341
Views
1
CrossRef citations to date
0
Altmetric
Review Article

A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants (CPOs) in Seawater. Part 1: Chlorine Chemistry in Seawater and Its Consequences in Terms of Biocidal Effectiveness and Environmental Impact

, &

References

  • Rajagopal, S.; Van der Velde, G.; Van der Gaag, M.; Jenner, H. A. How Effective is Intermittent Chlorination to Control Adult Mussel Fouling in Cooling Water Systems? Water Res. 2003a, 37, 329–338. DOI: 10.1016/S0043-1354(02)00270-1
  • Rajala, P.; Bomberg, M.; Huttunen-Saarivirta, E.; Priha, O.; Tausa, M.; Carpén, L. Influence of Chlorination and Choice of Materials on Fouling in Cooling Water System under Brackish Seawater Conditions. Materials 2016, 9, 475–495. DOI: 10.3390/ma9060475.
  • Kinani, A.; Kinani, S.; Richard, B.; Lorthioy, M.; Bouchonnet, S. Formation and Determination of Organohalogen by-Products in Water – Part I. Discussing the Parameters Influencing the Formation of Organohalogen by-Products and the Relevance of Estimating Their Concentration Using the AOX (Adsorbable Organic Halide) Method. Trends Anal. Chem. 2016a, 85, 273–280. DOI: 10.1016/j.trac.2016.06.008
  • Paull, B.; Barron, L. Using Ion Chromatography to Monitor Haloacetic Acids in Drinking Water: A Review of Current Technologies. J. Chromatogr. A 2004, 1046, 1–9. DOI: 10.1016/S0021-9673(04)01029-5.
  • Rittmann, B. E.; Huck, P. M.; Bouwer, E. J. Biological Treatment of Public Water Supplies. Crit. Rev. Environ. Control 1989, 19, 119–184. DOI: 10.1080/10643388909388362.
  • Prasse, C.; Stalter, D.; Schulte-Oehlmann, U.; Oehlmann, J.; Ternes, T. A. Spoilt for Choice: A Critical Review on the Chemical and Biological Assessment of Current Wastewater Treatment Technologies. Water Res. 2015, 87, 237–270. DOI: 10.1016/j.watres.2015.09.023
  • Schmalz, C.; Frimmel, F. H.; Zwiener, C. Trichloramine in Swimming pools - Formation and Mass Transfer. Water Res. 2011, 45, 2681–2690. DOI: 10.1016/j.watres.2011.02.024
  • Zimmer-Faust, A. G.; Ambrose, R. F.; Tamburri, M. N. Evaluation of Approaches to Quantify Total Residual Oxidants in Ballast Water Management Systems Employing Chlorine for Disinfection. Water Sci. Technol. 2014, 70, 1585–1593. DOI: 10.2166/wst.2014.394
  • Nguyen, T.; Roddick, F. A.; Fan, L. Biofouling of Water Treatment Membranes: A Review of the Underlying Causes, Monitoring Techniques and Control Measures. Membranes (Basel) 2012, 2, 804–840. DOI: 10.3390/membranes2040804.
  • Rajagopal, S. Chlorination and Biofouling Control in Industrial Cooling Water Systems. In Operational and Environmental Consequences of Large Industrial Cooling Water Systems, Rajagopal, S.; Jenner, H. A.; Venugopalan V. P., Eds. Springer: New York, 2012; pp. 163–182
  • BREF. European IPPC, Reference Document on the application of Best Available Techniques to Industrial Cooling Systems. https://eippcb.jrc.ec.europa.eu/sites/default/files/2019-11/cvs_bref_1201.pdf. 2003 (accessed June 18 2020).
  • WHO. International Health Regulations Guide to Ship Sanitation, 3rd ed. World Health Organization: Geneva, Switzerland, 2007.
  • IMO. Procedure for Approval of Ballast Water Management Systems That Make Use of Active Substances (G9). Resolution MEPC.169(57), International Maritime Organization: London, 2008.
  • Stehouwer, P. P.; Buma, A.; Peperzak, L. A Comparison of Six Different Ballast Water Treatment Systems Based on UV Radiation, Electrochlorination and Chlorine Dioxide. Environ. Technol. 2015, 36, 2094–2104. DOI: 10.1080/09593330.2015.1021858
  • Rose, L. J.; Rice, E. W. Inactivation of Bacterial Biothreat Agents in Water, a Review. J. Water Health. 2014, 12, 618–633. DOI: 10.2166/wh.2014.038.
  • Cromeans, T. L.; Kahler, A. M.; Hill, V. R. Inactivation of Adenoviruses, Enteroviruses, and Murine Norovirus in Water by Free Chlorine and Monochloramine. Appl. Environ. Microbiol. 2010, 76, 1028–1033. DOI: 10.1128/AEM.01342-09
  • Barbeau, B.; Desjardins, R.; Mysore, C.; Prévost, M. Impacts of Water Quality on Chlorine and Chlorine Dioxide Efficacy in Natural Waters. Water Res. 2005, 39, 2024–2033. DOI: 10.1016/j.watres.2005.03.025
  • Nebot, E.; Casanueva, J. F.; Casanueva, T.; Fernández-Bastón, M. M.; Sales, D. In Situ Experimental Study for the Optimization of Chlorine Dosage in Seawater Cooling Systems. Appl. Therm. Eng. 2006, 26, 1893–1900. DOI: 10.1016/j.applthermaleng.2006.02.001.
  • Rajagopal, S.; Venugopalan, V. P.; Van der Velde, G.; Jenner, H. A. Tolerance of Five Species of Tropical Marine Mussels to Continouous Chlorination. Mar. Environ. Res. 2003b, 55, 277–291. DOI: 10.1016/S0141-1136(02)00272-6.
  • Nancharaiah, Y. V.; Rajadurai, M.; Venugopalan, V. P. Single Cell Level Microalgal Ecotoxicity Assessment by Confocal Microscopy and Digital Image Analysis. Environ. Sci. Technol. 2007, 41, 2617–2621. DOI: 10.1021/es0627390
  • Flemming, H. C.; Murthy, P. S.; Venkatesan, R.; Cooksey, K. E. Marine and Industrial Biofouling. Springer: Berlin, 2009.
  • Khalanski, M.; Jenner, H. A. Chlorination Chemistry and Ecotoxicology of the Marine Cooling Water Systems. In Operational and Environmental Consequences of Large Industrial Cooling Water Systems, Rajagopal, S.; Jenner, H.A.; Venugopalan V.P., Eds. Springer: New York, 2012; pp. 183–226.
  • Ebenezer, E.; Nancharaiah, Y. V.; Venugopalan, V. P. Chlorination-Induced Cellular Damage and Recovery in Marine Microalga, Chlorella Salina. Chemosphere 2012, 89, 1042–1047. 10.1016/j.chemosphere.2012.05.067
  • Dang, T.-L. T.; Imai, T.; Le, T. V.; Nguyen, D.-M. K.; Higuchi, T.; Kanno, A.; Yamamoto, K.; Sekine, M. Synergistic Effect of Pressurized Carbon Dioxide and Sodium Hypochlorite on the Inactivation of Enterococcus sp. in Seawater. Water Res. 2016, 106, 204–213. DOI: 10.1016/j.watres.2016.10.003
  • Bruijs, M. C. M.; Venhuis, L. P.; Daal, L. Global Experiences in Optimizing Biofouling Control through Pulse-Chlorination®. PowerPlant Chem. 2017, 19, 203–209.
  • Wang, J.-T.; Chen, M.-H.; Lee, H.-J.; Chang, W.-B.; Chen, C.-C.; Pai, S.-C.; Meng, P.-J. A Model to Predict Total Chlorine Residue in the Cooling Seawater of a Power Plant Using Iodine Colorimetric Method. IJMS 2008, 9, 542–553. DOI: 10.3390/ijms9040542.
  • Saeed, S.; Prakash, S.; Deb, N.; Campbell, R.; Kolluru, V.; Febbo, E.; Dupont, J. Development of a Site-Specific Kinetic Model for Chlorine Decay and the Formation of Chlorination by-Products in Seawater. JMSE 2015, 3, 772–792. DOI: 10.3390/jmse3030772.
  • Al-Abri, M.; Al-Ghafri, B.; Bora, T.; Dobretsov, S.; Dutta, J.; Castelletto, S.; Rosa, L.; Boretti, A. Chlorination Disadvantages and Alternative Routes for Biofouling Control in Reverse Osmosis Desalination. NPJ Clean Water 2019, 2, 1–16.
  • Boudjellaba, D.; Dron, J.; Revenko, G.; Demelas, C.; Boudenne, J.-L. Chlorination by-Product Concentration Levels in Seawater and Fish of an Industrialized Bay (Gulf of Fos, France) Exposed to Multiple Chlorinated Effluents. Sci. Total Environ. 2016, 541, 391–399. DOI: 10.1016/j.scitotenv.2015.09.046.
  • IMO. Guidelines for Approval of Ballast Water Management Systems (G8). Resolution MEPC.174(58); International Maritime Organization: London, 2008.
  • Wahman, D. G.; Speitel, G. E.; Jr,.; Katz, L. E. Bromamine Decomposition Revisited: A Holistic Approach for Analyzing Acid and Base Catalysis Kinetics. Environ. Sci. Technol. 2017, 51, 13205–13215. DOI: 10.1021/acs.est.7b02661
  • Quivet, E.; Hohener, P.; Temime-Roussel, B.; Dron, J.; Revenko, G.; Verlande, M.; Lebaron, K.; Demelas, C.; Vassalo, L.; Boudenne, J. L. Underestimation of Anthropogenic Bromoform Released into the Environment? Environ. Sci. Technol. 2022, 56, 1522–1533. DOI: 10.1021/acs.est.1c05073
  • Liu, Y.; Thornton, D. C. O.; Bianchi, T. S.; Arnold, W. A.; Shields, M. R.; Chen, J.; Yvon-Lewis, S. A. Dissolved Organic Matter Composition Drives the Marine Production of Brominated Very Short-Lived Substances. Environ. Sci. Technol. 2015, 49, 3366–3374. DOI: 10.1021/es505464k
  • Heeb, M. B.; Criquet, J.; Zimmermann-Steffens, S. G.; von Gunten, U. Oxidative Treatment of Bromide-Containing Waters: Formation of Bromine and Its Reactions with Inorganic and Organic Compounds – A Critical Review. Water Res. 2014, 48, 15–42. DOI: 10.1016/j.watres.2013.08.030
  • Donnermair, M. M.; Blatchley, E. R. III, Disinfection Efficacy of Organic Chloramines. Water Res. 2003, 37, 1557–1570. DOI: 10.1016/S0043-1354(02)00522-5
  • Amiri, F.; Mesquita, M. M. F.; Andrews, S. A. Disinfection Effectiveness of Organic Chloramines, Investigating the Effect of pH. Water Res. 2010, 44, 845–853. DOI: 10.1016/j.watres.2009.09.004
  • Lee, W.; Westerhoff, P. Formation of Organic Chloramines during Water Disinfection: chlorination versus Chloramination. Water Res. 2009, 43, 2233–2239. DOI: 10.1016/j.watres.2009.02.009.
  • Laingam, S.; Froscio, S. M.; Bull, R. J.; Humpage, A. R. In Vitro Toxicity and Genotoxicity Assessment of Disinfection by-Products, Organic N-Chloramines. Environ. Mol. Mutagen. 2012, 53, 83–93. DOI: 10.1002/em.20684
  • Lebaron, K.; Mechiri, L.; Richard, S.; Austruy, A.; Boudenne, J. L.; Coupé, S. Assessment of Individual and Mixed Toxicity of Bromoform, Tribromoacetic-Acid and 2,4,6-Tribromophenol, on the Embryo-Larval Development of Paracentrotus Lividus Sea Urchin. Environ. Sci. Pollut. Res. Int. 2019, 26, 20573–20580. DOI: 10.1007/s11356-019-05279-8
  • Dron, J.; Demelas, C.; Mas, J.; Durand, A.; Pantalacci, A.; Austruy, A.; Périot, M.; Revenko, G.; Gori, D.; Lebaron, K.; et al. Assessment of the Contamination by 2, 4, 6-Tribromophenol of Marine Waters and Organisms Exposed to Chlorination Discharges. Environ. Pollut. 2022, 309, 119742. (2022) DOI: 10.1016/j.envpol.2022.119742.
  • Fu, J.; Guo, Y.; Wang, M.; Yang, L.; Han, J.; Lee, J. S.; Zhou, B. Bioconcentration of 2, 4, 6-Tribromophenol (TBP) and Thyroid Endocrine Disruption in Zebrafish Larvae. Ecotoxicol. Environ. Saf. 2020, 206, 111207. DOI: 10.1016/j.ecoenv.2020.111207
  • Macdonald, I. A.; Polman, H. J.; Jenner, H. A.; Quyam, S. 2006 Industrial Cooling Seawater Antifouling Optimization through the Adoption of Pulse-Chlorination. International Cooling Seawater Specialists and Operators Conference, Doha, Qatar.
  • Bleninger, T.; Jirka, G. H. Mixing Zone Regulation for Effluent Discharges into EU Waters. P. I. Civil Eng.-Wat. M 2011, 164, 387–396.
  • Ridem Office of Water Resources. RI Municipal WWTF Total Residual Chlorine (TRC) Limits History and Status. https://seagrant.gso.uri.edu/wp-content/uploads/2017/12/Total-Residual-Chlorine-Status-Update-11-29-17-FINAL.pdf., 2017 (accessed June 8 2020).
  • Batley, G. E.; Simpson, S. L. Short-Term Guideline Values for Chlorine in Marine Waters. Environ. Toxicol. Chem. 2020, 39, 754–764. DOI: 10.1002/etc.4661
  • Liu, B.; Reckhow, D. A.; Li, Y. A Two-Site Chlorine Decay Model for the Combined Effects of pH, Water Distribution Temperature and in-Home Heating Profiles Using Differential Evolution. Water Res. 2014, 53, 47–57. DOI: 10.1016/j.watres.2014.01.010.
  • George, W.; Gokel, D. Handbook of Organic Chemistry. Walton: London, UK, 2006.
  • Cherney, D. P.; Duirk, S. E.; Tarr, J. C.; Collette, T. W. Monitoring the Speciation of Aqueous Free Chlorine from pH 1 to 12 with Raman Spectroscopy to Determine the Identity of the Potent Low-pH Oxidant. Appl. Spectrosc. 2006, 60, 764–772. DOI: 10.1366/000370206777887062.
  • Soufan, M. Oxidation par le chlore de composes pharmaceutiques. Ph.D. Dissertation, L'Université de Poitiers, Poitiers, France, 2011.
  • Timerbaev, A. R.; Fukushi, K. Analysis of Seawater and Different Highly Saline Natural Waters by Capillary Zone Electrophoresis. Mar. Chem. 2003, 82, 221–238. DOI: 10.1016/S0304-4203(03)00071-9.
  • Sugam, R.; Helz, G. R. Speciation of Chlorine Produced Oxidants in Marine Waters: Theoretical Aspects. Chesapeake Sci. 1977, 18, 113–115. DOI: 10.2307/1350376.
  • Jenner, H. A.; Whitehouse, J. W.; Taylor, C. J. L.; Khalanski, M. Cooling Water Management in European Power Stations: biology and Control of Fouling. Hydroecol. Appl. 1998, 1, 1–225.
  • Taylor, C. J. L. The Effects of Biological Fouling Control at Coastal and Estuarine Power Stations. Mar. Pollut. Bull. 2006, 53, 30–48. DOI: 10.1016/j.marpolbul.2006.01.004
  • Sivey, J. D.; Arey, J. S.; Tentscher, P. R.; Roberts, A. L. Reactivity of BrCl, Br2, BrOCl, Br2O, and HOBr toward Dimethenamid in Solutions of Bromide + Aqueous Free Chlorine. Environ. Sci. Technol. 2013, 47, 1330–1338. DOI: 10.1021/es302730h.
  • Prütz, W. A.; Kissner, R.; Nauser, T.; Koppenol, W. H. On the Oxydation of Cytochrome c by Hypohalous Acids. Arch. Biochem. Biophys. 2001, 389, 110–122. DOI: 10.1006/abbi.2001.2321.
  • Criquet, J.; Allard, S.; Salhi, E.; Joll, C. A.; Heitz, A.; von Gunten, U. Iodate and Iodo-Trihalomethane Formation during Chlorination of Iodide-Containing Waters: Role of Bromide. Environ. Sci. Technol. 2012, 46, 7350–7357. DOI: 10.1021/es301301g
  • Heeb, M. B.; Kristiana, I.; Trogolo, D.; Arey, J. S.; von Gunten, U. Formation and Reactivity of Inorganic and Organic Chloramines and Bromamines during Oxidative Water Treatment. Water Res. 2017, 110, 91–101. DOI: 10.1016/j.watres.2016.11.065
  • Deborde, M.; Von Gunten, U. Reactions of Chlorine with Inorganic and Organic Compounds during Water Treatment-Kinetics and Mechanisms: A Critical Review. Water Res. 2008, 42, 13–51. DOI: 10.1016/j.watres.2007.07.025
  • Bell, T. G.; Johnson, M. T.; Jickells, T. D.; Liss, P. S. Ammonia/Ammonium Dissociation Coefficient in Seawater: A Significant Numerical Correction. Environ. Chem. 2007, 4, 183–186. DOI: 10.1071/EN07032.
  • Holmes, R. M.; McClelland, J. W.; Sigman, D. M.; Fry, B.; Peterson, B. J. Measuring 15N-NH4+ in Marine, Estuarine and Fresh Waters: An Adaptation of the Ammonia Diffusion Method for Samples with Low Ammonium Concentrations. Mar. Chem 1998, 60, 235–243. DOI: 10.1016/S0304-4203(97)00099-6.
  • Parker, A. E.; Dugdale, R. C.; Wilkerson, F. P. Elevated Ammonium Concentrations from Wastewater Discharge Depress Primary Productivity in the Sacramento River and the Northern San Francisco Estuary. Mar. Pollut. Bull. 2012, 64, 574–586. DOI: 10.1016/j.marpolbul.2011.12.016
  • Collos, Y.; Harrison, P. J. Acclimation and Toxicity of High Ammonium Concentrations to Unicellular Algae. Mar. Pollut. Bull. 2014, 80, 8–23. DOI: 10.1016/j.marpolbul.2014.01.006.
  • Liang, Y.; Pan, Y.; Guo, Q.; Hu, H.; Wu, C.; Zhang, Q. A Novel Analytical Method for Trace Ammonium in Freshwater and Seawater Using 4-Methoxyphthalaldehyde as Fluorescent Reagent. J. Anal. Methods Chem. 2015, 2015, 1–7. DOI: 10.1155/2015/387207.
  • Courtot, J.; Péron, A. Etude physicochimique de la chloration de l’eau de mer en présence d’azote ammoniacal. Nature et évolution des haloamines formées. EDF R&D report HE 337911, 1979.
  • Péron, A.; Courtot-Coupez, J. Etude physico chimique de la chloration de l’eau de mer artificielle contenant de l’azote ammoniacal. Water Res. 1980, 14, 883–890. DOI: 10.1016/0043-1354(80)90269-9
  • Abarnou, A. 1981 Aspects chimiques de la chloration de l’eau de mer. Institut Scientifique et technique des pêches maritimes. Nantes: France.
  • Haag, W. R.; Lietzke, M. H. A Kinetic Model for Predicting the Concentrations of Active Halogens Species in Chlorinated Saline Cooling Waters. A Final Report, ORNL/TM-7942, Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1981.
  • Johnson, J. D.; Inman, G. W.; Trofe, T. W. Cooling-Water Chlorination: The Kinetics of Chlorine, Bromine, and Ammonia in Sea Water. National Technical Information Service, Springfield, VA, USA, 1982.
  • Trofe, T. W.; Inman, G. W.; Johnson, J. D. Kinetics of Monochloramine Decomposition in the Presence of Bromide. Environ. Sci. Technol. 1980, 14, 544–549. DOI: 10.1021/es60165a008.
  • Brodfuehrer, S.; Goodman, J.; Wahman, D.; Speitel, G.; Katz, L. Apparent Reactivity of Bromine in Bromochloramine Depends on Synthesis Method: Implicating Bromine Chloride and Molecular Bromine as Important Bromine Species. J. Environ. Eng. 2022, 148, 06022006. DOI: 10.1061/(ASCE)EE.1943-7870.0002070.
  • Trogolo, D.; Arey, J. S. Equilibria and Speciation of Chloramines, Bromamines, and Bromochloramines in Water. Environ. Sci. Technol. 2017, 51, 128–140. DOI: 10.1021/acs.est.6b03219
  • How, Z. T.; Linge, K. L.; Busetti, F.; Joll, C. A. Chlorination of Amino Acids: reaction Pathways and Reaction Rates. Environ. Sci. Technol. 2017a, 51, 4870–4876. DOI: 10.1021/acs.est.6b04440
  • Jiang, P.; Jmaiff Blackstock, L. K.; Wawryk, N. J. P.; Huang, G.; Li, X.-F. Analytical Characterization of N-Halogenated Peptides Produced by Disinfection: Formation, Degradation, and Occurrence in Water. Trends Anal. Chem. 2019, 112, 255–263. DOI: 10.1016/j.trac.2018.08.004.
  • Takats, Z.; Koch, K. J.; Cooks, R. G. Organic Chloramines Analysis and Free Chlorine Quantification by Electrospray and Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry. Anal. Chem. 2001, 73, 4522–4529. DOI: 10.1021/ac010338r
  • Simon, V.; Berne, F.; Gallard, H. Chloramination and Bromamination of Amino Acids. In Disinfection by-Products in Drinking Water, Thompson, K.C.; Gillespie, S.; Goslan, E., Eds. The Royal Society of Chemistry, Cambridge, UK, 2015; pp. 70–80.
  • Dong, A.; Wang, Y.-J.; Gao, Y.; Gao, T.; Gao, G. Chemical Insights into Antibacterial N-Halamines. Chem. Rev. 2017, 117, 4806–4862. DOI: 10.1021/acs.chemrev.6b00687
  • Gray, M. J.; Wholey, W.-Y.; Jakob, U. Bacterial Responses to Reactive Chlorine Species. Annu. Rev. Microbiol. 2013, 67, 141–160. DOI: 10.1146/annurev-micro-102912-142520
  • Ferriol, M.; Gazet, J.; Adad, M-. T. S-. C. Kinetics and mechanisms of chlorine transfert from chloramine to amines in aqueous medium. Int. J. Chem. Kinet. 1991, 23, 315–329. DOI: 10.1002/kin.550230404
  • How, Z. T.; Linge, K. L.; Busetti, F.; Joll, C. A. Organic Chloramines in Drinking Water: An Assessment of Formation Stability, Reactivity and Risk. Water Res. 2016, 96, 65–73.
  • How, Z. T.; Kristiana, I.; Busetti, F.; Linge, K. L.; Joll, C. A. Organic Chloramines in Chlorine-Based Disinfected Water Systems: A Critical Review. J. Environ. Sci. (China) 2017, 58, 2–18. DOI: 10.1016/j.jes.2017.05.025
  • Na, C.; Olson, T. M. Relative Reactivity of Amino Acids with Chlorine in Mixtures. Environ. Sci. Technol. 2007, 41, 3220–3225. DOI: 10.1021/es061999e
  • Song, D.; Liu, H.; Qiang, Z.; Qu, J. Determination of Rapid Chlorination Rate Constants by a Stopped-Flow Spectrophotometric Competition Kinetics Method. Water Res. 2014, 55, 126–132. DOI: 10.1016/j.watres.2014.01.048
  • Šakić, D.; Hanževački, M.; Smith, D. M.; Vrček, V. A Computational Study of the Chlorination and Hydroxylation of Amines by Hypochlorous Acid. Org. Biomol. Chem. 2015, 13, 11740–11752. DOI: 10.1039/C5OB01823D
  • Pattison, D. I.; Davies, M. J. Kinetic Analysis of the Reactions of Hypobromous Acid with Protein Components: Implications for Cellular Damage and Use of 3-Bromotyrosine as a Marker of Oxidative Stress. Biochemistry 2004, 43, 4799–4809. DOI: 10.1021/bi035946a.
  • Sharma, V. K.; Zboril, R.; McDonald, T. J. Formation and Toxicity of Brominated Disinfection Byproducts during Chlorination and Chloramination of Water: A Review. J. Environ. Sci. Health. B 2014, 49, 212–228. DOI: 10.1080/03601234.2014.858576.
  • Davies, M. J.; Hawkins, C. L.; Pattison, D. I.; Rees, M. D. Mammalian Heme Peroxidases: From Molecular Mechanisms to Health Implications. Antioxid. Redox Signal. 2008, 10, 1199–1234. DOI: 10.1089/ars.2007.1927.
  • Thomas, E. L.; Bozeman, P. M.; Jefferson, M. M.; King, C. C. Oxidation of Bromide by the Human Leukocyte Enzymes Myeloperoxidase and Eosinophil Peroxidase – Formation of Bromamines. J. Biol. Chem. 1995, 270, 2906–2913. DOI: 10.1074/jbc.270.7.2906
  • Antelo, J. M.; Arce, F.; Crugeiras, J.; Gray, E. T.; Yebra, P. Kinetics and Thermodynamics of the Reaction of Aliphatic N-Bromamines with Bromide Ion in Acid Media, and the pKa of N-Bromamines. J. Chem. Soc. Perkin Trans. 1999, 2, 651–656.
  • Wilson, R. E.; Stoianov, I.; O’Hare, D. Continuous Chlorine Detection in Drinking Water and a Review of New Detection Methods. Johnson Matthey Technol. Rev. 2019, 63, 103–118. DOI: 10.1595/205651318X15367593796080.
  • Wajon, J. E.; Morris, J. C. Rates of Formation of N-Bromo Amines in Aqueous Solution. Inorg. Chem. 1982, 21, 4258–4263. DOI: 10.1021/ic00142a030.
  • Qiang, Z.; Adams, C. D. Determination of Monochloramine Formation Rate Constants with Stopped-Flow Spectrophotometry. Environ. Sci. Technol. 2004, 38, 1435–1444. DOI: 10.1021/es0347484
  • Luh, J.; Mariñas, B. J. Kinetics of Bromochloramine Formation and Decomposition. Environ. Sci. Technol. 2014, 48, 2843–2852. DOI: 10.1021/es4036754
  • Johnson, J. D.; W. Sun, W.; Johnson, J. Bromine Disinfection of Wastewater. In Disinfection: Water and Wastewater. Ann Arbor: Ann Arbor Science Publishers, Inc, 1975; 179–191.
  • Perrins, J. C.; Cooper, W. J.; van Leeuwen, J. H.; Herwig, R. P. Ozonation of Seawater from Different Locations: Formation and Decay of Total Residual Oxidant-Implications for Ballast Water Treatment. Mar. Pollut. Bull. 2006, 52, 1023–1033. DOI: 10.1016/j.marpolbul.2006.01.007
  • AFNOR. NF EN ISO 7393-1: Qualité de l’eau. Dosage du chlore libre et du chlore total par la méthode titrimétrique à la N. N diethyl-p-phénylènediamine destinée aux contrôles de routine. AFNOR: Paris. France. 2019a.
  • AFNOR. NF EN ISO 7393-2: Qualité de l’eau. Dosage du chlore libre et du chlore total par la méthode colorimétrique à la N. N diethyl-p-phénylènediamine destinée aux contrôles de routine. AFNOR:. Paris. France. 2019b.
  • AFNOR. NF EN ISO 7393-3: Qualité de l’eau. Dosage du chlore libre et du chlore total par la méthode iodométrique destinée aux contrôles de routine. AFNOR: Paris. France. 2019c.
  • Dai, X.-H.; Zhang, J.; Pang, X.-J.; Zhou, J.-P.; Liu, G.-Z.; Zhang, S.-Y. Ferrocene-Enhanced Polyvinyl Chloride-Coated Electrode for the Potentiometric Detection of Total Residual Chlorine in Simulated Ballast Water. J. Electroanal. Chem. 2016, 760, 158–164. DOI: 10.1016/j.jelechem.2015.11.036.
  • López-Galindo, C.; Garrido, M. C.; Casanueva, J. F.; Nebot, E. Degradation Models and Ecotoxicity in Marine Waters of Two Antifouling Compounds: Sodium Hypochlorite and an Alkylamine Surfactant. Sci. Total Environ. 2010, 408, 1779–1785. DOI: 10.1016/j.scitotenv.2010.01.029.
  • Lattemann, S.; Höpner, T. Environmental Impact and Impact Assessment of Seawater Desalination. Desalination 2008, 220, 1–15. DOI: 10.1016/j.desal.2007.03.009.
  • Sacher, F.; Gerstner, P.; Merklinger, M.; Thoma, A.; Kinani, A.; Roumiguières, A.; Bouchonnet, S.; Richard-Tanaka, B.; Layousse, S.; Ata, R.; et al. Determination of Monochloramine Dissipation Kinetics in Various Surface Water Qualities under Relevant Environmental conditions - Consequences regarding Environmental Risk Assessment. Sci. Total Environ. 2019, 685, 542–554. DOI: 10.1016/j.scitotenv.2019.05.364
  • Rubio, D.; López-Galindo, C.; Casanueva, J. F.; Nebot, E. Monitoring and Assessment of an Industrial Antifouling Treatment. Seasonal Effects and Influence of Water Velocity in an Open Once-through Seawater Cooling System. Appl. Therm. Eng. 2014, 67, 378–387. DOI: 10.1016/j.applthermaleng.2014.03.057.
  • Taterka, A.; Miskewitz, R.; Sharp, R. R.; Patoczka, J. Modeling Chlorine-Produced Oxidant Demand and Dilution in Chlorinated Combined Sewer Overflow Discharges. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 2020, 55, 266–274. DOI: 10.1080/10934529.2019.1686890
  • Warton, B.; Heitz, A.; Joll, C.; Kagi, R. A New Method for Calculation of the Chlorine Demand of Natural and Treated Waters. Water Res. 2006, 40, 2877–2884. DOI: 10.1016/j.watres.2006.05.020
  • Brown, D.; Bridgeman, J.; West, J. R. Predicting Chlorine Decay and THM Formation in Water Supply Systems. Rev. Environ. Sci. Biotechnol. 2011, 10, 79–99. DOI: 10.1007/s11157-011-9229-8.
  • Richardson, L. B.; Burton, D. T.; Helz, G. R.; Rhoderick, J. C. Residual Oxidant Decay and Bromate Formation in Chlorinated and Ozonated Sea-Water. Water Res. 1981, 15, 1067–1074. DOI: 10.1016/0043-1354(81)90074-9.
  • Scully, F. E.; Jr.,.; Bempong, M. A. Organic N-Chloramines: chemistry and Toxicology. Environ. Health Perspect. 1982, 46, 111–116. DOI: 10.1289/ehp.8246111
  • Roumiguières, A.; Bouchonnet, S.; Kinani, S. Challenges and Opportunities for on-Line Monitoring of Chlorine-Produced Oxidants in Seawater Using Portable Membrane-Introduction Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry. Anal. Bioanal. Chem. 2021, 413, 885–900. DOI: 10.1007/s00216-020-03043-3
  • Antelo, J. M.; Arce, F.; Crugeiras, J. Kinetics and Mechanism of Decomposition of N-Br-Amino Acids in Alkaline Medium. Ind. Chem. Libr. 1995, 7, 226–239.
  • Coker, M. S. A.; Hu, W.-P.; Senthilmohan, S. T.; Kettle, A. J. Pathways for the Decay of Organic Dichloramines and Liberation of Antimicrobial Chloramine Gases. Chem. Res. Toxicol. 2008, 21, 2334–2343. DOI: 10.1021/tx800232v
  • Beckwith, R. C.; Margerum, D. W. Kinetics of Hypobromous Acid Disproportionation. Inorg. Chem. 1997, 36, 3754–3760. DOI: 10.1021/ic970155g
  • Liu, C.; von Gunten, U.; Croué, J.-P. Enhanced Bromate Formation during Chlorination of Bromide-Containing Waters in the Presence of CuO: Catalytic Disproportionation of Hypobromous Acid. Environ. Sci. Technol. 2012, 46, 11054–11061. DOI: 10.1021/es3021793
  • Vikesland, P. J.; Ozekin, K.; Valentine, R. L. Monochloramine Decay in Model and Distribution System Waters. Water Res. 2001, 35, 1766–1776. DOI: 10.1016/S0043-1354(00)00406-1
  • Lei, H.; Mariñas, B. J.; Minear, R. A. Bromamine Decomposition Kinetics in Aqueous Solutions. Environ. Sci. Technol. 2004, 38, 2111–2119. DOI: 10.1021/es034726h
  • Lagiere, J.; El Najjar, N. H.; Dubourg, K.; Labarthe, S.; Ohayon, C. Bromine Chemistry Applied to Disinfection of Swimming Pool Water: A Literature Review. RSEAU. 2018, 30, 227–245. DOI: 10.7202/1044249ar.
  • Johnson, J. D.; Overby, R. Bromine and Bromamine Disinfection Chemistry. J. Sanit. Eng. Div. 1971, 97, 617–628. DOI: 10.1061/JSEDAI.0001310
  • Allard, S.; Cadee, K.; Tung, R.; Jean-Philippe Croué, J.-P. Impact of Brominated Amines on Monochloramine Stability during in-Line and Pre-Formed Chloramination Assessed by Kinetic Modelling. Environ. Sci. Technol. 2018, 618, 1431–1439.
  • Antelo, J. M.; Arce, F.; Franco, J.; Forneas, M. J.; Sanchez, M. E.; Varela, A. Kinetics and Mechanism of Decomposition of N-Bromoalcoholamines in Aqueous Solution. Int. J. Chem. Kinet. 1986, 18, 1249–1258. DOI: 10.1002/kin.550181104.
  • Tachikawa, M.; Tezuka, M.; Morita, M.; Isogai, K.; Okada, S. Evaluation of Some Halogen Biocides Using a Microbial Biofilm System. Water Res. 2005a, 39, 4126–4132. DOI: 10.1016/j.watres.2005.07.039
  • Crew, J.; Varilla, R.; Rocas, T. A.; Debabov, D.; Wang, L.; Najafi, A.; Rani, S. A.; Najafi, R. R.; Anderson, M. NeutroPhase in Chronic Non-Healing Wounds. Int. J. Burns Trauma. 2012, 2, 126–134.
  • da Cruz Nizer, W. S.; Inkovskiy, V.; Overhage, J. Surviving Reactive Chlorine Stress: Responses of Gram-Negative Bacteria to Hypochlorous Acid. Microorganisms 2020, 8, 1220–1227. DOI: 10.3390/microorganisms8081220
  • Fisher, D. J.; Burton, D. T.; Yonkos, L. T.; Turley, S. D.; Ziegler, G. P. The Relative Acute Toxicity of Continuous and Intermittent Exposures of Chlorine and Bromine to Aquatic Organisms in the Presence and Absence of Ammonia. Water Res. 1999, 33, 760–768. DOI: 10.1016/S0043-1354(98)00278-4.
  • Ukeles, S. D.; Freiberg, M. Bromine, Inorganic Compounds, Kirk Othmer Encyclopedia of Chemical Technology. John Wiley & Sons Inc: Hoboken, NJ, 2002.
  • Gottardi, W.; Klotz, S.; Nagl, M. Superior Bactericidal Activity of N-Bromine Compounds Compared to Their N-Chlorine Analogues Can be Reversed under Protein Load. J. Appl. Microbiol. 2014, 116, 1427–1437. DOI: 10.1111/jam.12474
  • WHO, World Health Organization, Bromine as a Drinking-Water Disinfectant. World Health Organization: Geneva, Switzerland, 2018.
  • US EPA. Alternative Disinfectants and Oxidants Guidance Manual, United States Environmental Protection Agency, EPA 815-R-99-014, 1999.
  • Black and Veatch Corporation, White’s Handbook of Chlorination and Alternative Disinfectants. 5th ed., John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010.
  • Murray, A.; Lantagne, D. Accuracy, Precision, Usability, and Cost of Free Chlorine Residual Testing Methods. J. Water Health. 2015, 13, 79–90. DOI: 10.2166/wh.2014.195.
  • Venkateswarlu, K. S. Marine Biofouling and Its Chemical Control in Power Industry. Chem. Bus. 1990, 20, 39–41.
  • Elsmore, R. Development of Bromine Chemistry in Controlling Microbial Growth in Water Systems. Int. Biodeter. Biodegr. 1994, 33, 245–253. DOI: 10.1016/0964-8305(94)90064-7.
  • Nalepa, C. J. 25 Years of Bromine Chemistry in Industrial Water Systems: A Review. NACE International 04087, 2004.
  • Kim, J. J. Evaluation of Bromine for Disinfection of Drinking Water, Technical Report, University of North Carolina, 2014.
  • Kirmeyer, G. J. Optimizing Chloramine Treatment. American Water Works Association: Denver, CO, 2004.
  • Tao, H.; Chen, Z.-L.; Li, X.; Yang, Y.-L.; Li, G.-B. Salicylate-Spectrophotometric Determination of Inorganic Monochloramine. Anal. Chim. Acta. 2008, 615, 184–190. DOI: 10.1016/j.aca.2008.04.005.
  • Williams, D. E.; Worley, S. D.; Barnela, S. B.; Swango, L. J. Bactericidal Activities of Selected organic N-Halamines. Appl. Environ. Microbiol. 1987, 35, 2082-2089. DOI: 10.1128/aem.53.9.2082-2089.1987.
  • Lee, W.; Wahman, D.; Pressman, J. G.; Bishop, P. L. 2010 Comparison between Monochloramine and Free Chlorine in Biofilm Using Microelectrodes: Penetration, Activity and Viability. Presented at AWWA Water Quality Technology Conference, Savannah, GA, November 14–18.
  • Lee, W. H.; Pressman, J. G.; Wahman, D. G. Three-Dimensional Free Chlorine and Monochloramine Biofilm Penetration: Correlating Penetration with Biofilm Activity and Viability. Environ. Sci. Technol. 2018, 52, 1889–1898. DOI: 10.1021/acs.est.7b05215
  • Richardson, S. D.; Plewa, M. J.; Wagner, E. D.; Schoeny, R.; DeMarini, D. M. Occurrence, Genotoxicity, and Carcinogenicity of Regulated and Emerging Disinfection by-Products in Drinking Water: A Review and Roadmap for Research. Mutat. Res., Rev. Mutat. Res. 2007, 636, 178–242. DOI: 10.1016/j.mrrev.2007.09.001.
  • Hrudey, S. E.; Charrois, J. W. A. Disinfection by-Products and Human Health. IWA Publishing: London, 2012.
  • Richardson, S. D.; Postigo, C. Drinking Water Disinfection by-Products. In Emerging Organic Contaminants and Human Health. The Handbook of Environmental Chemistry, Barceló, D. Ed. Springer: Berlin, Heidelberg, 2012; pp. 93–137
  • Wang, J.; Hao, Z.; Shi, F.; Yin, Y.; Cao, D.; Yao, Z.; Liu, J. Characterization of Brominated Disinfection Byproducts Formed during the Chlorination of Aquaculture Seawater. Environ. Sci. Technol. 2018, 52, 5662–5670. DOI: 10.1021/acs.est.7b05331
  • Powers, L. C.; Conway, A.; Mitchelmore, C. L.; Fleischacker, S. J.; Harir, M.; C. Westerman, D. C.; Jean Philippe Croué, J. P.; Schmitt-Kopplin, P.; Richardson, S. D.; Michael Gonsior, M. Tracking the Formation of New Brominated Disinfection by-Products during the Seawater Desalination Process. Environ. Sci: Water Res. Technol. 2020, 6, 2521–2541. 10.1039/D0EW00426J
  • Criquet, J.; Rodriguez, E. M.; Allard, S.; Wellauer, S.; Salhi, E.; Joll, C. A.; von Gunten, U. Reaction of Bromine and Chlorine with Phenolic Compounds and Natural Organic Matter extracts-Electrophilic Aromatic Substitution and Oxidation. Water Res. 2015, 85, 476–486. DOI: 10.1016/j.watres.2015.08.051
  • Westerhoff, P.; Chao, P.; Mash, H. Reactivity of Natural Organic Matter with Aqueous Chlorine and Bromine. Water Res. 2004, 38, 1502–1513. DOI: 10.1016/j.watres.2003.12.014
  • Pope, P. G.; Speitel, G. E. Jr, Reactivity of Bromine-Substituted Haloamines in Forming Haloacetic Acids. ACS Symp. Ser 2008, 995, 182–197. DOI: 10.1021/bk-2008-0995.ch013
  • Hu, J.; Song, H.; Karanfil, T. Comparative Analysis of Halonitromethane and Trihalomethane Formation and Speciation in Drinking Water: The Effects of Disinfectants, pH, Bromide, and Nitrite. Environ. Sci. Technol. 2010, 44, 794–799. DOI: 10.1021/es902630u
  • Sun, Y.-X.; Wu, Q.-Y.; Hu, H.-Y.; Tian, J. Effect of Bromide on the Formation of Disinfection by-Products during Wastewater Chlorination. Water Res. 2009, 43, 2391–2398. DOI: 10.1016/j.watres.2009.02.033
  • Saidan, M. N.; Meric, S.; Rawajfeh, K.; Al-Weshah, R. A.; Al-Zu’bi, S. F. Effect of Bromide and Other Factors on Brominated Trihalomethanes Formation in Treated Water Supply in Jordan. Desalin. Water Treat. 2016, 57, 15304–15313. DOI: 10.1080/19443994.2015.1102775.
  • Shah, A. D.; Mitch, W. A. Halonitroalkanes, Halonitriles, Haloamides, and N-Nitrosamines: A Critical Review of Nitrogenous Disinfection Byproduct Formation Pathways. Environ. Sci. Technol. 2012, 46, 119–131. DOI: 10.1021/es203312s
  • Bond, T.; Kamal, N. H. M.; Bonnisseau, T.; Templeton, M. R. Disinfection by-Product Formation from Chlorination and Chloramination of Amines. J. Hazard. Mater. 2014, 278, 288–296. DOI: 10.1016/j.jhazmat.2014.05.100
  • Liu, S.; Li, Z.; Dong, H.; Goodman, B. A.; Qiang, Z. Formation of Iodo-Trihalomethanes, Iodo-Acetic Acids, and Iodo-Acetamides during Chloramination of Iodide-Containing Waters: Factors Influencing Formation and Reaction Pathways. J. Hazard. Mater. 2017, 321, 28–36. DOI: 10.1016/j.jhazmat.2016.08.071
  • Plewa, M. J.; Wagner, E. D. Quantitative Comparative Mammalian Cell Cytotoxicity and Genotoxicity of Selected Classes of Drinking Water Disinfection Byproducts. American Water Works Research Foundation: Denver, CO, 2008.
  • Plewa, M. J.; Simmons, J. E.; Richardson, S. D.; Wagner, E. D. Mammalian Cell Cytotoxicity and Genotoxicity of the Haloacetic Acids, a Major Class of Drinking Water Disinfection by-Products. Environ. Mol. Mutagen. 2010, 51, 871–878. DOI: 10.1002/em.20585.
  • Yang, Y.; Komaki, Y.; Kimura, S. Y.; Hu, H.-Y.; Wagner, E. D.; Mariñas, B. J.; Plewa, M. J. Toxic Impact of Bromide and Iodide on Drinking Water Disinfected with Chlorine or Chloramines. Environ. Sci. Technol. 2014, 48, 12362–12369. DOI: 10.1021/es503621e.
  • Bousher, A.; Brimblecombe, P.; Midgley, D. Kinetics of Reactions in Solutions Containing Monochloramine and Bromide. Water Res. 1989, 23, 1049–1058. DOI: 10.1016/0043-1354(89)90180-2.
  • Bousher, A.; Brimblecombe, P.; Midgley, D. Bromate Production in Chlorinated Waters: reaction of Monochloramine and Hypobromite. Water Res. 1990, 24, 1285–1294. DOI: 10.1016/0043-1354(90)90054-A.
  • Alsulaili, A.; Speitel, G. E.; Jr.,.; Katz, L. E. Monochloramine and Total Haloamine Decay after a Short Prechlorination Time in the Presence of Bromide. Water Sci. Technol. Water Supply 2010, 10, 512–516. DOI: 10.2166/ws.2010.171.
  • Broadwater, M. A.; Swanson, T. L.; Sivey, J. D. Emerging Investigators Series: comparing the Inherent Reactivity of Often-Overlooked Aqueous Chlorinating and Brominating Agents toward Salicylic Acid. Environ. Sci.: Water Res. Technol. 2018, 4, 369–384.
  • Ambauen, N.; Muff, J.; Lan Mai, N. L.; Hallé, C.; Trinh, T. T.; Meyn, T. Insights into the Kinetics of Intermediate Formation during Electrochemical Oxidation of the Organic Model Pollutant Salicylic Acid in Chloride Electrolyte. Water 2019, 11, 1322. DOI: 10.3390/w11071322
  • Siciliano, A.; Guida, M.; Libralato, G.; Saviano, L.; Luongo, G.; Previtera, L.; Di Fabio, G.; Zarrelli, A. Amoxicillin in Water: Insights into Relative Reactivity, Byproduct Formation, and Toxicological Interactions during Chlorination. Appl. Sci. 2021, 11, 107.
  • Zhang, X.; Yang, B.; Zhang, J.; Yang, Y.; Shen, F.; Shen, J.; Shao, B. Determination of Emerging Chlorinated Byproducts of Diazepam in Drinking Water. Chemosphere 2019, 218, 223–231. DOI: 10.1016/j.chemosphere.2018.11.076
  • Li, A. J.; Wu, P.; Law, J. C.-F.; Chow, C.-H.; Postigo, C.; Guo, Y.; Leung, K. S.-Y. Transformation of Acesulfame in Chlorination: Kinetics Study, Identification of Byproducts, and Toxicity Assessment. Water Res. 2017, 117, 157–166. DOI: 10.1016/j.watres.2017.03.053
  • Postigo, C.; Gil-Solsona, R.; Herrera-Batista, M. F.; Gago-Ferrero, P.; Nikiforos Alygizakis, N.; Ahrens, L.; Wiberg, K. A Step Forward in the Detection of Byproducts of Anthropogenic Organic Micropollutants in Chlorinated Water. Trends Environ. Anal. Chem. 2021, 32, 00148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.