3,665
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Sampling Volatile Organic Compound Emissions from Consumer Products: A Review

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon

References

  • Mitchell, C. S.; Zhang, J.; Sigsgaard, T.; Jantunen, M.; Lioy, P. J.; Samson, R.; Karol, M. H. Current State of the Science: Health Effects and Indoor Environmental Quality. Environ. Health Perspect. 2007, 115, 958–964. DOI: 10.1289/ehp.8987.
  • Righi, E.; Aggazzotti, G.; Fantuzzi, G.; Ciccarese, V.; Predieri, G. Air Quality and Well-Being Perception in Subjects Attending University Libraries in Modena (Italy). Sci. Total Environ. 2002, 286, 41–50. DOI: 10.1016/S0048-9697(01)00960-3.
  • Bruinen De Bruin, Y.; Koistinen, K.; Kephalopoulos, S.; Geiss, O.; Tirendi, S.; Kotzias, D. Characterisation of Urban Inhalation Exposures to Benzene, Formaldehyde and Acetaldehyde in the European Union: Comparison of Measured and Modelled Exposure Data. Environ. Sci. Pollut. Res. Int. 2008, 15, 417–430. DOI: 10.1007/s11356-008-0013-4.
  • Mannan, M.; Al-Ghamdi, S. G. Indoor Air Quality in Buildings: A Comprehensive Review on the Factors Influencing Air Pollution in Residential and Commercial Structure. IJERPH. 2021, 18, 3276. DOI: 10.3390/ijerph18063276.
  • Vornanen-Winqvist, C.; Järvi, K.; Andersson, M. A.; Duchaine, C.; Létourneau, V.; Kedves, O.; Kredics, L.; Mikkola, R.; Kurnitski, J.; Salonen, H. Exposure to Indoor Air Contaminants in School Buildings with and without Reported Indoor Air Quality Problems. Environ. Int. 2020, 141, 105781. DOI: 10.1016/j.envint.2020.105781.
  • Billionnet, C.; Gay, E.; Kirchner, S.; Leynaert, B.; Annesi-Maesano, I. Quantitative Assessments of Indoor Air Pollution and Respiratory Health in a Population-Based Sample of French Dwellings. Environ. Res. 2011, 111, 425–434. DOI: 10.1016/j.envres.2011.02.008.
  • Heeley-Hill, A. C.; Grange, S. K.; Ward, M. W.; Lewis, A. C.; Owen, N.; Jordan, C.; Hodgson, G.; Adamson, G. Frequency of Use of Household Products Containing VOCs and Indoor Atmospheric Concentrations in Homes. Environ. Sci. Process. Impacts 2021, 23, 699–713. DOI: 10.1039/D0EM00504E.
  • Kotzias, D.; Geiss, O.; Tirendi, S.; Barrero-Moreno, J.; Reina, V.; Gotti, A.; Cimino-Reale, G.; Casati, B.; Marafante, E.; Sarigiannis, D. Exposure to Multiple Air Contaminants in Public Buildings, Schools and Kindergartens - the European Indoor Air Monitoring and Exposure Assessment (Airmex) Study. Fresenius Environ. Bull. 2009, 18, 670–681.
  • Shinohara, N.; Kai, Y.; Mizukoshi, A.; Fujii, M.; Kumagai, K.; Okuizumi, Y.; Jona, M.; Yanagisawa, Y. On-Site Passive Flux Sampler Measurement of Emission Rates of Carbonyls and VOCs from Multiple Indoor Sources. Build. Environ. 2009, 44, 859–863. DOI: 10.1016/j.buildenv.2008.06.007.
  • Wilke, O.; Horn, W.; Richter, M.; Jann, O. Volatile Organic Compounds from Building Products—Results from Six Round Robin Tests with Emission Test Chambers Conducted between 2008 and 2018. Indoor Air 2021, 31, 2049–2057. DOI: 10.1111/ina.12848.
  • Yu, C.; Crump, D. A Review of the Emission of VOCs from Polymeric Materials Used in Buildings. Build. Environ. 1998, 33, 357–374. DOI: 10.1016/S0360-1323(97)00055-3.
  • Wallace, L. A.; Pellizzari, E.; Leaderer, B.; Zelon, H.; Sheldon, L. Emissions of Volatile Organic Compounds from Building Materials and Consumer Products. Atmos. Environ. 1987, 21, 385–393. DOI: 10.1016/0004-6981(87)90017-5.
  • Steinemann, A. Volatile Emissions from Common Consumer Products. Air Qual. Atmos. Health 2015, 8, 273–281. DOI: 10.1007/s11869-015-0327-6.
  • Kwon, K.-D.; Jo, W.-K.; Lim, H.-J.; Jeong, W.-S. Characterization of Emissions Composition for Selected Household Products Available in Korea. J. Hazard Mater. 2007, 148, 192–198. DOI: 10.1016/j.jhazmat.2007.02.025.
  • Lim, S. K.; Shin, H. S.; Yoon, K. S.; Kwack, S. J.; Um, Y. M.; Hyeon, J. H.; Kwak, H. M.; Kim, J. Y.; Kim, T. H.; Kim, Y. J.; et al. Risk Assessment of Volatile Organic Compounds Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) in Consumer Products. J. Toxicol. Environ. Health A 2014, 77, 1502–1521. DOI: 10.1080/15287394.2014.955905.
  • Yeoman, A. M.; Shaw, M.; Lewis, A. C. Estimating Person-to-Person Variability in VOC Emissions from Personal Care Products Used during Showering. Indoor Air 2021, 31, 1281–1291. DOI: 10.1111/ina.12811.
  • Cheng, S.; Wang, G.; Lang, J.; Wen, W.; Wang, X.; Yao, S. Characterization of Volatile Organic Compounds from Different Cooking Emissions. Atmos. Environ. 2016, 145, 299–307. DOI: 10.1016/j.atmosenv.2016.09.037.
  • Xu, M.; Tang, Z.; Duan, Y.; Liu, Y. GC-Based Techniques for Breath Analysis: Current Status, Challenges, and Prospects. Crit. Rev. Anal. Chem. 2016, 46, 291–304. DOI: 10.1080/10408347.2015.1055550.
  • Tang, X.; Misztal, P. K.; Nazaroff, W. W.; Goldstein, A. H. Volatile Organic Compound Emissions from Humans Indoors. Environ. Sci. Technol. 2016, 50, 12686–12694. DOI: 10.1021/acs.est.6b04415.
  • Drabińska, N.; Flynn, C.; Ratcliffe, N.; Belluomo, I.; Myridakis, A.; Gould, O.; Fois, M.; Smart, A.; Devine, T.; de Lacy Costello, B. A Literature Survey of All Volatiles from Healthy Human Breath and Bodily Fluids: The Human Volatilome. J. Breath Res. 2021, 15, 034001. DOI: 10.1088/1752-7163/abf1d0.
  • Danish Environmental Protection Agency. Mapping of Perfume in Toys and Children’s Articles. Survey of Chemical Substances in Consumer Products, No. 68. 2006.
  • Danish Environmental Protection Agency. Survey and Release of Chemical Substances in “Slimy” Toys. Survey of Chemical Substances in Consumer Products, No. 67. 2005.
  • Even, M.; Hutzler, C.; Wilke, O.; Luch, A. Emissions of Volatile Organic Compounds from Polymer-Based Consumer Products: Comparison of Three Emission Chamber Sizes. Indoor Air 2020, 30, 40–48. DOI: 10.1111/ina.12605.
  • Marć, M.; Formela, K.; Klein, M.; Namieśnik, J.; Zabiegała, B. The Emissions of Monoaromatic Hydrocarbons from Small Polymeric Toys Placed in Chocolate Food Products. Sci. Total Environ. 2015, 530-531, 290–296. DOI: 10.1016/j.scitotenv.2015.05.105.
  • Kang, S.; Lee, K.; Lim, M. Estimation of Multi-Route Exposures to Various Chemicals during Children’s Clay Toy Use. Environ. Res. 2022, 212, 113500. DOI: 10.1016/j.envres.2022.113500.
  • Masuck, I.; Hutzler, C.; Jann, O.; Luch, A. Inhalation Exposure of Children to Fragrances Present in Scented Toys. Indoor Air 2011, 21, 501–511. DOI: 10.1111/j.1600-0668.2011.00727.x.
  • Goodman, N.; Nematollahi, N. Fragranced Consumer Products as Sources. In Handbook of Indoor Air Quality; Zhang, Y., Hopke, P. K., Mandin, C., Eds.; Springer: Singapore, 2022; pp 1–33. DOI: 10.1007/978-981-10-5155-5_14-1.
  • Palmisani, J.; di Gilio, A.; Cisternino, E.; Tutino, M.; de Gennaro, G. Volatile Organic Compound (VOC) Emissions from a Personal Care Polymer-Based Item: Simulation of the Inhalation Exposure Scenario Indoors under Actual Conditions of Use. Sustainability 2020, 12, 2577. DOI: 10.3390/su12072577.
  • Bundesministeriums der Justiz und für Verbraucherschutz. Lebensmittel-, Bedarfsgegenstände- Und Futtermittelgesetzbuch - LFGB. Bundesministerium der Justiz und für Verbraucherschutz: Berlin. 2005, pp 1–66.
  • Holøs, S. B.; Yang, A.; Lind, M.; Thunshelle, K.; Schild, P.; Mysen, M. VOC Emission Rates in Newly Built and Renovated Buildings, and the Influence of Ventilation – A Review and Meta-Analysis. Int. J. Vent. 2019, 18, 153–166. DOI: 10.1080/14733315.2018.1435026.
  • Wolkoff, P.; Wilkins, C. K.; Clausen, P. A.; Nielsen, G. D. Organic Compounds in Office Environments - Sensory Irritation, Odor, Measurements and the Role of Reactive Chemistry. Indoor Air 2006, 16, 7–19. DOI: 10.1111/j.1600-0668.2005.00393.x.
  • Annesi-Maesano, I.; Hulin, M.; Lavaud, F.; Raherison, C.; Kopferschmitt, C.; de Blay, F.; Charpin, D. A.; Denis, C. Poor Air Quality in Classrooms Related to Asthma and Rhinitis in Primary Schoolchildren of the French 6 Cities Study. Thorax 2012, 67, 682–688. DOI: 10.1136/thoraxjnl-2011-200391.
  • Rumchev, K.; Spickett, J.; Bulsara, M.; Phillips, M.; Stick, S. Association of Domestic Exposure to Volatile Organic Compounds with Asthma in Young Children. Thorax 2004, 59, 746–751. DOI: 10.1136/thx.2003.013680.
  • Geiss, O.; Giannopoulos, G.; Tirendi, S.; Barrero-Moreno, J.; Larsen, B. R.; Kotzias, D. The AIRMEX Study - VOC Measurements in Public Buildings and Schools/Kindergartens in Eleven European Cities: Statistical Analysis of the Data. Atmos. Environ. 2011, 45, 3676–3684. DOI: 10.1016/j.atmosenv.2011.04.037.
  • Hofmann, H.; Plieninger, P. Bereitstellung Einer Datenbank Zum Vorkommen Von Flüchtigen Organischen Verbindungen in Der Raumluft; Umweltbundesamt, Ed.; 2008.
  • Abe, Y.; Yamaguchi, M.; Mutsuga, M.; Kawamura, Y.; Akiyama, H. Survey of Volatile Substances in Kitchen Utensils Made from Acrylonitrile–Butadiene–Styrene and Acrylonitrile–Styrene Resin in Japan. Food Sci. Nutr. 2014, 2, 236–243. DOI: 10.1002/fsn3.100.
  • Abe, Y.; Yamaguchi, M.; Mutsuga, M.; Akiyama, H.; Kawamura, Y. Volatile Substances in Polymer Toys Made from Butadiene and Styrene. AJAC. 2013, 04, 229–237. DOI: 10.4236/ajac.2013.45029.
  • Denk, P.; Velasco-Schön, C.; Buettner, A. Resolving the Chemical Structures of Off-Odorants and Potentially Harmful Substances in Toys—Example of Children’s Swords. Anal. Bioanal. Chem. 2017, 409, 5249–5258. DOI: 10.1007/s00216-017-0469-5.
  • Wiedmer, C.; Velasco-Schön, C.; Buettner, A. Characterization of Off-Odours and Potentially Harmful Substances in a Fancy Dress Accessory Handbag for Children. Sci. Rep. 2017, 7, 1807. DOI: 10.1038/s41598-017-01720-5.
  • Masuck, I.; Hutzler, C.; Luch, A. Investigations on the Emission of fragrance allergens from Scented Toys by Means of Headspace Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2010, 1217, 3136–3143. DOI: 10.1016/j.chroma.2010.02.072.
  • Steinemann, A.; MacGregor, I. C.; Gordon, S. M.; Gallagher, L. G.; Davis, A. L.; Ribeiro, D. S.; Wallace, L. A. Fragranced Consumer Products: Chemicals Emitted, Ingredients Unlisted. Environ. Impact Assess. Rev. 2011, 31, 328–333. DOI: 10.1016/j.eiar.2010.08.002.
  • Even, M.; Girard, M.; Rich, A.; Hutzler, C.; Luch, A. Emissions of VOCs From Polymer-Based Consumer Products: From Emission Data of Real Samples to the Assessment of Inhalation Exposure. Front. Public Health 2019, 7, 202. DOI: 10.3389/fpubh.2019.00202.
  • García Ibarra, V.; Rodríguez Bernaldo de Quirós, A.; Paseiro Losada, P.; Sendón, R. Identification of Intentionally and Non-Intentionally Added Substances in Plastic Packaging Materials and Their Migration into Food Products. Anal. Bioanal. Chem. 2018, 410, 3789–3803. DOI: 10.1007/s00216-018-1058-y.
  • German Federal Institute for Risk Assessment (BfR). Risk Assessment https://www.bfr.bund.de/en/risk_assessment-1833.html (accessed Aug 22, 2022).
  • Even, M.; Roloff, A.; Lüttgert, N.; Beauchamp, J.; Stalter, D.; Schulte, A.; Hutzler, C.; Luch, A. Exposure Assessment of Toxicologically Relevant Volatile Organic Compounds Emitted from Polymer-Based Costume Masks. Chem. Res. Toxicol. 2021, 34, 132–143. DOI: 10.1021/acs.chemrestox.0c00414.
  • Halios, C. H.; Landeg-Cox, C.; Lowther, S. D.; Middleton, A.; Marczylo, T.; Dimitroulopoulou, S. Chemicals in European Residences – Part I: A Review of Emissions, Concentrations and Health Effects of Volatile Organic Compounds (VOCs). Sci. Total Environ. 2022, 839, 156201. DOI: 10.1016/j.scitotenv.2022.156201.
  • Cabanes, A.; Valdés, F. J.; Fullana, A. A Review on VOCs from Recycled Plastics. Sustain. Mater.Technol. 2020, 25, e00179. DOI: 10.1016/j.susmat.2020.e00179.
  • Barro, R.; Regueiro, J.; Llompart, M.; Garcia-Jares, C. Analysis of Industrial Contaminants in Indoor Air: Part 1. Volatile Organic Compounds, Carbonyl Compounds, Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls. J. Chromatogr. A 2009, 1216, 540–566. DOI: 10.1016/j.chroma.2008.10.117.
  • Wang, D. K. W.; Austin, C. C. Determination of Complex Mixtures of Volatile Organic Compounds in Ambient Air: An Overview. Anal. Bioanal. Chem. 2006, 386, 1089–1098. DOI: 10.1007/s00216-006-0475-5.
  • Masuck, I.; Hutzler, C.; Luch, A. Screening of Fragrances in Scented Toys: A Comparative Study of Different Headspace Techniques Coupled to GC-MS. Anal. Methods 2013, 5, 508–515. DOI: 10.1039/C2AY26209F.
  • Marć, M.; Zabiegała, B.; Namieśnik, J. Testing and Sampling Devices for Monitoring Volatile and Semi-Volatile Organic Compounds in Indoor Air. TrAC, Trends Anal. Chem. 2012, 32, 76–86. DOI: 10.1016/j.trac.2011.09.006.
  • World Health Organization. Assessment of Exposure to Indoor Air Pollutants; WHO Regional Publications European Series, 1997.
  • European Committee for Standardization. EN 16516 Construction Products - Assessment of Release of Dangerous Substances - Determination of Emissions into Indoor Air; 2017.
  • International Labour Organization and World Health Organization. International Chemical Safety Cards. Hexane https://www.ilo.org/dyn/icsc/showcard.display?p_lang=en&p_card_id=0279&p_version=2 (accessed Aug 19, 2022).
  • U.S. Environmental Protection Agency. Comptox Chemicals Dashboard. Hexadecane https://comptox.epa.gov/dashboard/chemical/properties/DTXSID0027195 (accessed Aug 19, 2022).
  • Deng, B.; Kim, C. N. An Analytical Model for VOCs Emission from Dry Building Materials. Atmos. Environ. 2004, 38, 1173–1180. DOI: 10.1016/j.atmosenv.2003.11.009.
  • Huang, H.; Haghighat, F. Modelling of Volatile Organic Compounds Emission from Dry Building Materials. Build. Environ. 2002, 37, 1127–1138. DOI: 10.1016/S0360-1323(01)00089-0.
  • Little, J. C.; Hodgson, A. T.; Gadgil, A. J. Modeling Emissions of Volatile Organic Compounds from New Carpets. Atmos. Environ. 1994, 28, 227–234. DOI: 10.1016/1352-2310(94)90097-3.
  • Liu, Z.; Ye, W.; Little, J. C. Predicting Emissions of Volatile and Semivolatile Organic Compounds from Building Materials: A Review. Build. Environ. 2013, 64, 7–25. DOI: 10.1016/j.buildenv.2013.02.012.
  • Huang, L.; Jolliet, O. A Parsimonious Model for the Release of Volatile Organic Compounds (VOCs) Encapsulated in Products. Atmos. Environ. 2016, 127, 223–235. DOI: 10.1016/j.atmosenv.2015.12.001.
  • Liu, Z.; Yan, Y.; Liu, T.; Zhao, Y.; Huang, Q.; Huang, Z. How to Predict Emissions of Volatile Organic Compounds from Solid Building Materials? A Critical Review on Mass Transfer Models. J. Environ. Manage. 2022, 302, 114054. DOI: 10.1016/j.jenvman.2021.114054.
  • Cox, S. S.; Liu, Z.; Little, J. C.; Howard-Reed, C.; Nabinger, S. J.; Persily, A. Diffusion-Controlled Reference Material for VOC Emissions Testing: Proof of Concept. Indoor Air 2010, 20, 424–433. DOI: 10.1111/j.1600-0668.2010.00666.x.
  • Ramachandran, P. A. Mass Transfer Processes. In Modeling, Computations, and Design; Prentice Hall: Boston, 2018.
  • Kolb, B.; Ettre, L. S. Static Headspace – Gas Chromatography : Theory and Practice, 2nd ed.; Wiley-Interscience: Hoboken, NJ, 2006.
  • Kolb, B.; Welter, C.; Bichler, C. Determination of Partition Coefficients by Automatic Equilibrium Headspace Gas Chromatography by Vapor Phase Calibration. Chromatographia 1992, 34, 235–240. DOI: 10.1007/BF02268351.
  • Liu, Z.; Nicolai, A.; Abadie, M.; Qin, M.; Grunewald, J.; Zhang, J. Development of a Procedure for Estimating the Parameters of Mechanistic VOC Emission Source Models from Chamber Testing Data. Build. Simul. 2021, 14, 269–282. DOI: 10.1007/s12273-020-0616-3.
  • Xu, Y.; Zhang, Y. An Improved Mass Transfer Based Model for Analyzing VOC Emissions from Building Materials. Atmos. Environ. 2003, 37, 2497–2505. DOI: 10.1016/S1352-2310(03)00160-2.
  • Cox, S. S.; Zhao, D.; Little, J. C. Measuring Partition and Diffusion Coefficients for Volatile Organic Compounds in Vinyl Flooring. Atmos. Environ. 2001, 35, 3823–3830. DOI: 10.1016/S1352-2310(01)00175-3.
  • Xiong, J.; Huang, S.; Zhang, Y. A Novel Method for Measuring the Diffusion, Partition and Convective Mass Transfer Coefficients of Formaldehyde and VOC in Building Materials. PLoS One 2012, 7, e49342. DOI: 10.1371/journal.pone.0049342.
  • Xu, J.; Zhang, J. S. An Experimental Study of Relative Humidity Effect on VOCs’ Effective Diffusion Coefficient and Partition Coefficient in a Porous Medium. Build. Environ. 2011, 46, 1785–1796. DOI: 10.1016/j.buildenv.2011.02.007.
  • He, G.; Yang, X.; Shaw, C. Y. Material Emission Parameters Obtained Through Regression. Indoor Built Environ. 2005, 14, 59–68. DOI: 10.1177/1420326X05050347.
  • Huang, L.; Jolliet, O. A Quantitative Structure‐Property Relationship (QSPR) for Estimating Solid Material‐Air Partition Coefficients of Organic Compounds. Indoor Air 2019, 29, 79–88. DOI: 10.1111/ina.12510.
  • Holmgren, T.; Persson, L.; Andersson, P. L.; Haglund, P. A Generic Emission Model to Predict Release of Organic Substances from Materials in Consumer Goods. Sci. Total Environ. 2012, 437, 306–314. DOI: 10.1016/j.scitotenv.2012.08.020.
  • Shinohara, N.; Fujii, M.; Yamasaki, A.; Yanagisawa, Y. Passive Flux Sampler for Measurement of Formaldehyde Emission Rates. Atmos. Environ. 2007, 41, 4018–4028. DOI: 10.1016/j.atmosenv.2007.01.028.
  • Mull, B.; Sauerwald, T.; Schultealbert, C.; Horn, W.; Brödner, D.; Richter, M. Reproducibly Emitting Reference Material for Volatile and Semi-Volatile Organic Compounds - Using Finite Element Modeling for Emission Predictions. Air Qual. Atmos. Health 2017, 10, 1237–1246. DOI: 10.1007/s11869-017-0508-6.
  • Ausschuss zur gesundheitlichen Bewertung von Bauprodukten. Anforderungen an Die Innenraumluftqualität in Gebäuden: Gesundheitliche Bewertung Der Emissionen Von Flüchtigen Organischen Verbindungen (VVOC, VOC Und SVOC) Aus Bauprodukten. 2021.
  • Masuck, I.; Hutzler, C.; Luch, A. Estimation of Dermal and Oral Exposure of Children to Scented Toys: Analysis of the Migration of Fragrance Allergens by Dynamic Headspace GC-MS. J. Sep. Sci. 2011, 34, 2686–2696. DOI: 10.1002/jssc.201100360.
  • Schmid, P.; Welle, F. Chemical Migration from Beverage Packaging Materials—A Review. Beverages 2020, 6, 37. DOI: 10.3390/beverages6020037.
  • Franz, R.; Welle, F. Migration Measurement and Modelling from Poly(Ethylene Terephthalate) (PET) into Soft Drinks and Fruit Juices in Comparison with Food Simulants. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 1033–1046. DOI: 10.1080/02652030701837381.
  • The European Parliament and the Council of the European Union. Directive 2009/48/EC of the European Parliament and of the Council of 18 June 2009 on the Safety of Toys; 2009.
  • The European Parliament and the Council of the European Union. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH); 2006.
  • European Commission. Agreed EU-LCI Values https://ec.europa.eu/docsroom/documents/49239 (accessed Aug 19, 2022).
  • European Commission. EU-LCI value facts and information https://single-market-economy.ec.europa.eu/sectors/construction/eu-lci-subgroup/eu-lci-values_en (accessed Aug 19, 2022).
  • European Committee for Standardization. Indoor Air (ISO 16000).
  • European Chemicals Agency. ANNEX XV Restriction Report - Formaldehyde and Formaldehyde Releasers; 2019.
  • Scientific Committee on Health Environmental and Emerging Risks (SCHEER). Toxicological Reference Values for Certain organic chemicals emitted from Squishy Toys with Regard to Adopting Limit Values under the Toy Safety Directive 2009/48/EC “Chemicals in Squishy Toys; 2021.
  • Ad hoc Working Group on Indoor Air Guide Values (IRK/AOLG). Hygienic Guide Values for TVOC in Indoor Air; 2007.
  • German Committee on Indoor Air Guide Values (AIR). Indoor Air Guide Values (I and II) for the Concentration of Specific Substances in Indoor Air; 2022.
  • Aragón, P.; Atienza, J.; Climent, M. D. Analysis of Organic Compounds in Air: A Review. Crit. Rev. Anal. Chem. 2000, 30, 121–151. DOI: 10.1080/10408340091164207.
  • Jochmann, M. A.; Laaks, J.; Schmidt, T. C. Solvent-Free Extraction and Injection Techniques. In Practical Gas Chromatography; Dettmer-Wilde, K., Engewald, W., Eds.; Springer: Berlin, Heidelberg, 2014; pp 371–412.
  • Woolfenden, E.; Thermal Desorption Gas Chromatography. In Gas Chromatography; Elsevier Inc., 2021; pp 267–323. DOI: 10.1016/B978-0-12-820675-1.00009-5.
  • Kolb, B. Headspace Sampling with Capillary Columns. J. Chromatogr. A 1999, 842, 163–205. DOI: 10.1016/S0021-9673(99)00073-4.
  • Bartsch, J.; Uhde, E.; Salthammer, T. Analysis of Odour Compounds from Scented Consumer Products Using Gas Chromatography-Mass Spectrometry and Gas Chromatography-Olfactometry. Anal. Chim. Acta 2016, 904, 98–106. DOI: 10.1016/j.aca.2015.11.031.
  • Mametov, R.; Ratiu, I.-A.; Monedeiro, F.; Ligor, T.; Buszewski, B. Evolution and Evaluation of GC Columns. Crit. Rev. Anal. Chem. 2021, 51, 150–173. DOI: 10.1080/10408347.2019.1699013.
  • Beauchamp, J.; Zardin, E. Odorant Detection by On-Line Chemical Ionization Mass Spectrometry. In Springer Handbook of Odor; Buettner, A., Ed.; Springer International Publishing: Cham, 2017; pp 49–50. DOI: 10.1007/978-3-319-26932-0_18.
  • Taylor, A. J.; Beauchamp, J. D.; Vaughan, S. L. Non-Destructive and High-Throughput—APCI-MS, PTR-MS and SIFT-MS as Methods of Choice for Exploring Flavor Release. In Dynamic Flavor: Capturing Aroma Using Real-Time Mass Spectrometry; Beauchamp, J. D., Ed.; American Chemical Society, 2021; pp 1–16.
  • Dodds, J. N.; Baker, E. S. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. J. Am. Soc. Mass Spectrom. 2019, 30, 2185–2195. DOI: 10.1007/s13361-019-02288-2.
  • Armenta, S.; Alcala, M.; Blanco, M. A Review of Recent, Unconventional Applications of Ion Mobility Spectrometry (IMS). Anal. Chim. Acta 2011, 703, 114–123. DOI: 10.1016/j.aca.2011.07.021.
  • Hernández-Mesa, M.; Ropartz, D.; García-Campaña, A. M.; Rogniaux, H.; Dervilly-Pinel, G.; le Bizec, B. Ion Mobility Spectrometry in Food Analysis: Principles, Current Applications and Future Trends. Molecules 2019, 24, 2706. DOI: 10.3390/molecules24152706.
  • Puton, J.; Namieśnik, J. Ion Mobility Spectrometry: Current Status and Application for Chemical Warfare Agents Detection. TrAC, Trends Anal. Chem. 2016, 85, 10–20. DOI: 10.1016/j.trac.2016.06.002.
  • Westhoff, M.; Litterst, P.; Freitag, L.; Urfer, W.; Bader, S.; Baumbach, J.-I. Ion Mobility Spectrometry for the Detection of Volatile Organic Compounds in Exhaled Breath of Patients with Lung Cancer: Results of a Pilot Study. Thorax 2009, 64, 744–748. DOI: 10.1136/thx.2008.099465.
  • Gerhardt, N.; Birkenmeier, M.; Sanders, D.; Rohn, S.; Weller, P. Resolution-Optimized Headspace Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS) for Non-Targeted Olive Oil Profiling. Anal. Bioanal. Chem. 2017, 409, 3933–3942. DOI: 10.1007/s00216-017-0338-2.
  • Gloess, A. N.; Yeretzian, C.; Knochenmuss, R.; Groessl, M. On-Line Analysis of Coffee Roasting with Ion Mobility Spectrometry–Mass Spectrometry (IMS–MS). Int. J. Mass Spectrom. 2018, 424, 49–57. DOI: 10.1016/j.ijms.2017.11.017.
  • Oleneva, E.; Kuchmenko, T.; Drozdova, E.; Legin, A.; Kirsanov, D. Identification of Plastic Toys Contaminated with Volatile Organic Compounds Using QCM Gas Sensor Array. Talanta 2020, 211, 120701. DOI: 10.1016/j.talanta.2019.120701.
  • Kuchmenko, T.; Umarkhanov, R.; Lvova, L. E-Nose for the Monitoring of Plastics Catalytic Degradation through the Released Volatile Organic Compounds (VOCs) Detection. Sens. Actuators B Chem. 2020, 322, 128585. DOI: 10.1016/j.snb.2020.128585.
  • Cumeras, R.; Figueras, E.; Davis, C. E.; Baumbach, J. I.; Gràcia, I. Review on Ion Mobility Spectrometry. Part 1: Current Instrumentation. Analyst 2015, 140, 1376–1390. DOI: 10.1039/C4AN01100G.
  • Majchrzak, T.; Wojnowski, W.; Lubinska-Szczygeł, M.; Różańska, A.; Namieśnik, J.; Dymerski, T. PTR-MS and GC-MS as Complementary Techniques for Analysis of Volatiles: A Tutorial Review. Anal. Chim. Acta 2018, 1035, 1–13. DOI: 10.1016/j.aca.2018.06.056.
  • Biasioli, F.; Gasperi, F.; Yeretzian, C.; Märk, T. D. PTR-MS Monitoring of VOCs and BVOCs in Food Science and Technology. TrAC, Trends Anal. Chem. 2011, 30, 968–977. DOI: 10.1016/j.trac.2011.03.009.
  • Pathak, A. K.; Viphavakit, C. A Review on All-Optical Fiber-Based VOC Sensors: Heading towards the Development of Promising Technology. Sens. Actuators A Phys. 2022, 338, 113455. DOI: 10.1016/j.sna.2022.113455.
  • Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds. Sensors 2017, 17, 1520. DOI: 10.3390/s17071520.
  • Wilson, A. D. Review of Electronic-Nose Technologies and Algorithms to Detect Hazardous Chemicals in the Environment. Proc. Technol. 2012, 1, 453–463. DOI: 10.1016/j.protcy.2012.02.101.
  • Schütze, A.; Sauerwald, T. Indoor Air Quality Monitoring. In Advanced Nanomaterials for Inexpensive Gas Microsensors. Synthesis, Integration and Applications; Llobet, E., Ed.; Elsevier, 2020; pp 209–234. DOI: 10.1016/B978-0-12-814827-3.00011-6.
  • Schütze, A.; Baur, T.; Leidinger, M.; Reimringer, W.; Jung, R.; Conrad, T.; Sauerwald, T. Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How To? Environments 2017, 4, 20. DOI: 10.3390/environments4010020.
  • Dettmer-Wilde, K., Engewald, W., Eds.; Practical Gas Chromatography; Springer: Berlin, Heidelberg, 2014. DOI: 10.1007/978-3-642-54640-2.
  • Koning, S.; Janssen, H.-G.; Brinkman, U. A. T. Modern Methods of Sample Preparation for GC Analysis. Chroma 2009, 69, 33–78. DOI: 10.1365/s10337-008-0937-3.
  • Kloskowski, A.; Chrzanowski, W.; Pilarczyk, M.; Namiesnik, J. Modern Techniques of Sample Preparation for Determination of Organic Analytes by Gas Chromatography. Crit. Rev. Anal. Chem. 2007, 37, 15–38. DOI: 10.1080/10408340600976663.
  • Sajid, M.; Khaled Nazal, M.; Rutkowska, M.; Szczepańska, N.; Namieśnik, J.; Płotka-Wasylka, J. Solid Phase Microextraction: Apparatus, Sorbent Materials, and Application. Crit. Rev. Anal. Chem. 2019, 49, 271–288. DOI: 10.1080/10408347.2018.1517035.
  • Danish Environmental Protection Agency. Survey, Emission and Evaluation of Volatile Organic Chemicals in Printed Matter. Survey of Chemical Compounds in Consumer Products, No. 36. 2003.
  • Zhang, Z.; Pawliszyn, J. Headspace Solid-Phase Microextraction. Anal. Chem. 1993, 65, 1843–1852. DOI: 10.1021/ac00062a008.
  • Dodson, R. E.; Bessonneau, V.; Udesky, J. O.; Nishioka, M.; McCauley, M.; Rudel, R. A. Passive Indoor Air Sampling for Consumer Product Chemicals: A Field Evaluation Study. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 95–108. DOI: 10.1038/s41370-018-0070-9.
  • Bartkow, M. E.; Booij, K.; Kennedy, K. E.; Müller, J. F.; Hawker, D. W. Passive Air Sampling Theory for Semivolatile Organic Compounds. Chemosphere 2005, 60, 170–176. DOI: 10.1016/j.chemosphere.2004.12.033.
  • Partyka, M.; Zabiegała, B.; Namiésnik, J.; Przyjazny, A. Application of Passive Samplers in Monitoring of Organic Constituents of Air. Crit. Rev. Anal. Chem. 2007, 37, 51–78. DOI: 10.1080/10408340600976523.
  • Nematollahi, N.; Doronila, A.; Mornane, P. J.; Duan, A.; Kolev, S. D.; Steinemann, A. Volatile Chemical Emissions from Fragranced Baby Products. Air Qual. Atmos. Health 2018, 11, 785–790. DOI: 10.1007/s11869-018-0593-1.
  • Wojtyła, S.; Klama, P.; Śpiewak, K.; Baran, T. 3D Printer as a Potential Source of Indoor Air Pollution. Int. J. Environ. Sci. Technol. 2020, 17, 207–218. DOI: 10.1007/s13762-019-02444-x.
  • Snow, N. H.; Slack, G. C. Head-Space Analysis in Modern Gas Chromatography. TrAC, Trends Anal. Chem. 2002, 21, 608–617. DOI: 10.1016/S0165-9936(02)00802-6.
  • Kremser, A.; Jochmann, M. A.; Schmidt, T. C. Systematic Comparison of Static and Dynamic Headspace Sampling Techniques for Gas Chromatography. Anal. Bioanal. Chem. 2016, 408, 6567–6579. DOI: 10.1007/s00216-016-9843-y.
  • Liberto, E.; Bicchi, C.; Cagliero, C.; Cordero, C.; Rubiolo, P.; Sgorbini, B. Headspace Sampling: An “Evergreen” Method in Constant Evolution to Characterize Food Flavors through Their Volatile Fraction. In Food Chemistry, Function and Analysis. Advanced Gas Chromatography in Food Analysis; Tranchida, P. Q., Ed.; The Royal Society of Chemistry, 2019; pp 3–37.
  • Soria, A. C.; García-Sarrió, M. J.; Sanz, M. L. Volatile Sampling by Headspace Techniques. TrAC, Trends Anal. Chem. 2015, 71, 85–99. DOI: 10.1016/j.trac.2015.04.015.
  • Lancioni, C.; Castells, C.; Candal, R.; Tascon, M. Headspace Solid-Phase Microextraction: Fundamentals and Recent Advances. Adv. Sample Prepar. 2022, 3, 100035. DOI: 10.1016/j.sampre.2022.100035.
  • Ai, J. Headspace Solid Phase Microextraction. Dynamics and Quantitative Analysis before Reaching a Partition Equilibrium. Anal. Chem. 1997, 69, 3260–3266. DOI: 10.1021/ac970024x.
  • Danish Environmental Protection Agency. Survey of Allergenic Substances in Products Targeted Children – Toys and Cosmetic Products. Survey of Chemical Substances in Consumer Products, No. 148. 2016.
  • Lattuati-Derieux, A.; Bonnassies-Termes, S.; Lavédrine, B. Identification of Volatile Organic Compounds Emitted by a Naturally Aged Book Using Solid-Phase Microextraction/Gas Chromatography/Mass Spectrometry. J. Chromatogr. A 2004, 1026, 9–18. DOI: 10.1016/j.chroma.2003.11.069.
  • Lattuati-Derieux, A.; Egasse, C.; Thao-Heu, S.; Balcar, N.; Barabant, G.; Lavédrine, B. What Do Plastics Emit? HS-SPME-GC/MS Analyses of New Standard Plastics and Plastic Objects in Museum Collections. J. Cult. Herit. 2013, 14, 238–247. DOI: 10.1016/j.culher.2012.06.005.
  • Curran, K.; Underhill, M.; Gibson, L. T.; Strlic, M. The Development of a SPME-GC/MS Method for the Analysis of VOC Emissions from Historic Plastic and Rubber Materials. Microchem. J. 2016, 124, 909–918. DOI: 10.1016/j.microc.2015.08.027.
  • Cavalli, J.-F.; Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A.-M. Comparison of Static Headspace, Headspace Solid Phase Microextraction, Headspace Sorptive Extraction, and Direct Thermal Desorption Techniques on Chemical Composition of French Olive Oils. J. Agric. Food Chem. 2003, 51, 7709–7716. DOI: 10.1021/jf034834n.
  • Flórez Menéndez, J. C.; Fernández Sánchez, M. L.; Sánchez Urı́a, J. E.; Fernández Martı́nez, E.; Sanz-Medel, A. Static Headspace, Solid-Phase Microextraction and Headspace Solid-Phase Microextraction for BTEX Determination in Aqueous Samples by Gas Chromatography. Anal. Chim. Acta 2000, 415, 9–20. DOI: 10.1016/S0003-2670(00)00862-X.
  • Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Dynamic Headspace Sampling as an Initial Step for Sample Preparation in Chromatographic Analysis. J. AOAC. Int. 2017, 100, 1599–1606. DOI: 10.5740/jaoacint.17-0206.
  • Elmore, J. S.; Erbahadir, M. A.; Mottram, D. S. Comparison of Dynamic Headspace Concentration on Tenax with Solid Phase Microextraction for the Analysis of Aroma Volatiles. J. Agric. Food Chem. 1997, 45, 2638–2641. DOI: 10.1021/jf960835m.
  • Salthammer, T., Uhde, E., Eds.; Organic Indoor Air Pollutants, 2nd ed.; Wiley-VCH: Weinheim, 2009.
  • Nie, Y.; Lerch, O.; Kleine-Benne, E. Determination of Formaldehyde and VOCs in Wood-Based Products Using an Automated Micro-Scale Chamber. GERSTEL Appl. Note 2017, 1–12.
  • Norwegian Institute for Air Research. Survey of Emissions of Volatile Organic Chemicals from Handheld Toys for Children above 3 Years. NILU Report 12/2020. In Bohlin-Nizzetto, P., Schmidbauer, N., Eds.; Norwegian Environment Agency, 2020.
  • Danish Environmental Protection Agency. Odour from Energy-Saving Light Bulbs. Survey of Chemical Substances in Consumer Products No. 140; 2015.
  • European Committee for Standardization. Interior Air of Road Vehicles - Part 2: Screening Method for the Determination of the Emissions of Volatile Organic Compounds from Vehicle Interior Parts and Materials - Bag Method (ISO 12219-2:2012); 2012.
  • Beauchamp, J.; Herbig, J.; Gutmann, R.; Hansel, A. On the Use of Tedlar® Bags for Breath-Gas Sampling and Analysis. J. Breath Res. 2008, 2, 046001. DOI: 10.1088/1752-7155/2/4/046001.
  • European Committee for Standardization. Indoor Air - Part 9: Determination of the Emission of Volatile Organic Compounds from Building Products and Furnishing - Emission Test Chamber Method (ISO 16000-9:2006); 2006.
  • Salthammer, T. Environmental Test Chambers and Cells. In Organic Indoor Air Pollutants; Uhde, E., Salthammer, T., Eds.; Wiley-VCH: Weinheim, 2009.
  • Uhde, E.; Salthammer, T. Influence of Molecular Parameters on the Sink Effect in Test Chambers. Indoor Air 2006, 16, 158–165. DOI: 10.1111/j.1600-0668.2005.00412.x.
  • Zhao, D.; Little, J. C.; Hodgson, A. T. Modeling the Reversible, Diffusive Sink Effect in Response to Transient Contaminant Sources. Indoor Air 2002, 12, 184–190. DOI: 10.1034/j.1600-0668.2002.01116.x.
  • Wei, W.; Zhang, Y.; Xiong, J.; Li, M. A Standard Reference for Chamber Testing of Material VOC Emissions: Design Principle and Performance. Atmos. Environ. 2012, 47, 381–388. DOI: 10.1016/j.atmosenv.2011.10.051.
  • Wei W.; Xiong J.; Zhao W.; Zhang Y. A Framework and Experimental Study of an Improved VOC/Formaldehyde Emission Reference for Environmental Chamber Tests. Atmos. Environ. 2014, 82, 327–334. DOI: 10.1016/j.atmosenv.2013.10.038.
  • Nohr, M.; Horn, W.; Wiegner, K.; Richter, M.; Lorenz, W. Development of a Material with Reproducible Emission of Selected Volatile Organic Compounds – μ-Chamber Study. Chemosphere 2014, 107, 224–229. DOI: 10.1016/j.chemosphere.2013.12.047.
  • Nohr, M.; Horn, W.; Jann, O.; Richter, M.; Lorenz, W. Development of a Multi-VOC Reference Material for Quaity Assurance in Material Emission Testing. Anal. Bioanal. Chem. 2015, 407, 3231–3237. DOI: 10.1007/s00216-014-8387-2.
  • Richter, M.; Mull, B.; Horn, W.; Brödner, D.; Mölders, N.; Renner, M. Reproducibly Emitting Reference Material on Thermoplastic Polyurethane Basis for Quality Assurance/Quality Control of Emission Test Chamber Measurements. Build. Eviron. 2017, 122, 203–236.
  • Danish Environmental Protection Agency. Analysis and Risk Assessment of Fragrances and Other Organic Substances in Squishy Toys. Survey of Chemical Substances in Consumer Products, No. 165; 2018.
  • Derudi, M.; Gelosa, S.; Sliepcevich, A.; Cattaneo, A.; Rota, R.; Cavallo, D.; Nano, G. Emissions of Air Pollutants from Scented Candles Burning in a Test Chamber. Atmos. Environ. 2012, 55, 257–262. DOI: 10.1016/j.atmosenv.2012.03.027.
  • Azimi, P.; Zhao, D.; Pouzet, C.; Crain, N. E.; Stephens, B. Emissions of Ultrafine Particles and Volatile Organic Compounds from Commercially Available Desktop Three-Dimensional Printers with Multiple Filaments. Environ. Sci. Technol. 2016, 50, 1260–1268. DOI: 10.1021/acs.est.5b04983.
  • Wojtyła, S.; Klama, P.; Baran, T. Is 3D Printing Safe? Analysis of the Thermal Treatment of Thermoplastics: ABS, PLA, PET, and Nylon. J. Occup. Environ. Hyg. 2017, 14, D80–D85. DOI: 10.1080/15459624.2017.1285489.
  • Yi, J.; Duling, M. G.; Bowers, L. N.; Knepp, A. K.; LeBouf, R. F.; Nurkiewicz, T. R.; Ranpara, A.; Luxton, T.; Martin, S. B.; Burns, D. A.; et al. Particle and Organic Vapor Emissions from Children ’ s 3-D Pen and 3-D Printer Toys. Inhal. Toxicol. 2019, 31, 432–445. DOI: 10.1080/08958378.2019.1705441.
  • Gunnarsen, L.; Nielsen, P. A.; Wolkoff, P. Design and Characterization of the CLIMPAQ, Chamber for Laboratory Investigations of Materials, Pollution and Air Quality. Indoor Air 1994, 4, 56–62. DOI: 10.1111/j.1600-0668.1994.t01-3-00007.x.
  • Climtech. Test Chambers https://climtech.dk/products.html (accessed Apr 24, 2021).
  • NORDTEST. Building Materials: Emissions Testing Using the CLIMPAQ. NT Build 482; 1998.
  • Fang, L.; Clausen, G.; Fanger, P. O. Impact of Temperature and Humidity on Chemical and Sensory Emissions from Building Materials. Indoor Air 1999, 9, 193–201. DOI: 10.1111/j.1600-0668.1999.t01-1-00006.x.
  • Knudsen, H. N.; Kjaer, U. D.; Nielsen, P. A.; Wolkoff, P. Sensory and Chemical Characterization of VOC Emissions from Building Products: Impact of Concentration and Air Velocity. Atmos. Environ. 1999, 33, 1217–1230. DOI: 10.1016/S1352-2310(98)00278-7.
  • Afshari, A.; Lundgren, B.; Ekberg, L. E. Comparison of Three Small Chamber Test Methods for the Measurement of VOC Emission Rates from Paint. Indoor Air 2003, 13, 156–165. DOI: 10.1034/j.1600-0668.2003.00146.x.
  • Markes International Ltd. Micro-Chamber/Thermal Extractor https://markes.com/shop/products/micro-chamberthermal-extractor (accessed Aug 19, 2022).
  • Schripp, T.; Nachtwey, B.; Toelke, J.; Salthammer, T.; Uhde, E.; Wensing, M.; Bahadir, M. A Microscale Device for Measuring Emissions from Materials for Indoor Use. Anal. Bioanal. Chem. 2007, 387, 1907–1919. DOI: 10.1007/s00216-006-1057-2.
  • European Committee for Standardization. Indoor Air- Part 25: Determination of the Emission of Semi-Volatile Organic Compounds by Building Products - Micro-Chamber Method (ISO 16000-25:2011); 2011.
  • Marć, M.; Zabiegała, B. An Investigation of Selected Monoaromatic Hydrocarbons Released from the Surface of Polystyrene Lids Used in Coffee-to-Go Cups. Microchem. J. 2017, 133, 496–505. DOI: 10.1016/j.microc.2017.04.015.
  • Wolkoff, P.; Clausen, P. A.; Nielsen, P. A.; Gustafsson, H.; Jonsson, B.; Rasmusen, E. Field and Laboratory Emission Cell: FLEC. In IAQ ’91 Healthy Buildings; American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc, 1991; pp 160–165.
  • Uhde, E.; Borgschulte, A.; Salthammer, T. Characterization of the Field and Laboratory Emission Cell - FLEC: Flow Field and Air Velocities. Atmos. Environ. 1998, 32, 773–781. DOI: 10.1016/S1352-2310(97)00345-2.
  • Clausen, P. A.; Liu, Z.; Xu, Y.; Kofoed-Sørensen, V.; Little, J. C. Influence of Air Flow Rate on Emission of DEHP from Vinyl Flooring in the Emission Cell FLEC: Measurements and CFD Simulation. Atmos. Environ. 2010, 44, 2760–2766. DOI: 10.1016/j.atmosenv.2010.04.020.
  • Wolkoff, P. Impact of Air Velocity, Temperature, Humidity, and Air on Long-Term VOC Emissions from Building Products. Atmos. Environ. 1998, 32, 2659–2668. DOI: 10.1016/S1352-2310(97)00402-0.
  • Kim, S.; Kim, J. A.; An, J. Y.; Kim, H. J.; Kim, S. D.; Park, J. C. TVOC and Formaldehyde Emission Behaviors from Flooring Materials Bonded with Environmental-Friendly MF/PVAc Hybrid Resins. Indoor Air 2007, 17, 404–415. DOI: 10.1111/j.1600-0668.2007.00488.x.
  • Marć, M.; Namieśnik, J.; Zabiegała, B. The Home-Made in Situ Passive Flux Sampler for the Measurement of Monoterpene Emission Flux: Preliminary Studies. Anal. Bioanal. Chem. 2015, 407, 6879–6884. DOI: 10.1007/s00216-015-8859-z.
  • Plaisance, H.; Blondel, A.; Desauziers, V.; Mocho, P. Characteristics of Formaldehyde Emissions from Indoor Materials Assessed by a Method Using Passive Flux Sampler Measurements. Build. Environ. 2014, 73, 249–255. DOI: 10.1016/j.buildenv.2013.12.011.
  • Bicchi, C.; Cordero, C.; Liberto, E.; Rubiolo, P.; Sgorbini, B.; Sandra, P. Sorptive Tape Extraction in the Analysis of the Volatile Fraction Emitted from Biological Solid Matrices. J. Chromatogr. A 2007, 1148, 137–144. DOI: 10.1016/j.chroma.2007.03.007.
  • Barba, C.; Thomas-Danguin, T.; Guichard, E. Comparison of Stir Bar Sorptive Extraction in the Liquid and Vapour Phases, Solvent-Assisted Flavour Evaporation and Headspace Solid-Phase Microextraction for the (Non)-Targeted Analysis of Volatiles in Fruit Juice. LWT - Food Sci. Technol. 2017, 85, 334–344. DOI: 10.1016/j.lwt.2016.09.015.
  • Bicchi, C.; Iori, C.; Rubiolo, P.; Sandra, P. Headspace Sorptive Extraction (HSSE), Stir Bar Sorptive Extraction (SBSE), and Solid Phase Microextraction (SPME) Applied to the Analysis of Roasted Arabica Coffee and Coffee Brew. J. Agric. Food Chem. 2002, 50, 449–459. DOI: 10.1021/jf010877x.
  • Cheng, Z.; Mannion, D. T.; O’Sullivan, M. G.; Miao, S.; Kerry, J. P.; Kilcawley, K. N. Comparison of Automated Extraction Techniques for Volatile Analysis of Whole Milk Powder. Foods 2021, 10, 2061. DOI: 10.3390/foods10092061.
  • Bicchi, C.; Cordero, C.; Iori, C.; Rubiolo, P.; Sandra, P. Headspace Sorptive Extraction (HSSE) in the Headspace Analysis of Aromatic and Medicinal Plants. J. High Resol. Chromatogr. 2000, 23, 539–546. DOI: 10.1002/1521-4168(20000901)23:9 < 539::AID-JHRC539 > 3.0.CO;2-3.
  • Maruti, A.; Durán-Guerrero, E.; Barroso, C. G.; Castro, R. Optimization of a Multiple Headspace Sorptive Extraction Method Coupled to Gas Chromatography-Mass Spectrometry for the Determination of Volatile Compounds in Macroalgae. J. Chromatogr. A 2018, 1551, 41–51. DOI: 10.1016/j.chroma.2018.04.011.
  • Hearn, L.; Cole, R.; Spadafora, N. D.; Szafnauer, R. Volatile and Semi-Volatile Compounds in Flavoured Hard Seltzer Beverages: Comparison of High-Capacity Sorptive Extraction (HiSorb) Methods. Adv. Sample Prepar. 2022, 3, 100032. DOI: 10.1016/j.sampre.2022.100032.
  • Tienpont, B.; David, F.; Bicchi, C.; Sandra, P. High Capacity Headspace Sorptive Extraction. J. Micro. Sep. 2000, 12, 577–584. DOI: 10.1002/1520-667X(2000)12:11 < 577::AID-MCS30 > 3.0.CO;2-Q.
  • Prieto, A.; Basauri, O.; Rodil, R.; Usobiaga, A.; Fernández, L. A.; Etxebarria, N.; Zuloaga, O. Stir-Bar Sorptive Extraction: A View on Method Optimisation, Novel Applications, Limitations and Potential Solutions. J. Chromatogr. A 2010, 1217, 2642–2666. DOI: 10.1016/j.chroma.2009.12.051.
  • Baltussen, E.; Sandra, P.; David, F.; Cramers, C. Stir Bar Sorptive Extraction (SBSE), a Novel Extraction Technique for Aqueous Samples: Theory and Principles. J. Micro. Sep. 1999, 11, 737–747. DOI: 10.1002/(SICI)1520-667X(1999)11:10 < 737::AID-MCS7 > 3.0.CO;2-4.
  • Sgorbini, B.; Cagliero, C.; Cordero, C.; Liberto, E.; Rubiolo, P.; Ruosi, M. R.; Bicchi, C. New Medium-to-High Polarity Twister Coatings for Liquid and Vapour Phase Sorptive Extraction of Matrices of Vegetable Origin. J. Chromatogr. A 2012, 1265, 39–45. DOI: 10.1016/j.chroma.2012.09.097.
  • Boggia, L.; Sgorbini, B.; Bertea, C. M.; Cagliero, C.; Bicchi, C.; Maffei, M. E.; Rubiolo, P. Direct Contact – Sorptive Tape Extraction Coupled with Gas Chromatography – Mass Spectrometry to Reveal Volatile Topographical Dynamics of Lima Bean (Phaseolus Lunatus L.) upon Herbivory by Spodoptera Littoralis Boisd. BMC Plant Biol. 2015, 15, 102. DOI: 10.1186/s12870-015-0487-4.
  • Sandra, P.; Lebel, M.; Sisalli, S.; Isabelle, L. F.; Adao, A. Sorptive Tape Extraction - A Novel Sampling Method for the in Vivo Study of Skin. LCGC Europe 2006, 19, 33–39.
  • Noguchi, M.; Yamasaki, A. Passive Flux Sampler Measurements of Emission Rates of Phthalates from Poly(Vinyl Chloride) Sheets. Build. Environ. 2016, 100, 197–202. DOI: 10.1016/j.buildenv.2016.02.019.
  • Marć, M.; Zabiegała, B.; Namieśnik, J. Miniaturized Passive Emission Chambers for In Situ Measurement of Emissions of Volatile Organic Compounds. Crit. Rev. Anal. Chem. 2013, 43, 55–61. DOI: 10.1080/10408347.2012.744888.
  • Marć, M.; Namieśnik, J.; Zabiegała, B. The Miniaturised Emission Chamber System and Home-Made Passive Flux Sampler Studies of Monoaromatic Hydrocarbons Emissions from Selected Commercially-Available Floor Coverings. Build. Environ. 2017, 123, 1–13. DOI: 10.1016/j.buildenv.2017.06.035.
  • Yamashita, S.; Kume, K.; Horiike, T.; Honma, N.; Fusaya, M.; Ohura, T.; Amagai, T. A Simple Method for Screening Emission Sources of Carbonyl Compounds in Indoor Air. J. Hazard Mater. 2010, 178, 370–376. DOI: 10.1016/j.jhazmat.2010.01.089.
  • Ni, Y.; Kumagai, K.; Yanagisawa, Y. Measuring Emissions of Organophosphate Flame Retardants Using a Passive Flux Sampler. Atmos. Environ. 2007, 41, 3235–3240. DOI: 10.1016/j.atmosenv.2006.10.080.
  • Kimura, K.; Sekine, Y.; Furukawa, S.; Takahashi, M.; Oikawa, D. Measurement of 2-Nonenal and Diacetyl Emanating from Human Skin Surface Employing Passive Flux Sampler—GCMS System. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1028, 181–185. DOI: 10.1016/j.jchromb.2016.06.021.
  • Sekine, Y.; Toyooka, S.; Watts, S. F. Determination of Acetaldehyde and Acetone Emanating from Human Skin Using a Passive Flux Sampler—HPLC System. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 859, 201–207. DOI: 10.1016/j.jchromb.2007.09.033.
  • Noguchi, M.; Yamasaki, A. Volatile and Semivolatile Organic Compound Emissions from Polymers Used in Commercial Products during Thermal Degradation. Heliyon 2020, 6, e03314. DOI: 10.1016/j.heliyon.2020.e03314.
  • U.S. Environmental Protection Agency. Comptox Chemicals Dashboard. Toluene https://comptox.epa.gov/dashboard/chemical/properties/DTXSID7021360 (accessed Aug 19, 2022).
  • Lugg, G. A. Diffusion Coefficients of Some Organic and Other Vapors in Air. Anal. Chem. 1968, 40, 1072–1077. DOI: 10.1021/ac60263a006.
  • International Labour Organization and World Health Organization. International Chemical Safety Cards. Phenol https://www.ilo.org/dyn/icsc/showcard.display?p_lang=en&p_card_id=0070&p_version=2 (accessed Aug 19, 2022).
  • U.S. Environmental Protection Agency. Comptox Chemicals Dashboard. 1,2,4-Trimethylbenzene https://comptox.epa.gov/dashboard/chemical/properties/DTXSID6021402 (accessed Aug 19, 2022).
  • U.S. Environmental Protection Agency. Comptox Chemicals Dashboard. n-Butanol https://comptox.epa.gov/dashboard/chemical/properties/DTXSID1021740 (accessed Aug 19, 2022).