j.bios.2020.112565.
  • Kanmani, P.; Aravind, J.; Kamaraj, M.; Sureshbabu, P.; Karthikeyan, S. Environmental Applications of Chitosan and Cellulosic Biopolymers: A Comprehensive Outlook. Bioresour. Technol. 2017, 242, 295–303. DOI: 10.1016/j.biortech.2017.03.119.
  • Jian, M.; Zhang, Y.; Liu, Z. Natural Biopolymers for Flexible Sensing and Energy Devices. Chin. J. Polym. Sci. 2020, 38, 459–490. https://doi.org/10.1007/s10118-020-2379-9
  • Hassan, M. E.; Bai, J.; Dou, D. Q. Biopolymers; Definition, Classification and Applications. Egypt. J. Chem. 2019, 62(9), 1725–1737. DOI: 10.21608/ejchem.2019.6967.1580.
  • Kamel, S.; Khattab, T. A. Recent Advances in Cellulose-Based Biosensors for Medical Diagnosis. Biosensors 2020, 10, 67. DOI: 10.3390/bios10060067.
  • Wang, Z.; Ma, Z.; Sun, J.; Yan, Y.; Bu, M.; Huo, Y.; Li, Y. F.; Hu, N. Recent Advances in Natural Functional Biopolymers and Their Applications of Electronic Skins and Flexible Strain Sensors. Polymers (Basel) 2021, 13, 813–818. DOI: 10.3390/polym13050813.
  • Zargar, V.; Asghari, M.; Dashti, A. A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications. ChemBioEng Rev. 2015, 2, 204–226. DOI: 10.1002/cben.201400025.
  • Romero, M.; Macchione, M. A.; Mattea, F.; Strumia, M. The Role of Polymers in Analytical Medical Applications. A Review. Microchem. J. 2020, 159, 105366. DOI: 10.1016/j.microc.2020.105366.
  • Zhao, D.; Zhu, Y.; Cheng, W.; Chen, W.; Wu, Y.; Yu, H. Cellulose-Based Flexible Functional Materials for Emerging Intelligent Electronics. Adv. Mater. 2021, 33, 2000619. DOI: 10.1002/adma.202000619.
  • Swingler, S.; Gupta, A.; Gibson, H.; Kowalczuk, M.; Heaselgrave, W.; Radecka, I. Recent Advances and Applications of Bacterial Cellulose in Biomedicine. Polymers (Basel) 2021, 13, 412–429. DOI: 10.3390/polym13030412.
  • Terzopoulou, Z. N.; Papageorgiou, G. Z.; Papadopoulou, E.; Athanassiadou, E.; Alexopoulou, E.; Bikiaris, D. N. Green Composites Prepared from Aliphatic Polyesters and Bast Fibers. Ind. Crops Prod. 2015, 68, 60–79. DOI: 10.1016/j.indcrop.2014.08.034.
  • Yue, X.; Feng, J.; Li, H.; Xiao, Z.; Qiu, Y.; Yu, X.; Xiang, J. Novel Synthesis of Carbon Nanofiber Aerogels from Coconut Matrix for the Electrochemical Detection of Glucose. Diam. Relat. Mater. 2021, 111, 108180. DOI: 10.1016/j.diamond.2020.108180.
  • Maduraiveeran, G. Bionanomaterial-Based Electrochemical Biosensing Platforms for Biomedical Applications. Anal. Methods 2020, 12, 1688–1701. DOI: 10.1039/D0AY00171F.
  • Culica, M. E.; Chibac-Scutaru, A.-L.; Mohan, T.; Coseri, S. Cellulose-Based Biogenic Supports, Remarkably Friendly Biomaterials for Proteins and Biomolecules. Biosens. Bioelectron. 2021, 182, 113170. 10.1016/j.bios.2021.113170.
  • Esmaeili, C.; Abdi, M. M.; Mathew, A. P.; Jonoobi, M.; Oksman, K.; Rezayi, M. Synergy Effect of Nanocrystalline Cellulose for the Biosensing Detection of Glucose. Sensors (Basel) 2015, 15, 24681–24697. 10.3390/s151024681.
  • Das, S.; Ghosh, B.; Sarkar, K. Nanocellulose as Sustainable Biomaterials for Drug Delivery. Sens. Int. 2022, 3, 100135. DOI: 10.1016/j.sintl.2021.100135.
  • Zhang, M.; Gorski, W. Electrochemical Sensing Platform Based on the Carbon Nanotubes/Redox Mediators-Biopolymer System. J. Am. Chem. Soc. 2005, 127, 2058–2059. 10.1021/ja044764g.
  • Wei, X.; Zhang, M.; Gorski, W. Coupling the Lactate Oxidase to Electrodes by Ionotropic Gelation of Biopolymer. Anal. Chem. 2003, 75, 2060–2064. 10.1021/ac020765k.
  • Zhang, M.; Smith, A.; Gorski, W. Carbon Nanotube-Chitosan System for Electrochemical Sensing Based on Dehydrogenase Enzymes. Anal. Chem. 2004, 76, 5045–5050. 10.1021/ac049519u.
  • Juntapram, K.; Praphairaksit, N.; Siraleartmukul, K.; Muangsin, N. Synthesis and Characterization of Chitosan-Homocysteine Thiolactone as a Mucoadhesive Polymer. Carbohydr. Polym. 2012, 87, 2399–2408. DOI: 10.1016/j.carbpol.2011.11.007.
  • Darder, M.; López-Blanco, M.; Aranda, P.; Aznar, A. J.; Bravo, J.; Ruiz-Hitzky, E. Microfibrous Chitosan - Sepiolite Nanocomposites. Chem. Mater. 2006, 18, 1602–1610. DOI: 10.1021/cm0523642.
  • Yamada, M.; Honma, I. Anhydrous Proton Conductive Membrane Consisting of Chitosan. Electrochim. Acta 2005, 50, 2837–2841. DOI: 10.1016/j.electacta.2004.11.031.
  • Darder, M.; Colilla, M.; Ruiz-Hitzky, E. Chitosan-Clay Nanocomposites: Application as Electrochemical Sensors. Appl. Clay Sci. 2005, 28, 199–208. DOI: 10.1016/j.clay.2004.02.009.
  • Jiang, Y.; Wu, J. Recent Development in Chitosan Nanocomposites for Surface-Based Biosensor Applications. Electrophoresis 2019, 40, 2084–2097. 10.1002/elps.201900066.
  • Suginta, W.; Khunkaewla, P.; Schulte, A. Electrochemical Biosensor Applications of Polysaccharides Chitin and Chitosan. Chem. Rev. 2013, 113, 5458–5479. 10.1021/cr300325r.
  • Boyles, M. S. P.; Kristl, T.; Andosch, A.; Zimmermann, M.; Tran, N.; Casals, E.; Himly, M.; Puntes, V.; Huber, C. G.; Meindl, U. L. Chitosan Functionalisation of Gold Nanoparticles Encourages Particle Uptake and Induces Cytotoxicity and Pro ‑ Inflammatory Conditions in Phagocytic Cells, as Well as Enhancing Particle Interactions with Serum Components. J. Nanobiotechnol. 2015, 13(1), 1–20. DOI: 10.1186/s12951-015-0146-9.
  • Sharma, A.; Kumar, A. Study of Structural and Electro-Catalytic Behaviour of Amperometric Biosensor Based on Chitosan/Polypyrrole Nanotubes-Gold Nanoparticles Nanocomposites. Synth. Met. 2016, 220, 551–559. DOI: 10.1016/j.synthmet.2016.07.012.
  • Mohammadi, B.; Pirsa, S.; Alizadeh, M. Preparing Chitosan – Polyaniline Nanocomposite Film and Examining Its Mechanical, Electrical, and Antimicrobial Properties. Polym. Polym. Compos. 2019, 27, 507–517. DOI: 10.1177/0967391119851439.
  • Chen, X.; Zhang, X.; Yang, W.; Evans, D. G. Biopolymer-Manganese Oxide Nanoflake Nanocomposite Films Fabricated by Electrostatic Layer-by-Layer Assembly. Mater. Sci. Eng. C 2009, 29, 284–287. DOI: 10.1016/j.msec.2008.06.024.
  • Tang, L.; Zeng, G. M.; Wang, H.; Shen, G. L.; Huang, D. L. Amperometric Detection of Lignin-Degrading Peroxidase Activities from Phanerochaete Chrysosporium. Enzyme Microb. Technol. 2005, 36, 960–966. DOI: 10.1016/j.enzmictec.2005.02.009.
  • Klapiszewski, Ł.; Wysokowski, M.; Majchrzak, I.; Szatkowski, T.; Nowacka, M.; Siwińska-Stefańska, K.; Szwarc-Rzepka, K.; Bartczak, P.; Ehrlich, H.; Jesionowski, T. Preparation and Characterization of Multifunctional Chitin/Lignin Materials. J. Nanomater. 2013, 2013, 1–13. DOI: 10.1155/2013/425726.
  • Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chem. Rev. 2010, 110, 3552–3599. 10.1021/cr900354u.
  • Saratale, R. G.; Saratale, G. D.; Ghodake, G.; Cho, S. K.; Kadam, A.; Kumar, G.; Jeon, B. H.; Pant, D.; Bhatnagar, A.; Shin, H. S. Wheat Straw Extracted Lignin in Silver Nanoparticles Synthesis: Expanding Its Prophecy towards Antineoplastic Potency and Hydrogen Peroxide Sensing Ability. Int. J. Biol. Macromol. 2019, 128, 391–400. DOI: 10.1016/j.ijbiomac.2019.01.120.
  • Degefu, H.; Amare, M.; Tessema, M.; Admassie, S. Lignin Modified Glassy Carbon Electrode for the Electrochemical Determination of Histamine in Human Urine and Wine Samples. Electrochim. Acta 2014, 121, 307–314. DOI: 10.1016/j.electacta.2013.12.133.
  • Shi, W.; Liang, P.; Ge, D.; Wang, J.; Zhang, Q. Starch-Assisted Synthesis of Polypyrrole Nanowires by a Simple Electrochemical Approach. Chem. Commun. 2007, 23, 2414–2416. DOI: 10.1039/b701592e.
  • Gautam, V.; Srivastava, A.; Singh, K. P.; Yadav, V. L. Preparation and Characterization of Polyaniline, Multiwall Carbon Nanotubes, and Starch Bionanocomposite Material for Potential Bioanalytical Applications. Polym. Polym. Compos. 2017, 38(3), 496–506. DOI: 10.1002/pc.
  • Chivrac, F.; Pollet, E.; Avérous, L. Progress in Nano-Biocomposites Based on Polysaccharides and Nanoclays. Mater. Sci. Eng. R Reports 2009, 67, 1–17. DOI: 10.1016/j.mser.2009.09.002.
  • Tester, R. F.; Karkalas, J.; Qi, X. Starch - Composition, Fine Structure and Architecture. J. Cereal Sci. 2004, 39, 151–165. DOI: 10.1016/j.jcs.2003.12.001.
  • Gao, P.; Wang, F.; Gu, F.; Ning, J.; Liang, J.; Li, N.; Ludescher, R. D. Preparation and Characterization of Zein Thermo-Modified Starch Films. Carbohydr. Polym. 2017, 157, 1254–1260. DOI: 10.1016/j.carbpol.2016.11.004.
  • Tatsumi, H.; Katano, H.; Ikeda, T. Kinetic Analysis of Glucoamylase-Catalyzed Hydrolysis of Starch Granules from Various Botanical Sources. Biosci. Biotechnol. Biochem. 2007, 71, 946–950. 10.1271/bbb.60598.
  • Wang, W.; Wang, Q.; Zhang, Z. Hydrothermal Synthesis of One-Dimensional Assemblies of Pt Nanoparticles and Their Sensor Application for Simultaneous Determination of Dopamine and Ascorbic Acid. J. Nanopart. Res. 2008, 10, 255–262. DOI: 10.1007/s11051-008-9457-1.
  • Finkenstadt, V. L. Natural Polysaccharides as Electroactive Polymers. Appl. Microbiol. Biotechnol. 2005, 67, 735–745. 10.1007/s00253-005-1931-4.
  • Jawaheer, S.; White, S. F.; Rughooputh, S. D. D. V.; Cullen, D. C. Enzyme Stabilization Using Pectin as a Novel Entrapment Matrix in Biosensors. Anal. Lett. 2002, 35, 2077–2091. DOI: 10.1081/AL-120014997.
  • Ridley, B. L.; O'Neill, M. A.; Mohnen, D. Pectins: Structure, Biosynthesis, and Oligogalacturonide-Related Signaling. Phytochemistry 2001, 57, 929–967. DOI: 10.1016/S0031-9422(01)00113-3.
  • Devasenathipathy, R.; Mani, V.; Chen, S. M.; Viswanath, B.; Vasantha, V. S.; Govindasamy, M. Electrodeposition of Gold Nanoparticles on a Pectin Scaffold and Its Electrocatalytic Application in the Selective Determination of Dopamine. RSC Adv. 2014, 4, 55900–55907. DOI: 10.1039/C4RA08818B.
  • Thakur, B.; Amarnath, C. A.; Sawant, S. N. Pectin Coated Polyaniline Nanoparticles for an Amperometric Glucose Biosensor. RSC Adv. 2014, 4, 40917–40923. DOI: 10.1039/C4RA05264A.
  • Devasenathipathy, R.; Mani, V.; Chen, S. M.; Arulraj, D.; Vasantha, V. S. Highly Stable and Sensitive Amperometric Sensor for the Determination of Trace Level Hydrazine at Cross Linked Pectin Stabilized Gold Nanoparticles Decorated Graphene Nanosheets. Electrochim. Acta 2014, 135, 260–269. DOI: 10.1016/j.electacta.2014.05.002.
  • Mani, V.; Devasenathipathy, R.; Chen, S. M.; Vasantha, V. S.; Ajmal Ali, M.; Huang, S. T.; Al-Hemaid, F. M. A. A Simple Electrochemical Platform Based on Pectin Stabilized Gold Nanoparticles for Picomolar Detection of Biologically Toxic Amitrole. Analyst 2015, 140, 5764–5771. 10.1039/c5an00930h.
  • Noreen, A.; Nazli, Z. i. H.; Akram, J.; Rasul, I.; Mansha, A.; Yaqoob, N.; Iqbal, R.; Tabasum, S.; Zuber, M.; Zia, K. M. Pectins Functionalized Biomaterials; A New Viable Approach for Biomedical Applications: A Review. Int. J. Biol. Macromol. 2017, 101, 254–272. 10.1016/j.ijbiomac.2017.03.029.
  • Alves, G. M.; da Silva, J. L.; Stradiotto, N. R. A Novel Citrus Pectin-Modified Carbon Paste Electrochemical Sensor Used for Copper Determination in Biofuel. Measurement 2021, 169, 108356. DOI: 10.1016/j.measurement.2020.108356.
  • Wang, B.; Ji, X.; Zhao, H.; Wang, N.; Li, X.; Ni, R.; Liu, Y. An Amperometric β-Glucan Biosensor Based on the Immobilization of Bi-Enzyme on Prussian Blue-Chitosan and Gold Nanoparticles-Chitosan Nanocomposite Films. Biosens. Bioelectron. 2014, 55, 113–119. 10.1016/j.bios.2013.12.004.
  • Liu, H.; Wang, D.; Song, Z.; Shang, S. Preparation of Silver Nanoparticles on Cellulose Nanocrystals and the Application in Electrochemical Detection of DNA Hybridization. Cellulose 2011, 18, 67–74. DOI: 10.1007/s10570-010-9464-0.
  • Tiwari, P.; Kumar, A.; Prakash, R. Electrochemical Detection of Azidothymidine on Modified Probes Based on Chitosan Stabilised Silver Nanoparticles Hybrid Material. RSC Adv. 2015, 5, 90089–90097. DOI: 10.1039/C5RA15908C.
  • Tai, M. J. Y.; Perumal, V.; Gopinath, S. C. B.; Raja, P. B.; Ibrahim, M. N. M.; Jantan, I. N.; Suhaimi, N. S. H.; Liu, W. W. Laser-Scribed Graphene Nanofiber Decorated with Oil Palm Lignin Capped Silver Nanoparticles: A Green Biosensor. Sci. Rep. 2021, 11, 1–9. DOI: 10.1038/s41598-021-85039-2.
  • de Oliveira, R. D.; Calaça, G. N.; Santos, C. S.; Fujiwara, S. T.; Pessôa, C. A. Preparation, Characterization and Electrochemistry of Layer-by-Layer Films of Silver Nanoparticles and Silsesquioxane Polymer. Colloids Surf. A Physicochem. Eng. Asp. 2016, 509, 638–647. DOI: 10.1016/j.colsurfa.2016.09.061.
  • Dong, L.; Zhang, X.; Ren, S.; Lei, T.; Sun, X.; Qi, Y.; Wu, Q. Poly(Diallyldimethylammonium Chloride)-Cellulose Nanocrystals Supported Au Nanoparticles for Nonenzymatic Glucose Sensing. RSC Adv. 2016, 6, 6436–6442. DOI: 10.1039/C5RA23935D.
  • Batra, B.; Pundir, C. S. An Amperometric Glutamate Biosensor Based on Immobilization of Glutamate Oxidase onto Carboxylated Multiwalled Carbon Nanotubes/Gold Nanoparticles/Chitosan Composite Film Modified Au Electrode. Biosens. Bioelectron. 2013, 47, 496–501. 10.1016/j.bios.2013.03.063.
  • Satyanarayana, M.; Goud, K. Y.; Reddy, K. K.; Gobi, K. V. Biopolymer Stabilized Nanogold Particles on Carbon Nanotube Support as Sensing Platform for Electrochemical Detection of 5-Fluorouracil in-Vitro. Electrochim. Acta 2015, 178, 608–616. DOI: 10.1016/j.electacta.2015.08.036.
  • Ding, L.; Hao, C.; Xue, Y.; Ju, H. A Bio-Inspired Support of Gold Nanopaticles - Chitosan Nanocomposites Gel for Immobilization and Electrochemical Study of K562 Leukemia Cells. Biomacromolecules 2007, 8, 1341–1346. 10.1021/bm061224y.
  • Jodar, L. V.; Santos, F. A.; Zucolotto, V.; Janegitz, B. C. Electrochemical Sensor for Estriol Hormone Detection in Biological and Environmental Samples. J. Solid State Electrochem. 2018, 22, 1431–1438. DOI: 10.1007/s10008-017-3726-9.
  • Devasenathipathy, R.; Karuppiah, C.; Chen, S. M.; Mani, V.; Vasantha, V. S.; Ramaraj, S. Highly Selective Determination of Cysteine Using a Composite Prepared from Multiwalled Carbon Nanotubes and Gold Nanoparticles Stabilized with Calcium Crosslinked Pectin. Microchim. Acta 2015, 182, 727–735. DOI: 10.1007/s00604-014-1380-9.
  • Shahrokhian, S.; Balotf, H.; Ghalkhani, M. Nano Composite Coating Based on Cellulose Nanofibers/Carbon Nanoparticles: Application to Voltammetric Determination of Clonazepam. J. Solid State Electrochem. 2015, 19, 251–260. DOI: 10.1007/s10008-014-2597-6.
  • Sarkar, T.; Bohidar, H. B.; Solanki, P. R. Carbon Dots-Modified Chitosan Based Electrochemical Biosensing Platform for Detection of Vitamin D. Int. J. Biol. Macromol. 2018, 109, 687–697. 10.1016/j.ijbiomac.2017.12.122.
  • Yazhini, K.; Suja, S. K.; Jayanthi Kalaivani, G.; Bagyalaksmi, J.; Pavalamalar, S. Non-Enzymatic Sensing of Kidney Dysfunction Biomarker Using Pectin – MWCNT Nanocomposite. Appl. Surf. Sci. 2018, 449, 736–744. DOI: 10.1016/j.apsusc.2018.01.197.
  • Duran, G. M.; Benavidez, T. E.; Giuliani, J. G.; Rios, A.; Garcia, C. D. Synthesis of CuNP-Modified Carbon Electrodes Obtained by Pyrolysis of Paper. Sens. Actuators B Chem. 2016, 227, 626–633. 10.1016/j.snb.2015.12.093.
  • Wang, Y.; Wei, W.; Zeng, J.; Liu, X.; Zeng, X. Fabrication of a Copper Nanoparticle/Chitosan/Carbon Nanotube-Modified Glassy Carbon Electrode for Electrochemical Sensing of Hydrogen Peroxide and Glucose. Microchim. Acta 2008, 160, 253–260. DOI: 10.1007/s00604-007-0844-6.
  • Chen, T. W.; Chinnapaiyan, S.; Chen, S. M.; Ajmal Ali, M.; Elshikh, M. S.; Hossam Mahmoud, A. Facile Synthesis of Copper Ferrite Nanoparticles with Chitosan Composite for High-Performance Electrochemical Sensor. Ultrason. Sonochem. 2020, 63, 104902. 10.1016/j.ultsonch.2019.104902.
  • Chokkareddy, R.; Redhi, G. G.; Karthick, T. A Lignin Polymer Nanocomposite Based Electrochemical Sensor for the Sensitive Detection of Chlorogenic Acid in Coffee Samples. Heliyon 2019, 5, e01457. 10.1016/j.heliyon.2019.e01457.
  • Capecchi, E.; Piccinino, D.; Tomaino, E.; Bizzarri, B. M.; Polli, F.; Antiochia, R.; Mazzei, F.; Saladino, R. Lignin Nanoparticles Are Renewable and Functional Platforms for the Concanavalin a Oriented Immobilization of Glucose Oxidase-Peroxidase in Cascade Bio-Sensing. RSC Adv. 2020, 10, 29031–29042. 10.1039/d0ra04485g.
  • Mani, V.; Devasenathipathy, R.; Chen, S. M.; Wang, S. F.; Devi, P.; Tai, Y. Electrodeposition of Copper Nanoparticles Using Pectin Scaffold at Graphene Nanosheets for Electrochemical Sensing of Glucose and Hydrogen Peroxide. Electrochim. Acta 2015, 176, 804–810. DOI: 10.1016/j.electacta.2015.07.098.
  • Ranjbar, S.; Shahrokhian, S. Design and Fabrication of an Electrochemical Aptasensor Using Au Nanoparticles/Carbon Nanoparticles/Cellulose Nanofibers Nanocomposite for Rapid and Sensitive Detection of Staphylococcus Aureus. Bioelectrochemistry 2018, 123, 70–76. 10.1016/j.bioelechem.2018.04.018.
  • Darvishi, E.; Ehzari, H.; Shahlaei, M.; Behbood, L.; Arkan, E. The Electrochemical Immunosensor for Detection of Prostatic Specific Antigen Using Quince Seed Mucilage-GNPs-SNPs as a Green Composite. Bioelectrochemistry 2021, 139, 107744. 10.1016/j.bioelechem.2021.107744.
  • Jagadish, R.; Yellappa, S.; Mahanthappa, M.; Chandrasekhar, K. B. Zinc Oxide Nanoparticle-Modified Glassy Carbon Electrode as a Highly Sensitive Electrochemical Sensor for the Detection of Caffeine. J. Chin. Chem. Soc. 2017, 64, 813–821. DOI: 10.1002/jccs.201600817.
  • Jagadish, R.; Mahanthappa, M.; Yellappa, S.; Chandrasekhar, K. B. γ-Fe2O3 Nanoparticles Modified Glassy Carbon Electrode for the Sensitive Detection of Folic Acid. Mater. Res. Express 2019, 6, 105070. DOI: 10.1088/2053-1591/ab3bba.
  • Mulyasuryani, A.; Tjahjanto, R. T.; Andawiyah, R. Simultaneous Voltammetric Detection of Acetaminophen and Caffeine Base on Cassava Starch-Fe3O4 Nanoparticles Modified Glassy Carbon Electrode. Chemosensors 2019, 7, 49. DOI: 10.3390/chemosensors7040049.
  • Arévalo, F. J.; Osuna-Sánchez, Y.; Sandoval-Cortés, J.; Di Tocco, A.; Granero, A. M.; Robledo, S. N.; Zon, M. A.; Vettorazzi, N. R.; Martínez, J. L.; Segura, E. P.; et al. Development of an Electrochemical Sensor for the Determination of Glycerol Based on Glassy Carbon Electrodes Modified with a Copper Oxide Nanoparticles/Multiwalled Carbon Nanotubes/Pectin Composite. Sens. Actuators, B: Chem. 2017, 244, 949–957. DOI: 10.1016/j.snb.2017.01.093.
  • Tortolini, C.; Capecchi, E.; Tasca, F.; Pofi, R.; Venneri, M. A.; Saladino, R.; Antiochia, R. Novel Nanoarchitectures Based on Lignin Nanoparticles for Electrochemical Eco‐Friendly Biosensing Development. Nanomaterials 2021, 11, 718. DOI: 10.3390/nano11030718.
  • Nikolić, M.A.L.; Dean, K.; Halley, P. J. Biodegradation and Applications of Nanobiocomposites. In Environmental Silicate Nano-Biocomposites. Green Energy and Technology. Avérous, L., Pollet, E., Eds.; Springer: London, 2012. https://doi.org/10.1007/978-1-4471-4108-2_16
  • Das, S.; Saha, M. Potato Starch-Derived Almond-Shaped Carbon Nanoparticles for Non Enzymatic Detection of Sucrose. Xinxing Tan Cailiao/New Carbon Mater. 2015, 30, 244–251. DOI: 10.1016/S1872-5805(15)60189-5.
  • Lin, Q.; Peng, X.; Zhang, Z. Electrochemical Determination of Hg(II) Ions Based on Biosynthesized Spherical Activated Carbon from Potato Starch. Int. J. Electrochem. Sci. 2017, 12, 2232–2241. DOI: 10.20964/2017.03.08.
  • Gautam, V.; Singh, K. P.; Yadav, V. L. Preparation and Characterization of Green-Nano-Composite Material Based on Polyaniline, Multiwalled Carbon Nano Tubes and Carboxymethyl Cellulose: For Electrochemical Sensor Applications. Carbohydr. Polym. 2018, 189, 218–228. 10.1016/j.carbpol.2018.02.029.
  • Lakard, B.; Magnin, D.; Deschaume, O.; Vanlancker, G.; Glinel, K.; Demoustier-Champagne, S.; Nysten, B.; Jonas, A. M.; Bertrand, P.; Yunus, S. Urea Potentiometric Enzymatic Biosensor Based on Charged Biopolymers and Electrodeposited Polyaniline. Biosens. Bioelectron. 2011, 26, 4139–4145. 10.1016/j.bios.2011.04.009.
  • Kushwaha, C. S.; Singh, P.; Abbas, N. S.; Shukla, S. K. Self-Activating Zinc Oxide Encapsulated Polyaniline-Grafted Chitosan Composite for Potentiometric Urea Sensor. J. Mater. Sci.: Mater. Electron. 2020, 31, 11887–11896. DOI: 10.1007/s10854-020-03743-7.
  • Gautam, V.; Singh, K. P.; Yadav, V. L. Polyaniline/MWCNTs/Starch Modified Carbon Paste Electrode for Non-Enzymatic Detection of Cholesterol: Application to Real Sample (Cow Milk). Anal. Bioanal. Chem. 2018, 410, 2173–2181. 10.1007/s00216-018-0880-6.
  • Gautam, V.; Singh, K. P.; Yadav, V. L. Polyaniline/Multiwall Carbon Nanotubes/Starch Nanocomposite Material and Hemoglobin Modified Carbon Paste Electrode for Hydrogen Peroxide and Glucose Biosensing. Int. J. Biol. Macromol. 2018, 111, 1124–1132. 10.1016/j.ijbiomac.2018.01.094.
  • Uzunçar, S.; Özdoğan, N.; Ak, M. Amperometric Detection of Glucose and H2O2 Using Peroxide Selective Electrode Based on Carboxymethylcellulose/Polypyrrole and Prussian Blue Nanocomposite. Mater. Today Commun. 2021, 26, 101839. DOI: 10.1016/j.mtcomm.2020.101839.
  • Dervisevic, M.; Dervisevic, E.; Çevik, E.; Şenel, M. Novel Electrochemical Xanthine Biosensor Based on Chitosan–Polypyrrole–Gold Nanoparticles Hybrid Bio-Nanocomposite Platform. J. Food Drug Anal. 2017, 25, 510–519. 10.1016/j.jfda.2016.12.005.
  • Abdul Amir AL-Mokaram, A. M. A.; Yahya, R.; Abdi, M. M.; Muhammad Ekramul Mahmud, H. N. One-Step Electrochemical Deposition of Polypyrrole–Chitosan–Iron Oxide Nanocomposite Films for Non-Enzymatic Glucose Biosensor. Mater. Lett. 2016, 183, 90–93. DOI: 10.1016/j.matlet.2016.07.049.
  • Arulraj, A. D.; Devasenathipathy, R.; Chen, S. M.; Vasantha, V. S.; Wang, S. F. Femtomolar Detection of Mercuric Ions Using Polypyrrole, Pectin and Graphene Nanocomposites Modified Electrode. J. Colloid Interface Sci. 2016, 483, 268–274. 10.1016/j.jcis.2016.08.026.
  • Vijaya, N.; Selvasekarapandian, S.; Sornalatha, M.; Sujithra, K. S.; Monisha, S. Proton-Conducting Biopolymer Electrolytes Based on Pectin Doped with NH4X (X = Cl, Br). Ionics (Kiel) 2017, 23, 2799–2808. DOI: 10.1007/s11581-016-1852-5.
  • Zhang, Z.; Zhang, J.; Zhang, H.; Xu, J.; Wen, Y.; Ding, W. Characterization of PEDOT:PSS-Reduced Graphene Oxide@Pd Composite Electrode and Its Application in Voltammetric Determination of Vitamin K3. J. Electroanal. Chem. 2016, 775, 258–266. DOI: 10.1016/j.jelechem.2016.06.005.
  • Xu, G.; Liang, S.; Zhang, M.; Fan, J.; Feng, J.; Yu, X. Studies on the Electrochemical and Dopamine Sensing Properties of AgNP-Modified Carboxylated Cellulose Nanocrystal-Doped Poly(3,4-Ethylenedioxythiophene). Ionics (Kiel) 2017, 23, 3211–3218. DOI: 10.1007/s11581-017-2112-z.
  • Xu, G.; Zhang, M.; Yu, X. Electrochemical Detection of Nitrite in Food Based on Poly (3,4-Ethylenedioxythiophene) Doped with Fe3O4 Nanoparticles Loaded Carboxylated Nanocrystalline Cellulose. Acta Chim. Slov. 2018, 65, 502–511. DOI: 10.17344/acsi.2017.3974.
  • Baker, D. A.; Rials, T. G. Recent Advances in Low-Cost Carbon Fiber Manufacture from Lignin. J. Appl. Polym. Sci. 2013, 130, 713–728. DOI: 10.1002/app.39273.
  • Demiroğlu Mustafov, S.; Mohanty, A. K.; Misra, M.; Seydibeyoğlu, M. Ö. Fabrication of Conductive Lignin/PAN Carbon Nanofiber with Enhanced Graphene for the Modified Electrode. Carbon N. Y. 2019, 147, 262–275. DOI: 10.1016/j.carbon.2019.02.058.
  • Gonzalez-Vogel, A.; Fogde, A.; Crestini, C.; Sandberg, T.; Huynh, T. P.; Bobacka, J. Molecularly Imprinted Conducting Polymer for Determination of a Condensed Lignin Marker. Sens. Actuators, B Chem. 2019, 295, 186–193. DOI: 10.1016/j.snb.2019.05.011.
  • Graça, M. P. F.; Rudnitskaya, A.; Fernando, F. A.; Evtuguin, D. V.; Maria, M. T.; Joaõ, J. A.; Costa, L. C. Electrochemical Impedance Study of the Lignin-Derived Conducting Polymer. Electrochim. Acta 2012, 76, 69–76. DOI: 10.1016/j.electacta.2012.04.155.
  • Gonçalves, S. S. L.; Rudnitskaya, A.; Sales, A. J. M.; Costa, L. M. C.; Evtuguin, D. V. Nanocomposite Polymeric Materials Based on Eucalyptus Lignoboost® Kraft Lignin for Liquid Sensing Applications. Materials (Basel) 2020, 13, 1637. DOI: 10.3390/ma13071637.
  • Rudnitskaya, A.; Evtuguin, D. V.; Costa, L. C.; Pedro Graça, M. P.; Fernandes, A. J. S.; Rosario Correia, M.; Teresa Gomes, M. T.; Oliveira, J. A. B. P. Potentiometric Chemical Sensors from Lignin-Poly(Propylene Oxide) Copolymers Doped by Carbon Nanotubes. Analyst 2013, 138, 501–508. 10.1039/c2an36390a.
  • Palanisamy, S.; Velusamy, V.; Balu, S.; Velmurugan, S.; Yang, T. C. K.; Chen, S. W. Sonochemical Synthesis and Anchoring of Zinc Oxide on Hemin-Mediated Multiwalled Carbon Nanotubes-Cellulose Nanocomposite for Ultra-Sensitive Biosensing of H2O2. Ultrason Sonochem 2020, 63, 104917. 10.1016/j.ultsonch.2019.104917.
  • Zaid, M. H. M.; Che-Engku-Chik, C. E. N.; Yusof, N. A.; Abdullah, J.; Othman, S. S.; Issa, R.; Md Noh, M. F.; Wasoh, H. DNA Electrochemical Biosensor Based on Iron Oxide/Nanocellulose Crystalline Composite Modified Screen-Printed Carbon Electrode for Detection of Mycobacterium Tuberculosis. Molecules 2020, 25, 3373. DOI: 10.3390/molecules25153373.
  • Khalilzadeh, M. A.; Tajik, S.; Beitollahi, H.; Venditti, R. A. Green Synthesis of Magnetic Nanocomposite with Iron Oxide Deposited on Cellulose Nanocrystals with Copper (Fe3O4@CNC/Cu): Investigation of Catalytic Activity for the Development of a Venlafaxine Electrochemical Sensor. Ind. Eng. Chem. Res. 2020, 59, 4219–4228. DOI: 10.1021/acs.iecr.9b06214.
  • Singh, J.; Srivastava, M.; Kalita, P.; Malhotra, B. D. A Novel Ternary NiFe2O4/CuO/FeO-Chitosan Nanocomposite as a Cholesterol Biosensor. Process Biochem. 2012, 47, 2189–2198. DOI: 10.1016/j.procbio.2012.08.012.
  • Yazhini, K.; Suja, S. K. Synthesis and Characterization of Hetero-Metal Oxide Nano-Hybrid Composite on Pectin Scaffold. Appl. Surf. Sci. 2019, 491, 195–205. DOI: 10.1016/j.apsusc.2019.06.150.
  • Liu, L.; Yang, M.; Zhao, H.; Xu, Y.; Cheng, X.; Zhang, X.; Gao, S.; Song, H.; Huo, L. Co3O4/Carbon Hollow Nanospheres for Resistive Monitoring of Gaseous Hydrogen Sulfide and for Nonenzymatic Amperometric Sensing of Dissolved Hydrogen Peroxide. Microchim. Acta 2019, 186, 4–13. DOI: 10.1007/s00604-019-3253-8.
  • Barsan, M. M.; David, M.; Florescu, M.; Ţugulea, L.; Brett, C. M. A. A New Self-Assembled Layer-by-Layer Glucose Biosensor Based on Chitosan Biopolymer Entrapped Enzyme with Nitrogen Doped Graphene. Bioelectrochemistry 2014, 99, 46–52. 10.1016/j.bioelechem.2014.06.004.
  • Adumitrăchioaie, A.; Tertiș, M.; Suciu, M.; Graur, F.; Cristea, C. A Novel Immunosensing Platform for Serotonin Detection in Complex Real Samples Based on Graphene Oxide and Chitosan. Electrochim. Acta 2019, 311, 50–61. DOI: 10.1016/j.electacta.2019.04.128.
  • Poletti, F.; Favaretto, L.; Kovtun, A.; Treossi, E.; Corticelli, F.; Gazzano, M.; Palermo, V.; Zanardi, C.; Melucci, M. Electrochemical Sensing of Glucose by Chitosan Modified Graphene Oxide. J. Phys. Mater. 2020, 3, 014011. DOI: 10.1088/2515-7639/ab5e51.
  • Zhou, J.; Li, S.; Noroozifar, M.; Kerman, K. Graphene Oxide Nanoribbons in Chitosan for Simultaneous Electrochemical Detection of Guanine, Adenine, Thymine and Cytosine. Biosensors 2020, 10, 30. DOI: 10.3390/bios10040030.
  • Krishna, R.; Campiña, J. M.; Fernandes, P. M. V.; Ventura, J.; Titus, E.; Silva, A. F. Reduced Graphene Oxide-Nickel Nanoparticles/Biopolymer Composite Films for the Sub-Millimolar Detection of Glucose. Analyst 2016, 141, 4151–4161. 10.1039/c6an00475j.
  • Orzari, L. O.; Santos, F. A.; Janegitz, B. C. Manioc Starch Thin Film as Support of Reduced Graphene Oxide: A Novel Architecture for Electrochemical Sensors. J. Electroanal. Chem. 2018, 823, 350–358. DOI: 10.1016/j.jelechem.2018.06.036.
  • Kasturi, P. R.; Aparna, T. K.; Arokiyanathan, A. L.; Lakshmipathi, S.; Sivasubramanian, R.; Lee, Y. S.; Selvan, R. K. Synthesis of Metal-Free Nitrogen-Enriched Porous Carbon and Its Electrochemical Sensing Behavior for the Highly Sensitive Detection of Dopamine: Both Experimental and Theoretical Investigation. Mater. Chem. Phys. 2021, 260, 124094. DOI: 10.1016/j.matchemphys.2020.124094.
  • Kokulnathan, T.; Ramaraj, S.; Chen, S.-M.; Han-Yu, Y. Eco-Friendly Synthesis of Biocompatible Pectin Stabilized Graphene Nanosheets Hydrogel and Their Application for the Simultaneous Electrochemical Determination of Dopamine and Paracetamol in Real Samples. J. Electrochem. Soc. 2018, 165, B240–B249. DOI: 10.1149/2.0011807jes.
  • Wang, H.; Wen, F.; Chen, Y.; Sun, T.; Meng, Y.; Zhang, Y. Electrocatalytic Determination of Nitrite Based on Straw Cellulose/Molybdenum Sulfide Nanocomposite. Biosens. Bioelectron. 2016, 85, 692–697. 10.1016/j.bios.2016.05.078.
  • Zhang, Y.; Wen, F.; Huang, Z.; Tan, J.; Zhou, Z.; Yuan, K.; Wang, H. Nitrogen Doped Lignocellulose/Binary Metal Sulfide Modified Electrode: Preparation and Application for Non-Enzymatic Ascorbic Acid, Dopamine and Nitrite Sensing. J. Electroanal. Chem. 2017, 806, 150–157. DOI: 10.1016/j.jelechem.2017.10.066.
  • Camargo, J. R.; Baccarin, M.; Raymundo-Pereira, P. A.; Campos, A. M.; Oliveira, G. G.; Fatibello-Filho, O.; Oliveira, O. N.; Janegitz, B. C. Electrochemical Biosensor Made with Tyrosinase Immobilized in a Matrix of Nanodiamonds and Potato Starch for Detecting Phenolic Compounds. Anal. Chim. Acta 2018, 1034, 137–143. 10.1016/j.aca.2018.06.001.
  • Zambianco, N. A.; Silva, T. A.; Zanin, H.; Fatibello-Filho, O.; Janegitz, B. C. Novel Electrochemical Sensor Based on Nanodiamonds and Manioc Starch for Detection of Diquat in Environmental Samples. Diamond Relat. Mater. 2019, 98, 107512. DOI: 10.1016/j.diamond.2019.107512.
  • Fernandes-Junior, W. S.; Zaccarin, L. F.; Oliveira, G. G.; De Oliveira, P. R.; Kalinke, C.; Bonacin, J. A.; Prakash, J.; Janegitz, B. C. Electrochemical Sensor Based on Nanodiamonds and Manioc Starch for Detection of Tetracycline. J. Sens. 2021, 2021, 1–10. DOI: 10.1155/2021/6622612.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.