388
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Ion Mobility Mass Spectrometry Development and Applications

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Geoghegan, K. F.; Kelly, M. A. Biochemical Applications of Mass Spectrometry in Pharmaceutical Drug Discovery. Mass Spectrom Rev. 2005, 24, 347–366. DOI: 10.1002/mas.20019.
  • Schrimpe-Rutledge, A. C.; Codreanu, S. G.; Sherrod, S. D.; McLean, J. A. Untargeted Metabolomics Strategies-Challenges and Emerging Directions. J Am Soc Mass Spectrom. 2016, 27, 1897–1905. DOI: 10.1007/s13361-016-1469-y.
  • Domon, B.; Aebersold, R. Mass Spectrometry and Protein Analysis. Science. 2006, 312, 212–217. DOI: 10.1126/science.1124619.
  • Nygren, H.; Seppänen-Laakso, T.; Castillo, S.; Hyötyläinen, T.; Orešič, M. Liquid Chromatography-Mass Spectrometry (LC-MS)-Based Lipidomics for Studies of Body Fluids and Tissues. Methods Mol. Biol. 2011, 708, 247–257. DOI: 10.1007/978-1-61737-985-7_15.
  • Cajka, T.; Fiehn, O. Comprehensive Analysis of Lipids in Biological Systems by Liquid Chromatography-Mass Spectrometry. Trends Analyt. Chem. 2014, 61, 192–206. DOI: 10.1016/j.trac.2014.04.017.
  • Hyötyläinen, T.; Orešič, M. Optimizing the Lipidomics Workflow for Clinical Studies–Practical Considerations. Anal. Bioanal. Chem. 2015, 407, 4973–4993. DOI: 10.1007/s00216-015-8633-2.
  • Eldridge, G. R.; Vervoort, H. C.; Lee, C. M.; Cremin, P. A.; Williams, C. T.; Hart, S. M.; Goering, M. G.; O’Neil-Johnson, M.; Zeng, L. High-Throughput Method for the Production and Analysis of Large Natural Product Libraries for Drug Discovery. Anal. Chem. 2002, 74, 3963–3971. DOI: 10.1021/ac025534s.
  • Koehn, F. E.; Carter, G. T. The Evolving Role of Natural Products in Drug Discovery. Nat Rev Drug Discov. 2005, 4, 206–220. DOI: 10.1038/nrd1657.
  • May, J. C.; McLean, J. A. Ion Mobiity-Mass Spectrometry: time-Dispersive Instrumentation. Anal Chem. 2015, 87, 1422–1436. DOI: 10.1021/ac504720m.
  • Kanu, A. B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill, H. H. Ion Mobility–Mass Spectrometry. J Mass Spectrom. 2008, 43, 1–22. DOI: 10.1002/jms.1383.
  • Regueiro, J.; Negreira, N.; Berntssen, M. H. Ion-Mobility-Derived Collision Cross Section as an Additional Identification Point for Multiresidue Screening of Pesticides in Fish Feed. Anal Chem. 2016, 88, 11169–11177. DOI: 10.1021/acs.analchem.6b03381.
  • Paglia, G.; Angel, P.; Williams, J. P.; Richardson, K.; Olivos, H. J.; Thompson, J. W.; Menikarachchi, L.; Lai, S.; Walsh, C.; Moseley, A.; et al. Ion Mobility-Derived Collision Cross Section as an Additional Measure for Lipid Fingerprinting and Identification. Anal Chem. 2015, 87, 1137–1144. DOI: 10.1021/ac503715v.
  • Majuta, S. N.; Maleki, H.; Karanji, A. K.; Attanyake, K.; Loch, E.; Valentine, S. J. Magnifying Ion Mobility Spectrometry – Mass Spectrometry Measurements for Biomolecular Structure Studies. Curr Opin Chem Biol. 2018, 42, 101–110. DOI: 10.1016/j.cbpa.2017.11.013.
  • Mie, A.; Jörntén-Karlsson, M.; Axelsson, B.-O.; Ray, A.; Reimann, C. T. Enantiomer Separation of Amino Acids by Complexation with Chiral Reference Compounds and High-Field Asymmetric Waveform Ion Mobility Spectrometry: preliminary Results and Possible Limitations. Anal Chem. 2007, 79, 2850–2858. DOI: 10.1021/ac0618627.
  • Yu, X. Y.; Yao, Z.-P. Chiral Differentiation of Amino Acids through Binuclear Copper Bound Tetramers by Ion Mobility Mass Spectrometry. Anal Chim Acta. 2017, 15, 62–70. DOI: 10.1016/j.aca.2017.05.026.
  • Mie, A.; Ray, A.; Axelsson, B.-O.; Jörntén-Karlsson, M.; Reimann, C. T. Terbutaline Enantiomer Separation and Quantification by Complexation and Field Asymmetric Ion Mobility Spectrometry-Tandem Mass Spectrometry. Anal Chem. 2008, 80, 4133–4140. DOI: 10.1021/ac702262k.
  • Berant, Z.; Karpas, Z.; Shahal, O. Effect of Temperature and Clustering on Mobility of Ions in Carbon Dioxide. J. Phys. Chem. 1989, 93, 7529–7532. DOI: 10.1021/j100358a052.
  • Carr, T. W. Comparison of the Negative Reactant Ions Formed in the Plasma Chromatograph by Nitrogen, Air, and Sulfur Hexafluoride as the Drift Gas with Air as the Carrier Gas. Anal. Chem. 1979, 51, 705–711. DOI: 10.1021/ac50042a030.
  • Huang, W.; Wang, W. G.; Chen, C.; Li, M.; Peng, L. Y.; Li, H.; Liu, J. W.; Hou, K. Y.; Li, H. Y. Long-Term Sub Second-Response Monitoring of Gaseous Ammonia in Ambient Air by Positive Inhaling Ion Mobility Spectrometry. Talanta. 2017, 175, 522–527. DOI: 10.1016/j.talanta.2017.07.076.
  • Yamashita, T.; Kobayashi, H.; Konaka, A.; Kurashige, H.; Miyake, K.; Morii, M. M.; Nakamura, T. T.; Nomura, T.; Sasao, N.; Fukushima, Y.; et al. Measurements of the Electron Drift Velocity and Positive-Ion Mobility for Gases Containing CF4. New Instrum Methods Phys Res. 1989, 283, 709–715. DOI: 10.1016/0168-9002(89)91445-9.
  • Asbury, G. R.; Hill, H. H. Using Different Drift Gases to Change Separation Factors in Ion Mobility Spectrometry. Anal Chem. 2000, 72, 580–584. DOI: 10.1021/ac9908952.
  • Hoaglund-Hyzer, C. S.; Lee, Y. J.; Counterman, A. E.; Clemmer, D. E. Coupling Ion Mobility Separations, Collisional Activation Techniques, and Multiple Stages of MS for Analysis of Complex Peptide Mixtures. Anal Chem. 2002, 74, 992–1006. DOI: 10.1021/ac010837s.
  • Kindy, J. M.; Taraszka, J. A.; Regnier, F. E.; Clemmer, D. E. Quantifying Peptides Isotopically Labeled Protease Digests by Ion Mobility/Time-of-Flight Mass Spectrometry. Anal Chem. 2002, 74, 950–958. DOI: 10.1021/ac010807p.
  • Guevremont, R.; Siu, K. W.; Wang, J.; Ding, L. Combined Ion Mobility/Time-of-Flight Mass Spectrometry Study of Electrospray-Generated Ions. Anal Chem. 1997, 69, 3959–3965. DOI: 10.1021/ac970359e.[PMC].[21639212].
  • Cumeras, R.; Figueras, E.; Davis, C. E.; Baumbach, J. I.; Gràcia, I. Review on Ion Mobility Spectrometry. Part 1: Current Instrumentation. Analyst. 2015, 140, 1376–1390. DOI: 10.1039/c4an01100g.
  • Harris, G. A.; Graf, S.; Knochenmuss, R.; Fernández, F. M. Coupling Laser Ablation/Desorption Electrospray Ionization to Atmospheric Pressure Drift Tube Ion Mobility Spectrometry for the Screening of Antimalarial Drug Quality. Analyst. 2012, 137, 3039–3044. DOI: 10.1039/c2an35431d.
  • Shvartsburg, A. A.; Smith, R. D. Fundamentals of Traveling Wave Ion Mobility Spectrometry. Anal Chem. 2008, 80, 9689–9699. DOI: 10.1021/ac8016295.
  • Borsdorf, H.; Eiceman, G. A. Ion Mobility Spectrometry: Principles and Applications. Appl Spectrosc Rev. 2006, 41, 323–375. DOI: 10.1080/05704920600663469.
  • Fernandez-Lima, F. A.; Kaplan, D. A.; Park, M. A. Note: Integration of Trapped Ion Mobility Spectrometry with Mass Spectrometry. Rev Sci Instrum. 2011, 82, 126106. DOI: 10.1063/1.3665933.
  • Mochalski, P.; Rudnicka, J.; Agapiou, A.; Statheropoulos, M.; Amann, A.; Buszewski, B. Near Real-Time VOCs Analysis Using an Aspiration Ion Mobility Spectrometer. J Breath Res. 2013, 7, 026002. DOI: 10.1088/1752-7155/7/2/026002.
  • Hsieh, Y.-C.; Lin, Y.-P.; Hsiao, T.-C.; Hou, W.-C. A Two-Dimensional Nanoparticle Characterization Method Combining Differential Mobility Analyzer and Single-Particle Inductively Coupled Plasma-Mass Spectrometry with an Atomizer-Enabled Sample Introduction (ATM-DMA-spICP-MS): toward the Analysis of Heteroaggregated Nanoparticles in Wastewater. Sci Total Environ. 2022, 838, 156444. DOI: 10.1016/j.scitotenv.2022.156444.
  • Vidal-de-Miguel, G.; Macía, M.; Barrios, C.; Cuevas, J. Transversal Modulation Ion Mobility Spectrometry (IMS) Coupled with Mass Spectrometry (MS): Exploring the IMS-IMS-MS Possibilities of the Instrument. Anal Chem. 2015, 87, 1925–1932. DOI: 10.1021/ac504178n.
  • Lee, S. Y.; Ewing, M. A.; Nachtigall, F. M.; Kurulugama, R. T.; Valentine, S. J.; Clemmer, D. E. Determination of Cross Sections by Overtone Mobility Spectrometry: Evidence for Loss of Unstable Structures at Higher Overtones. J Phys Chem B. 2010, 114, 12406–12415. DOI: 10.1021/jp1060123.
  • Steiner, W. E.; Klopsch, S. J.; English, W. A.; Clowers, B. H.; Hill, H. H. Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry. Anal Chem. 2005, 77, 4792–4799. DOI: 10.1021/ac050278f.
  • Hill, C. AThomas, C. L. P. Programmable Gate Delayed Ion Mobility Spectrometry-Mass Spectrometry: A Study with Low Concentrations of Dipropylene-Glycol-Monomethyl-Ether in Air. Analyst. 2005, 130, 1155–1161. DOI: 10.1039/b502215k.
  • Smith, D. P.; Giles, K.; Bateman, R. H.; Radford, S. E.; Ashcroft, A. E. Monitoring Copopulated Conformational States during Protein Folding Events Using Electrospray Ionization-Ion Mobility Spectrometry-Mass Spectrometry. J Am Soc Mass Spectrom. 2007, 18, 2180–2190. DOI: 10.1016/j.jasms.2007.09.017.
  • Wu, C.; Siems, W. F.; Hill, H. H. Secondary Electrospray Ionization Ion Mobility Spectrometry/Mass Spectrometry of Illicit Drugs. Anal Chem. 2000, 72, 396–403. DOI: 10.1021/ac9907235.
  • McLean, J. A.; Ruotolo, B. T.; Gillig, K. J.; Russell, D. H. Ion Mobility-Mass Spectrometry: A New Paradigm for Proteomics. Int J Mass Spectrum. 2005, 240, 301–315. DOI: 10.1016/j.ijms.2004.10.003.
  • Bagal, D.; Zhang, H. D.; Schnier, P. D. Gas-Phase Proton-Transfer Chemistry Coupled with TOF Mass Spectrometry and Ion mobility-MS for the Facile Analysis of Poly (Ethylene Glycols) and PEGylated Polypeptide Conjugates. Anal Chem. 2008, 80, 2408–2418. DOI: 10.1021/ac7020163.
  • Xie, C.; Yu, K.; Zhong, D. F.; Yuan, T.; Ye, F.; Jarrell, J. A.; Millar, A.; Chen, X. Y. Investigation of Isomeric Transformations of Chlorogenic Acid in Buffers and Biological Matrixes by Ultraperformance Liquid Chromatography Coupled with Hybrid Quadrupole/Ion Mobility/Orthogonal Acceleration Time-of-Flight Mass Spectrometry. J Agric Food Chem. 2011, 59, 11078–11087. DOI: 10.1021/jf203104k.
  • Wu, X. Z.; Zhang, Y.; Qin, R.; Li, P.; Wen, Y. J.; Yin, Z. B.; Zhang, Z. X.; Xu, H. H. Discrimination of Isomeric Monosaccharide Derivatives Using Collision-Induced Fingerprinting Coupled to Ion Mobility Mass Spectrometry. Talanta. 2021, 224, 121901. DOI: 10.1016/j.talanta.2020.121901.
  • Fernandez-Lima, F. A.; Becker, C.; McKenna, A. M.; Rodgers, R. P.; Marshall, A. G.; Russell, D. H. Petroleum Crude Oil Characterization by IMS-MS and FTICR MS. Anal Chem. 2009, 81, 9941–9947. DOI: 10.1021/ac901594f.
  • Tang, X. T.; Bruce, J. E.; Hill, H. H. Design and Performance of an Atmospheric Pressure Ion Mobility Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Rapid Commun Mass Spectrom. 2009, 81, 9941–9947. DOI: 10.1002/rcm.2928.
  • Li, H. L.; Bendiak, B.; Siems, W. F.; Gang, D. R.; Hill, H. H. Carbohydrate Structure Characterization by Tandem Ion Mobility Mass Spectrometry (IMMS)2. Anal Chem. 2013, 85, 2760–2769. DOI: 10.1021/ac303273z.
  • Goodwin, C. R.; Fenn, L. S.; Derewacz, D. K.; Bachmann, B. O.; McLean, J. A. Structural Mass Spectrometry: rapid Methods for Separation and Analysis of Peptide Natural Products. J Nat Prod. 2012, 75, 48–53. DOI: 10.1021/np200457r.
  • Basit, A.; Pontis, S.; Piomelli, D.; Armirotti, A. Ion Mobility Mass Spectrometry Enhances Low-Abundance Species Detection in Untargeted Lipidomics. Metabolomics. 2016, 12, 50. DOI: 10.1007/s11306-016-0971-3.
  • Griffiths, R. L.; Dexter, A.; Creese, A. J.; Cooper, H. J. Liquid Extraction Surface Analysis Field Asymmetric Waveform Ion Mobility Spectrometry Mass Spectrometry for the Analysis of Dried Blood Spots. Analyst. 2015, 140, 6879–6885. DOI: 10.1039/c5an00933b.
  • Derewacz, D. K.; Goodwin, C. R.; McNees, C. R.; McLean, J. A.; Bachmann, B. O. Antimicrobial Drug Resistance affects broad changes in Metabolomic Phenotype in Addition to Secondary Metabolism. Proc Natl Acad Sci U S A. 2013, 110, 2336–2341. DOI: 10.1073/pnas.1218524110.
  • Berry, K. A. Z.; Barkley, R. M.; Berry, J. J.; Hankin, J. A.; Hoyes, E.; Brown, J. M.; Murphy, R. C. Tandem Mass Spectrometry in Combination with Product Ion Mobility for the Identification of Phospholipids. Anal Chem. 2017, 89, 916–921. DOI: 10.1021/acs.analchem.6b04047.
  • Bodzon-Kulakowska, A.; Suder, P. Imaging Mass Spectrometry: Instrumentation, Applications, and Combination with Other Visualization Techniques. Mass Spectrom Rev. 2016, 35, 147–169. DOI: 10.1002/mas.21468.
  • Škrášková, K.; Claude, E.; Jones, E. A.; Towers, M.; Ellis, S. R.; Heeren, R. M. A. Enhanced Capabilities for Imaging Gangliosides in Murine Brain with Matrix-Assisted Laser Desorption/Ionization and Desorption Electrospray Ionization Mass Spectrometry Coupled to Ion Mobility Separation. Methods. 2016, 104, 69–78. DOI: 10.1016/j.ymeth.2016.02.014.
  • Merenbloom, S. I.; Glaskin, R. S.; Henson, Z. B.; Clemmer, D. E. High-Resolution Ion Cyclotron Mobility Spectrometry. Anal Chem. 2009, 81, 1482–1487. DOI: 10.1021/ac801880a.
  • Hines, K. M.; May, J. C.; McLean, J. A.; Xu, L. B. Evaluation of Collision Cross Section Calibrants for Structural Analysis of Lipids by Traveling Wave Ion Mobility-Mass Spectrometry. Anal Chem. 2016, 88, 7329–7336. DOI: 10.1021/acs.analchem.6b01728.
  • Stow, S. M.; Goodwin, C. R.; Kliman, M.; Bachmann, B. O.; McLean, J. A.; Lybrand, T. P. Distance Geometry Protocol to Generate Conformations of Natural Products to Structurally Interpret Ion Mobility-Mass Spectrometry Collision Cross Sections. J Phys Chem B. 2014, 118, 13812–13820. DOI: 10.1021/jp509398e.
  • Helden, G. V.; Hsu, M.-T.; Gotts, N.; Bowers, M. T. Carbon Cluster Cations with up to 84 Atoms: structures, Formation Mechanism, and Reactivity. J. Phys. Chem. 1993, 97, 8182–8192. DOI: 10.1021/j100133a011.
  • Zhou, M. W.; Jones, C. M.; Wysocki, V. H. Dissecting the Large Noncovalent Protein Complex GroEL with Surface-Induced Dissociation and Ion Mobility-Mass Spectrometry. Anal Chem. 2013, 85, 8262–8267. DOI: 10.1021/ac401497c.
  • Levin, D. S.; Vouros, P.; Miller, R. A.; Nazarov, E. G. Using a Nanoelectrospray-Differential Mobility Spectrometer-Mass Spectrometer System for the Analysis of Oligosaccharides with Solvent Selected Control over ESI Aggregate Ion Formation. J Am Soc Mass Spectrom. 2007, 18, 502–511. DOI: 10.1016/j.jasms.2006.10.008.
  • Hoaglund, C. S.; Valentine, S. J.; Sporleder, C. R.; Reilly, J. P.; Clemmer, D. E. Three-Dimensional Ion Mobility/TOFMS Analysis of Electrosprayed Biomolecules. Anal Chem. 1998, 70, 2236–2242. DOI: 10.1021/ac980059c.
  • Dwivedi, P.; Bendiak, B.; Clowers, B. H.; Hill, H. H. Rapid Resolution of Carbohydrate Isomers by Electrospray Ionization Ambient Pressure Ion Mobility Spectrometry-Time-of-Flight Mass Spectrometry (ESI-APIMS-TOFMS). J Am Soc Mass Spectrom. 2007, 18, 1163–1175. DOI: 10.1016/j.jasms.2007.04.007.
  • Jin, L.; Barran, P. E.; Deakin, J. A.; Lyon, M.; Uhrín, D. Conformation of Glycosaminoglycans by Ion Mobility Mass Spectrometry and Molecular Modelling. Phys Chem Chem Phys. 2005, 7, 3464–3471. DOI: 10.1039/b508644b.
  • Kaur-Atwal, G.; Weston, D. J.; Green, P. S.; Crosland, S.; Bonner, P. L.; Creaser, C. S. Analysis of Tryptic Peptides Using Desorption Electrospray Ionisation Combined with Ion Mobility Spectrometry/Mass Spectrometry. Rapid Commun Mass Spectrom. 2007, 21, 1131–1138. DOI: 10.1002/rcm.2941.
  • Taraszka, J. A.; Gao, X. F.; Valentine, S. J.; Sowell, R. A.; Koeniger, S. L.; Miller, D. F.; Kaufman, T. C.; Clemmer, D. E. Proteome Profiling for Assessing Diversity: analysis of Individual Heads of Drosophila melanogaster Using LC-Ion mobility-MS. J Proteome Res. 2005, 4, 1238–1247. DOI: 10.1021/pr050037o.
  • Shelimov, K. B.; Jarrold, M. F. Conformations, Unfolding, and Refolding of Apomyoglobin in Vacuum: An Activation Barrier for Gas-Phase Protein Folding. J. Am. Chem. Soc. 1997, 119, 2987–2994. DOI: 10.1021/ja962914k.
  • Jarrold, M. F. Unfolding, Refolding, and Hydration of Proteins in the Gas Phase. Acc. Chem. Res. 1999, 32, 360–367. DOI: 10.1021/ar960081x.
  • Jackson, S. N.; Wang, H.-Y. J.; Woods, A. S.; Ugarov, M.; Egan, T.; Schultz, J. A. Direct Tissue Analysis of Phospholipids in Rat Brain Using MALDI-TOFMS and MALDI-Ion mobility-TOFMS. J Am Soc Mass Spectrom. 2005, 16, 133–138. DOI: 10.1016/j.jasms.2004.10.002.
  • Koomen, J. M.; Ruotolo, B. T.; Gillig, K. J.; McLean, J. A.; Russell, D. H.; Kang, M. J.; Dunbar, K. R.; Fuhrer, K.; Gonin, M.; Schultz, J. A. Oligonucleotide Analysis with MALDI-Ion-mobility-TOFMS. Anal Bioanal Chem. 2002, 373, 612–617. DOI: 10.1007/s00216-002-1363-2.
  • Baker, E. S.; Bernstein, S. L.; Bowers, M. T. Structural Characterization of G-Quadruplexes in Deoxyguanosine Clusters Using Ion Mobility Mass Spectrometry. J Am Soc Mass Spectrom. 2005, 16, 989–997. DOI: 10.1016/j.jasms.2005.03.012.
  • Wang, D.; Wan, J. C.; Zhang, W.; Yu, J. L.; Wu, Y.; Guo, P. Separation of Pyrethroid Pesticides and Their Isomers Based on Ionic Mobility. Jiangxi Chem Ind. 2021, 37, 56–59. DOI: 10.14127/j.cnki.jiangxihuagong.2021.01.017.
  • Duan, H. J.; Guo, Q. Z.; Zhang, X.; Yang, Y. J.; Yang, Y. Establishment of Multidimensional Database of Ion Mobility Mass Spectrometry for 75 Kinds of Pesticides. J Food Saf Qual. 2021, 12, 8026–8033. DOI: 10.19812/j.cnki.jfsq11-5956/ts.2021.20.017.
  • Xue, F.; Hu, X. Y. Determination of 8 Kinds of Organophosphorus Pesticide Residues in Vegetables by Atmospheric Pressure Gas Chromatography-Ion Mobility Spectrum-Quadrupole-Time of Flight-Mass Spectrometry. J Food Saf Qual. 2021, 12, 4896–4902. DOI: 10.19812/j.cnki.jfsq11-5956/ts.2021.12.028.
  • Vasilopoulou, C. G.; Sulek, K.; Brunner, A. D.; Meitei, N. S.; Schweiger-Hufnagel, U.; Meyer, S. W.; Barsch, A.; Mann, M.; Meier, F. Trapped Ion Mobility Spectrometry and PASEF Enable in-Depth Lipidomics from Minimal Sample Amounts. Nat Commun. 2020, 11, 331. DOI: 10.1038/s41467-019-14044-x.
  • Nye, L. C.; Williams, J. P.; Munjoma, N. C.; Letertre, M. P. M.; Coen, M.; Bouwmeester, R.; Martens, L.; Swann, J. R.; Nicholson, J. K.; Plumb, R. S.; et al. A Comparison of Collision Cross Section Values Obtained via Travelling Wave Ion Mobility-Mass Spectrometry and Ultra High Performance Liquid Chromatography-Ion Mobility-Mass Spectrometry: Application to the Characterisation of Metabolites in Rat Urine. J Chromatogr A. 2019, 1602, 386–396. DOI: 10.1016/j.chroma.2019.06.056.
  • Masike, K.; Villiers, A.; Hoffman, E. W.; Brand, D. J.; Causon, T.; Stander, M. A. Detailed Phenolic Characterization of Protea Pure and Hybrid Cultivars by Liquid Chromatography-Ion Mobility-High Resolution Mass Spectrometry (LC-IM-HR-MS). J Agric Food Chem. 2020, 68, 485–502. DOI: 10.1021/acs.jafc.9b06361.
  • Hernández-Mesa, M.; Bizec, B. L.; Monteau, F.; García-Campaña, A. M.; Dervilly-Pinel, G. Collision Cross Section (CCS) Database: An Additional Measure to Characterize Steroids. Anal Chem. 2018, 90, 4616–4625. DOI: 10.1021/acs.analchem.7b05117.
  • Arthur, K. L.; Turner, M. A.; Reynolds, J. C.; Creaser, C. S. Increasing Peak Capacity in Non-Targeted Omics Applications by Combining Full Scan Field Asymmetric Waveform Ion Mobility Spectrometry with Liquid Chromatography-Mass Spectrometry. Anal Chem. 2017, 89, 3452–3459. DOI: 10.1021/acs.analchem.6b04315.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.