566
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Development of Lateral Flow Assays for Rapid Detection of Troponin I: A Review

, , ORCID Icon, , , , ORCID Icon, & show all

References

  • Mattingly, W. Q. Cardiovascular Diseases. https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1.
  • Oj, M. M.; Sa, G. G. Acute Myocardial Infarction. https://www.ncbi.nlm.nih.gov/books/NBK459269/.
  • Sharma, S.; Jackson, P. G.; Makan, J. Cardiac Troponins. J. Clin. Pathol. 2004, 57, 1025–1026. DOI: 10.1136/jcp.2003.015420.
  • Schreier, T.; Kedes, L.; Gahlmann, R. Cloning, Structural Analysis, and Expression of the Human Slow Twitch Skeletal Muscle/Cardiac Troponin C Gene. J. Biol. Chem. 1990, 265, 21247–21253. DOI: 10.1016/S0021-9258(17)45353-1.
  • Roos, K. P. 6 - Mechanics and Force Production. In The Myocardium, 2nd ed.; Langer, G. A., Ed.; Academic Press: San Diego, 1997; pp 235–323.
  • Ohtsuki, I.; Morimoto.; S.; Troponin. Encyclopedia of Biological Chemistry, 2nd ed.; Lennarz, W. J.; Lane, M. D., Eds.; Academic Press: Waltham, 2013; pp 445–449.
  • Han, X.; Li, S.; Peng, Z.; Othman, A. M.; Leblanc, R. Recent Development of Cardiac Troponin I Detection. ACS Sens. 2016, 1, 106–114. DOI: 10.1021/acssensors.5b00318.
  • Mohammadinejad, A.; Abouzari-Lotf, E.; Aleyaghoob, G.; Rezayi, M.; Oskuee, R. K. Application of a Transition Metal Oxide/Carbon-Based Nanocomposite for Designing a Molecularly Imprinted Poly (l-Cysteine) Electrochemical Sensor for Curcumin. Food Chem. 2022, 386, 132845. DOI: 10.1016/j.foodchem.2022.132845.
  • Sheikh Beig Goharrizi, M. A.; Kazemi Oskuee, R.; Aleyaghoob, G.; Mohajeri, T.; Mohammadinejad, A.; Rezayi, M. A New Molecularly Imprinted Polymer Electrochemical Sensor Based on CuCo2O4/N‐Doped CNTs/P‐Doped GO Nanocomposite for Detection of 25‐Hydroxyvitamin D3 in Serum Samples. Biotechnol. Appl. Biochem. 2022. DOI: 10.1002/bab.2363
  • Li, Z.; You, M.; Bai, Y.; Gong, Y.; Xu, F. Equipment‐Free Quantitative Readout in Paper‐Based Point‐of‐Care Testing. Small Methods 2020, 4, 1900459. DOI: 10.1002/smtd.201900459.
  • Nishat, S.; Jafry, A. T.; Martinez, A. W.; Awan, F. R. Based Microfluidics: Simplified Fabrication and Assay Methods. Sens. Actuators B Chem. 2021, 336, 129681. DOI: 10.1016/j.snb.2021.129681.
  • Koczula, K. M.; Gallotta, A. Lateral Flow Assays. Essays Biochem. 2016, 60, 111–120.
  • Mohammadinejad, A.; Oskuee, R. K.; Eivazzadeh-Keihan, R.; Rezayi, M.; Baradaran, B.; Maleki, A.; Hashemzaei, M.; Mokhtarzadeh, A.; de la Guardia, M. Development of Biosensors for Detection of Alpha-Fetoprotein: As a Major Biomarker for Hepatocellular Carcinoma. TrAC, Trends Anal. Chem. 2020, 130, 115961. DOI: 10.1016/j.trac.2020.115961.
  • Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. Sensors 2021, 21, 5185. DOI: 10.3390/s21155185.
  • Radha, R.; Shahzadi, S. K.; Al-Sayah, M. H. Fluorescent Immunoassays for Detection and Quantification of Cardiac Troponin I: A Short Review. Molecules 2021, 26, 4812. DOI: 10.3390/molecules26164812.
  • Tian, T.; Bi, Y.; Xu, X.; Zhu, Z.; Yang, C. Integrated Paper-Based Microfluidic Devices for Point-of-Care Testing. Anal. Methods 2018, 10, 3567–3581. DOI: 10.1039/C8AY00864G.
  • Martinez, A. W.; Phillips, S. T.; Butte, M. J.; Whitesides, G. M. Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Angew. Chem. Int. Ed. Engl. 2007, 46, 1318–1320. DOI: 10.1002/anie.200603817.
  • Abdollahi-Aghdam, A.; Majidi, M. R.; Omidi, Y. Microfluidic Paper-Based Analytical Devices (µPADs) for Fast and Ultrasensitive Sensing of Biomarkers and Monitoring of Diseases. Bioimpacts 2018, 8, 237–240. DOI: 10.15171/bi.2018.26.
  • Carrell, C.; Kava, A.; Nguyen, M.; Menger, R.; Munshi, Z.; Call, Z.; Nussbaum, M.; Henry, C. Beyond the Lateral Flow Assay: A Review of Paper-Based Microfluidics. Microelectron. Eng. 2019, 206, 45–54. DOI: 10.1016/j.mee.2018.12.002.
  • Niu, J.; Bao, Z.; Wei, Z.; Li, J. X.; Gao, B.; Jiang, X.; Li, F. A Three-Dimensional Paper-Based Isoelectric Focusing Device for Direct Analysis of Proteins in Physiological Samples. Anal. Chem. 2021, 93, 3959–3967.
  • Gou, T.; Hu, J.; Wu, W.; Ding, X.; Zhou, S.; Fang, W.; Mu, Y. Smartphone-Based Mobile Digital PCR Device for DNA Quantitative Analysis with High Accuracy. Biosens. Bioelectron. 2018, 120, 144–152.
  • Zhu, H.; Podesva, P.; Liu, X.; Zhang, H.; Teply, T.; Xu, Y.; Chang, H.; Qian, A.; Lei, Y.; Li, Y.; et al. IoT PCR for Pandemic Disease Detection and Its Spread Monitoring. Sens. Actuators B Chem. 2020, 303, 127098. DOI: 10.1016/j.snb.2019.127098.
  • Li, Z.; Bai, Y.; You, M.; Hu, J.; Yao, C.; Cao, L.; Xu, F. Fully Integrated Microfluidic Devices for Qualitative, Quantitative and Digital Nucleic Acids Testing at Point of Care. Biosens. Bioelectron. 2021, 177, 112952.
  • Quesada-González, D.; Merkoçi, A. Nanoparticle-Based Lateral Flow Biosensors. Biosens. Bioelectron. 2015, 73, 47–63. DOI: 10.1016/j.bios.2015.05.050.
  • Sajid, M.; Kawde, A.-N.; Daud, M. Designs, Formats and Applications of Lateral Flow Assay: A Literature Review. J. Saudi Chem. Soc. 2015, 19, 689–705. DOI: 10.1016/j.jscs.2014.09.001.
  • Choi, D. H.; Lee, S. K.; Oh, Y. K.; Bae, B. W.; Lee, S. D.; Kim, S.; Shin, Y.-B.; Kim, M.-G. A Dual Gold Nanoparticle Conjugate-Based Lateral Flow Assay (LFA) Method for the Analysis of Troponin I. Biosens. Bioelectron. 2010, 25, 1999–2002.
  • Zhu, J.; Zou, N.; Zhu, D.; Wang, J.; Jin, Q.; Zhao, J.; Mao, H. Simultaneous Detection of High-Sensitivity Cardiac Troponin I and Myoglobin by Modified Sandwich Lateral Flow Immunoassay: Proof of Principle. Clin. Chem. 2011, 57, 1732–1738.
  • Byzova, N. A.; Zherdev, A. V.; Vengerov, Y. Y.; Starovoitova, ТA.; Dzantiev, B. B. A Triple Immunochromatographic Test for Simultaneous Determination of Cardiac Troponin I, Fatty Acid Binding Protein, and C-Reactive Protein Biomarkers. Microchim. Acta 2017, 184, 463–471. DOI: 10.1007/s00604-016-2022-1.
  • Kim, W.; Lee, S.; Jeon, S. Enhanced Sensitivity of Lateral Flow Immunoassays by Using Water-Soluble Nanofibers and Silver-Enhancement Reactions. Sens. Actuators B Chem. 2018, 273, 1323–1327. DOI: 10.1016/j.snb.2018.07.045.
  • Sharma, A.; Tok, A. I. Y.; Lee, C.; Ganapathy, R.; Alagappan, P.; Liedberg, B. Magnetic Field Assisted Preconcentration of Biomolecules for Lateral Flow Assaying. Sens. Actuators B Chem. 2019, 285, 431–437. DOI: 10.1016/j.snb.2019.01.073.
  • Byzova, N. A.; Zherdev, A. V.; Khlebtsov, B. N.; Burov, A. M.; Khlebtsov, N. G.; Dzantiev, B. B. Advantages of Highly Spherical Gold Nanoparticles as Labels for Lateral Flow Immunoassay. Sensors 2020, 20, 3608. DOI: 10.3390/s20123608.
  • Sharma, A.; Tok, A. I. Y.; Alagappan, P.; Liedberg, B. Gold Nanoparticle Conjugated Magnetic Beads for Extraction and Nucleation Based Signal Amplification in Lateral Flow Assaying. Sens. Actuators B Chem. 2020, 312, 127959. DOI: 10.1016/j.snb.2020.127959.
  • Han, G.-R.; Koo, H. J.; Ki, H.; Kim, M.-G. Paper/Soluble Polymer Hybrid-Based Lateral Flow Biosensing Platform for High-Performance Point-of-Care Testing. ACS Appl. Mater. Interfaces 2020, 12, 34564–34575. DOI: 10.1021/acsami.0c07893.
  • Cai, Y.; Kang, K.; Li, Q.; Wang, Y.; He, X. Rapid and Sensitive Detection of Cardiac Troponin I for Point-of-Care Tests Based on Red Fluorescent Microspheres. Molecules 2018, 23, 1102. DOI: 10.3390/molecules23051102.
  • Lou, D.; Fan, L.; Cui, Y.; Zhu, Y.; Gu, N.; Zhang, Y. Fluorescent Nanoprobes with Oriented Modified Antibodies to Improve Lateral Flow Immunoassay of Cardiac Troponin I. Anal. Chem. 2018, 90, 6502–6508.
  • Lou, D.; Fan, L.; Ji, Y.; Gu, N.; Zhang, Y. A Signal Amplifying Fluorescent Nanoprobe and Lateral Flow Assay for Ultrasensitive Detection of Cardiac Biomarker Troponin I. Anal. Methods 2019, 11, 3506–3513. DOI: 10.1039/C9AY01039D.
  • Lee, K. W.; Kim, K. R.; Chun, H. J.; Jeong, K. Y.; Hong, D.-K.; Lee, K.-N.; Yoon, H. C. Time-Resolved Fluorescence Resonance Energy Transfer-Based Lateral Flow Immunoassay Using a Raspberry-Type Europium Particle and a Single Membrane for the Detection of Cardiac Troponin I. Biosens. Bioelectron. 2020, 163, 112284. DOI: 10.1016/j.bios.2020.112284.
  • Wu, M.; Zhang, X.; Wu, R.; Wang, G.; Li, J.; Chai, Y.; Shen, H.; Li, L. S. Sensitive and Quantitative Determination of Cardiac Troponin I Based on Silica-Encapsulated CdSe/ZnS Quantum Dots and a Fluorescence Lateral Flow Immunoassay. Anal. Lett. 2020, 53, 1757–1773. DOI: 10.1080/00032719.2020.1719125.
  • Natarajan, S.; Su, F.; Jayaraj, J.; Shah, M. I. I.; Huang, Y. A Paper Microfluidics-Based Fluorescent Lateral Flow Immunoassay for Point-of-Care Diagnostics of Non-Communicable Diseases. Analyst 2019, 144, 6291–6303. DOI: 10.1039/c9an01382b.
  • Natarajan, S.; Jayaraj, J.; Prazeres, D. M. F. A Cellulose Paper-Based Fluorescent Lateral Flow Immunoassay for the Quantitative Detection of Cardiac Troponin I. Biosensors 2021, 11, 49. DOI: 10.3390/bios11020049.
  • Zou, J.; Liu, X.; Ren, X.; Tan, L.; Fu, C.; Wu, Q.; Huang, Z.; Meng, X. Rapid and Simultaneous Detection of Heart-Type Fatty Acid Binding Protein and Cardiac Troponin Using a Lateral Flow Assay Based on Metal Organic Framework@ CdTe Nanoparticles. Nanoscale 2021, 13, 7844–7850. DOI: 10.1039/d1nr00702e.
  • Bai, T.; Wang, M.; Cao, M.; Zhang, J.; Zhang, K.; Zhou, P.; Liu, Z.; Liu, Y.; Guo, Z.; Lu, X. Functionalized Au@ Ag-Au Nanoparticles as an Optical and SERS Dual Probe for Lateral Flow Sensing. Anal. Bioanal. Chem. 2018, 410, 2291–2303.
  • Khlebtsov, B. N.; Bratashov, D. N.; Byzova, N. A.; Dzantiev, B. B.; Khlebtsov, N. G. SERS-Based Lateral Flow Immunoassay of Troponin I by Using Gap-Enhanced Raman Tags. Nano Res. 2019, 12, 413–420. DOI: 10.1007/s12274-018-2232-4.
  • Tu, D.; Holderby, A.; Coté, G. L. Aptamer-Based Surface-Enhanced Resonance Raman Scattering Assay on a Paper Fluidic Platform for Detection of Cardiac Troponin I. J. Biomed. Opt. 2020, 25, 097001. DOI: 10.1117/1.JBO.25.9.097001.
  • Han, G.-R.; Ki, H.; Kim, M.-G. Automated, Universal, and Mass-Producible Paper-Based Lateral Flow Biosensing Platform for High-Performance Point-of-Care Testing. ACS Appl. Mater. Interfaces 2020, 12, 1885–1894. DOI: 10.1021/acsami.9b17888.
  • Han, G.-R.; Kim, M.-G. Highly Sensitive Chemiluminescence-Based Lateral Flow Immunoassay for Cardiac Troponin I Detection in Human Serum. Sensors 2020, 20, 2593. DOI: 10.3390/s20092593.
  • Hong, D.; Jo, E. J.; Kim, K.; Song, M. B.; Kim, M. G. Ru (Bpy) 32+‐Loaded Mesoporous Silica Nanoparticles as Electrochemiluminescent Probes of a Lateral Flow Immunosensor for Highly Sensitive and Quantitative Detection of Troponin I. Small 2020, 16, 2004535. DOI: 10.1002/smll.202004535.
  • Bayoumy, S.; Martiskainen, I.; Heikkilä, T.; Rautanen, C.; Hedberg, P.; Hyytiä, H.; Wittfooth, S.; Pettersson, K. Sensitive and Quantitative Detection of Cardiac Troponin I with Upconverting Nanoparticle Lateral Flow Test with Minimized Interference. Sci. Rep. 2021, 11, 1–9.
  • Xu, Q.; Xu, H.; Gu, H.; Li, J.; Wang, Y.; Wei, M. Development of Lateral Flow Immunoassay System Based on Superparamagnetic Nanobeads as Labels for Rapid Quantitative Detection of Cardiac Troponin I. Mater. Sci. Eng. C 2009, 29, 702–707. DOI: 10.1016/j.msec.2009.01.009.
  • Oh, S.; Anandakumar, S.; Lee, C.; Kim, K. W.; Lim, B.; Kim, C. Analytes Kinetics in Lateral Flow Membrane Analyzed by cTnI Monitoring Using Magnetic Method. Sens. Actuators B Chem. 2011, 160, 747–752. DOI: 10.1016/j.snb.2011.08.058.
  • Ryu, Y.; Jin, Z.; Kang, M. S.; Kim, H.-S. Increase in the Detection Sensitivity of a Lateral Flow Assay for a Cardiac Marker by Oriented Immobilization of Antibody. BioChip J. 2011, 5, 193–198. DOI: 10.1007/s13206-011-5301-2.
  • Akanda, M. R.; Joung, H.-A.; Tamilavan, V.; Park, S.; Kim, S.; Hyun, M. H.; Kim, M.-G.; Yang, H. An Interference-Free and Rapid Electrochemical Lateral-Flow Immunoassay for One-Step Ultrasensitive Detection with Serum. Analyst 2014, 139, 1420–1425. DOI: 10.1039/c3an02328a.
  • Nguyen, V.-T.; Song, S.; Park, S.; Joo, C. Recent Advances in High-Sensitivity Detection Methods for Paper-Based Lateral-Flow Assay. Biosens. Bioelectron. 2020, 152, 112015.
  • Huang, Y.; Xu, T.; Wang, W.; Wen, Y.; Li, K.; Qian, L.; Zhang, X.; Liu, G. Lateral Flow Biosensors Based on the Use of Micro- and Nanomaterials: A Review on Recent Developments. Mikrochim. Acta 2019, 187, 70.
  • Dong, J.; Carpinone, P. L.; Pyrgiotakis, G.; Demokritou, P.; Moudgil, B. M. Synthesis of Precision Gold Nanoparticles Using Turkevich Method. Kona 2020, 37, 224–232. DOI: 10.14356/kona.2020011.
  • Lou, S.; Ye, J.-y.; Li, K.-q.; Wu, A. A Gold Nanoparticle-Based Immunochromatographic Assay: The Influence of Nanoparticulate Size. Analyst 2012, 137, 1174–1181. DOI: 10.1039/c2an15844b.
  • Taylor, C. R.; Shi, S.-R.; Barr, N. J.; Wu, N. Chapter 1 - Techniques of Immunohistochemistry: Principles, Pitfalls and Standardization. In Diagnostic Immunohistochemistry, 2nd ed.; Dabbs, D. J., Ed.; Churchill Livingstone: London, 2006; pp 1–42.
  • Peixoto de Almeida, M.; Pereira, E.; Baptista, P.; Gomes, I.; Figueiredo, S.; Soares, L.; Franco, R. Chapter 13 - Gold Nanoparticles as (Bio)Chemical Sensors. In Comprehensive Analytical Chemistry; Valcárcel, M.; López-Lorente, Á. I., Eds.; Elsevier: Amsterdam, Netherlands, 2014, pp 529–567.
  • Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich Method for Gold Nanoparticle Synthesis Revisited. J. Phys. Chem. B 2006, 110, 15700–15707. DOI: 10.1021/jp061667w.
  • Fang, C.; Chen, Z.; Li, L.; Xia, J. Barcode Lateral Flow Immunochromatographic Strip for Prostate Acid Phosphatase Determination. J. Pharm. Biomed. Anal. 2011, 56, 1035–1040.
  • Safenkova, I.; Zherdev, A.; Dzantiev, B. Factors Influencing the Detection Limit of the Lateral-Flow Sandwich Immunoassay: A Case Study with Potato Virus X. Anal. Bioanal. Chem. 2012, 403, 1595–1605.
  • Khlebtsov, B. N.; Tumskiy, R. S.; Burov, A. M.; Pylaev, T. E.; Khlebtsov, N. G. Quantifying the Numbers of Gold Nanoparticles in the Test Zone of Lateral Flow Immunoassay Strips. ACS Appl. Nano Mater. 2019, 2, 5020–5028. DOI: 10.1021/acsanm.9b00956.
  • Deng, Y.; Jiang, H.; Li, X.; Lv, X. Recent Advances in Sensitivity Enhancement for Lateral Flow Assay. Mikrochim. Acta 2021, 188, 379.
  • Obodovskiy, I. Chapter 12 - Luminescence. In Radiation; Obodovskiy, I., Ed.; Elsevier: Amsterdam, The Netherlands, 2019, pp 207–220.
  • Roda, A.; Mirasoli, M.; Michelini, E.; Di Fusco, M.; Zangheri, M.; Cevenini, L.; Roda, B.; Simoni, P. Progress in Chemical Luminescence-Based Biosensors: A Critical Review. Biosens. Bioelectron. 2016, 76, 164–179.
  • Rifai, N. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics; Elsevier Health Sciences: St. Louis, Missouri, 2017.
  • Kim, K.; Joung, H.-A.; Han, G.-R.; Kim, M.-G. An Immunochromatographic Biosensor Combined with a Water-Swellable Polymer for Automatic Signal Generation or Amplification. Biosens. Bioelectron. 2016, 85, 422–428. DOI: 10.1016/j.bios.2016.04.096.
  • Nooranian, S.; Mohammadinejad, A.; Mohajeri, T.; Aleyaghoob, G.; Kazemi Oskuee, R. Biosensors Based on Aptamer‐Conjugated Gold Nanoparticles: A Review. Biotechnol. Appl. Biochem. 2022, 69, 1517–1534.
  • Mohammadinejad, A.; Taghdisi, S. M.; Es’ Haghi, Z.; Abnous, K.; Mohajeri, S. A. Targeted Imaging of Breast Cancer Cells Using Two Different Kinds of Aptamers-Functionalized Nanoparticles. Eur. J. Pharm. Sci. 2019, 134, 60–68. DOI: 10.1016/j.ejps.2019.04.012.
  • Jo, H.; Gu, H.; Jeon, W.; Youn, H.; Her, J.; Kim, S.-K.; Lee, J.; Shin, J. H.; Ban, C. Electrochemical Aptasensor of Cardiac Troponin I for the Early Diagnosis of Acute Myocardial Infarction. Anal. Chem. 2015, 87, 9869–9875.
  • Jo, H.; Her, J.; Lee, H.; Shim, Y.-B.; Ban, C. Highly Sensitive Amperometric Detection of Cardiac Troponin I Using Sandwich Aptamers and Screen-Printed Carbon Electrodes. Talanta 2017, 165, 442–448. DOI: 10.1016/j.talanta.2016.12.091.
  • Cialla-May, D.; Zheng, X.-S.; Weber, K.; Popp, J. Recent Progress in Surface-Enhanced Raman Spectroscopy for Biological and Biomedical Applications: From Cells to Clinics. Chem. Soc. Rev. 2017, 46, 3945–3961.
  • Moyano, A.; Serrano-Pertierra, E.; Salvador, M.; Martínez-García, J. C.; Rivas, M.; Blanco-López, M. C. Magnetic Lateral Flow Immunoassays. Diagnostics (Basel) 2020, 10, 288. DOI: 10.3390/diagnostics10050288.
  • Waseem, S.; Ali, Z.; Bibi, M.; Usman, Z. Magnetic Nanobeads: Synthesis and Application in Biomedicine. Nanomed. J. 2016, 3, 147–154.
  • Nezlin, R. CHAPTER 6 - Interactions outside the Antigen-Combining Site. In The Immunoglobulins; Nezlin, R., Ed.; Academic Press: New York, 1998, pp 219–cp211.
  • Oh, S.; Patil, P.; Hung, T. Q.; Lim, B.; Takahashi, M.; Kim, D. Y.; Kim, C. Hybrid AMR/PHR Ring Sensor. Solid State Commun. 2011, 151, 1248–1251. DOI: 10.1016/j.ssc.2011.05.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.