892
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Carbon Nanomaterials-Based Electrochemical Sensors for Heavy Metal Detection

ORCID Icon, , , , , , ORCID Icon, & ORCID Icon show all

References

  • Slavin, J. L.; Lloyd, B. Health Benefits of Fruits and Vegetables. Adv. Nutr. 2012, 3, 506–516. DOI: 10.3945/an.112.002154.
  • Obaroh, I. O.; Abubakar, U.; Haruna, M. A.; Elinge, M. C. Evaluation of Some Heavy Metals Concentration in River Argungu. J. Fish. Aquat. Sci. 2015, 10, 581–586. DOI: 10.3923/jfas.2015.581.586.
  • Chen, M. L.; Ma, L. Y.; Chen, X. W. New Procedures for Arsenic Speciation: A Review. Talanta 2014, 125, 78–86. DOI: 10.1016/j.talanta.2014.02.037.
  • Mori, N.; Yasutake, A.; Marumoto, M.; Hirayama, K. Methylmercury Inhibits Electron Transport Chain Activity and Induces Cytochrome c Release in Cerebellum Mitochondria. J. Toxicol. Sci. 2011, 36, 253–259. DOI: 10.2131/jts.36.253.
  • Palisoc, S. T.; Natividad, M. T.; De Jesus, N.; Carlos, J. Highly Sensitive AgNP/MWCNT/Nafion Modified GCE-Based Sensor for the Determination of Heavy Metals in Organic and Non-Organic Vegetables. Sci. Rep. 2018, 8, 17445. DOI: 10.1038/s41598-018-35781-x.
  • Paithankar, J. G.; Saini, S.; Dwivedi, S.; Sharma, A.; Chowdhuri, D. K. Heavy Metal Associated Health Hazards: An Interplay of Oxidative Stress and Signal Transduction. Chemosphere 2021, 262, 128350. DOI: 10.1016/j.chemosphere.2020.128350.
  • Rehman, K.; Fatima, F.; Waheed, I.; Akash, M. S. H. Prevalence of Exposure of Heavy Metals and Their Impact on Health Consequences. J. Cell. Biochem. 2018, 119, 157–184. DOI: 10.1002/jcb.26234.
  • Rafati Rahimzadeh, M.; Rafati Rahimzadeh, M.; Kazemi, S.; Moghadamnia, A. A. Cadmium Toxicity and Treatment: An Update. Caspian J. Intern. Med. 2017, 8, 135–145. DOI: 10.22088/cjim.8.3.135.
  • Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms. Biosens. Bioelectron. 2017, 94, 443–455. DOI: 10.1016/j.bios.2017.03.031.
  • Tan, Z. Q.; Liu, J. F.; Jiang, G. B. Visual Test of Subparts per Billion-Level Copper(II) by Fe3O4 Magnetic Nanoparticle-Based Solid Phase Extraction Coupled with a Functionalized Gold Nanoparticle Probe. Nanoscale 2012, 4, 6735–6738. DOI: 10.1039/c2nr31753b.
  • Kumar, P.; Kim, K. H.; Bansal, V.; Lazarides, T.; Kumar, N. Progress in the Sensing Techniques for Heavy Metal Ions Using Nanomaterials. J. Ind. Eng. Chem. 2017, 54, 30–43. DOI: 10.1016/j.jiec.2017.06.010.
  • Li, X.; Ping, J.; Ying, Y. Recent Developments in Carbon Nanomaterial-Enabled Electrochemical Sensors for Nitrite Detection. TrAC, Trends Anal. Chem. 2019, 113, 1–12. DOI: 10.1016/j.trac.2019.01.008.
  • Munonde, T. S.; Nomngongo, P. N. Nanocomposites for Electrochemical Sensors and Their Applications on the Detection of Trace Metals in Environmental Water Samples. Sensors (Basel). 2020, 21 2020, 21, 131. DOI: 10.3390/s21010131.
  • Mutharani, B.; Ranganathan, P.; Chen, S. M.; Kannan, R. S. Ultrasound-Promoted Covalent Functionalization of CNFs with Thermo-Sensitive PNIPAM via "Grafting-from" Strategy for on/off Switchable Electrochemical Determination of Clothianidin. Ultrason. Sonochem. 2019, 56, 200–212. DOI: 10.1016/j.ultsonch.2019.04.026.
  • Kiatkumjorn, T.; Rattanarat, P.; Siangproh, W.; Chailapakul, O.; Praphairaksit, N. Glutathione and L-Cysteine Modified Silver Nanoplates-Based Colorimetric Assay for a Simple, Fast, Sensitive and Selective Determination of Nickel. Talanta 2014, 128, 215–220. DOI: 10.1016/j.talanta.2014.04.085.
  • Moghadam, F. H.; Taher, M. A.; Karimi-Maleh, H. A Sensitive and Fast Approach for Voltammetric Analysis of Bisphenol a as a Toxic Compound in Food Products Using a Pt-SWCNTs/Ionic Liquid Modified Sensor. Food Chem. Toxicol. 2021, 152, 112166. DOI: 10.1016/j.fct.2021.112166.
  • Lee, S.; Oh, J.; Kim, D.; Piao, Y. A Sensitive Electrochemical Sensor Using an Iron Oxide/Graphene Composite for the Simultaneous Detection of Heavy Metal Ions. Talanta 2016, 160, 528–536. DOI: 10.1016/j.talanta.2016.07.034.
  • Lv, H.; Teng, Z.; Wang, S.; Feng, K.; Wang, X.; Wang, C.; Wang, G. Voltammetric Simultaneous Ion Flux Measurements Platform for Cu2+, Pb2+ and Hg2+ near Rice Root Surface: Utilizing Carbon Nitride Heterojunction Film Modified Carbon Fiber Microelectrode. Sens. Actuators, B 2018, 256, 98–106. DOI: 10.1016/j.snb.2017.10.053.
  • Hui, X.; Sharifuzzaman, M.; Sharma, S.; Xuan, X.; Zhang, S.; Ko, S. G.; Yoon, S. H.; Park, J. Y. High-Performance Flexible Electrochemical Heavy Metal Sensor Based on Layer-by-Layer Assembly of Ti3C2Tx/MWNTs Nanocomposites for Noninvasive Detection of Copper and Zinc Ions in Human Biofluids. ACS Appl. Mater. Interfaces 2020, 12, 48928–48937. DOI: 10.1021/acsami.0c12239.
  • Sadanandhan, N. K.; Devaki, S. J. Gold Nanoparticle Patterned on PANI Nanowire Modified Transducer for the Simultaneous Determination of Neurotransmitters in Presence of Ascorbic Acid and Uric Acid. J. Appl. Polym. Sci. 2017, 134, 44351. DOI: 10.1002/app.44351.
  • Caminade, A. M.; Ouali, A.; Keller, M.; Majoral, J. P. Organocatalysis with Dendrimers. Chem. Soc. Rev. 2012, 41, 4113–4125. DOI: 10.1039/c2cs35030k.
  • Khan, E. Detecting Inorganic Arsenic below WHO Threshold Limit; a Comparative. Study of Various Sensors. Int. J. Environ. Anal. Chem. 2021. DOI: 10.1080/03067319.2021.1998476.
  • Gul, Z.; Khan, S.; Khan, E. Organic Molecules Containing N, S and O Heteroatoms as Sensors for. The Detection of Hg(II) Ion; Coordination and Efficiency toward Detection. Crit. Rev. Anal. Chem. 2022. DOI: 10.1080/10408347.2022.2121600.
  • Yao, Y.; Ping, J. Recent Advances in Graphene-Based Freestanding Paper-like Materials for Sensing Applications. TrAC, Trends Anal. Chem. 2018, 105, 75–88. DOI: 10.1016/j.trac.2018.04.014.
  • Haldorai, Y.; Hwang, S. K.; Gopalan, A. I.; Huh, Y. S.; Han, Y. K.; Voit, W.; Sai-Anand, G.; Lee, K. P. Direct Electrochemistry of Cytochrome c Immobilized on Titanium Nitride/Multi-Walled Carbon Nanotube Composite for Amperometric Nitrite Biosensor. Biosens. Bioelectron. 2016, 79, 543–552. DOI: 10.1016/j.bios.2015.12.054.
  • Mani, V.; Dinesh, B.; Chen, S. M.; Saraswathi, R. Direct Electrochemistry of Myoglobin at Reduced Graphene Oxide-Multiwalled Carbon Nanotubes-Platinum Nanoparticles Nanocomposite and Biosensing towards Hydrogen Peroxide and Nitrite. Biosens. Bioelectron. 2014, 53, 420–427. DOI: 10.1016/j.bios.2013.09.075.
  • Zhang, S.; Liu, X.; Huang, N.; Lu, Q.; Liu, M.; Li, H.; Zhang, Y.; Yao, S. Sensitive Detection of Hydrogen Peroxide and Nitrite Based on Silver/Carbon Nanocomposite Synthesized by Carbon Dots as Reductant via One Step Method. Electrochim. Acta 2016, 211, 36–43. DOI: 10.1016/j.electacta.2016.06.024.
  • Li, L.; Liu, D.; Wang, K.; Mao, H.; You, T. Quantitative Detection of Nitrite with N-Doped Graphene Quantum Dots Decorated N-Doped Carbon Nanofibers Composite-Based Electrochemical Sensor. Sens. Actuators, B 2017, 252, 17–23. DOI: 10.1016/j.snb.2017.05.155.
  • Gao, J.; Li, H.; Li, M.; Wang, G.; Long, Y.; Li, P.; Li, C.; Yang, B. Polydopamine/Graphene/MnO2 Composite-Based Electrochemical Sensor for in Situ Determination of Free Tryptophan in Plants. Anal. Chim. Acta 2021, 1145, 103–113. DOI: 10.1016/j.aca.2020.11.008.
  • Alahi, M.; Mukhopadhyay, S. C. Detection Methods of Nitrate in Water: A Review. Sens. Actuators, A 2018, 280, 210–221. DOI: 10.1016/j.sna.2018.07.026.
  • Park, S.; Boo, H.; Chung, T. D. Electrochemical Non-Enzymatic Glucose Sensors. Anal. Chim. Acta 2006, 556, 46–57. DOI: 10.1016/j.aca.2005.05.080.
  • Huang, M.; Dorta-Quinones, C. I.; Minch, B. A.; Lindau, M. On-Chip Cyclic Voltammetry Measurements Using a Compact 1024-Electrode CMOS IC. Anal. Chem. 2021, 93, 8027–8034. DOI: 10.1021/acs.analchem.1c01132.
  • Motshakeri, M.; Phillips, A. R. J.; Kilmartin, P. A. Application of Cyclic Voltammetry to Analyse Uric Acid and Reducing Agents in Commercial Milks. Food Chem. 2019, 293, 23–31. DOI: 10.1016/j.foodchem.2019.04.071.
  • Mukdasai, S.; Langsi, V.; Pravda, M.; Srijaranai, S.; Glennon, J. D. A Highly Sensitive Electrochemical Determination of Norepinephrine Using l-Cysteine Self-Assembled Monolayers over Gold Nanoparticles/Multi-Walled Carbon Nanotubes Electrode in the Presence of Sodium Dodecyl Sulfate. Sens. Actuators, B 2016, 236, 126–135. DOI: 10.1016/j.snb.2016.05.086.
  • Fini, H.; Kerman, K. Revisiting the Nitrite Reductase Activity of Hemoglobin with Differential Pulse Voltammetry. Anal. Chim. Acta 2020, 1104, 38–46. DOI: 10.1016/j.aca.2019.12.071.
  • Zhang, Y.; Yang, K. L. Quantitative Detection of Phenol in Wastewater Using Square Wave Voltammetry with Pre-Concentration. Anal. Chim. Acta 2021, 1178, 338788. DOI: 10.1016/j.aca.2021.338788.
  • Marianov, A. N.; Kochubei, A. S.; Roman, T.; Conquest, O. J.; Stampfl, C.; Jiang, Y. Modeling and Experimental Study of the Electron Transfer Kinetics for Non-Ideal Electrodes Using Variable-Frequency Square Wave Voltammetry. Anal. Chem. 2021, 93, 10175–10186. DOI: 10.1021/acs.analchem.1c01286.
  • Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A Review of the Identification and Detection of Heavy Metal Ions in the Environment by Voltammetry. Talanta 2018, 178, 324–338. DOI: 10.1016/j.talanta.2017.08.033.
  • Yang, C.; Denno, M. E.; Pyakurel, P.; Venton, B. J. Recent Trends in Carbon Nanomaterial-Based Electrochemical Sensors for Biomolecules: A Review. Anal. Chim. Acta 2015, 887, 17–37. DOI: 10.1016/j.aca.2015.05.049.
  • Yao, Y.; Jiang, C.; Ping, J. Flexible Freestanding Graphene Paper-Based Potentiometric Enzymatic Aptasensor for Ultrasensitive Wireless Detection of Kanamycin. Biosens. Bioelectron. 2019, 123, 178–184. DOI: 10.1016/j.bios.2018.08.048.
  • Pujol, L.; Evrard, D.; Groenen-Serrano, K.; Freyssinier, M.; Ruffien-Cizsak, A.; Gros, P. Electrochemical Sensors and Devices for Heavy Metals Assay in Water: The French Groups’ Contribution. Front. Chem. 2014, 2, 2–19. DOI: 10.3389/fchem.2014.00019.
  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • Musameh, M. M.; Hickey, M.; Kyratzis, I. L. Carbon Nanotube-Based Extraction and Electrochemical Detection of Heavy Metals. Res. Chem. Intermed. 2011, 37, 675–689. DOI: 10.1007/s11164-011-0307-x.
  • Yang, W.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. Carbon Nanomaterials in Biosensors: should You Use Nanotubes or Graphene? Angew. Chem. Int. Ed. Engl. 2010, 49, 2114–2138. DOI: 10.1002/anie.200903463.
  • Ramírez, M. L.; Tettamanti, C. S.; Gutierrez, F. A.; Gonzalez-Domínguez, J. M.; Ansón-Casaos, A.; Hernández-Ferrer, J.; Martínez, M. T.; Rivas, G. A.; Rodríguez, M. C. Cysteine Functionalized Bio-Nanomaterial for the Affinity Sensing of Pb(II) as an Indicator of Environmental Damage. Microchem. J. 2018, 141, 271–278. DOI: 10.1016/j.microc.2018.05.007.
  • Bodkhe, G. A.; Hedau, B. S.; Deshmukh, M. A.; Patil, H. K.; Shirsat, S. M.; Phase, D. M.; Pandey, K. K.; Shirsat, M. D. Selective and Sensitive Detection of Lead Pb(II) Ions: Au/SWNT Nanocomposite-Embedded MOF-199. J. Mater. Sci. 2021, 56, 474–487. DOI: 10.1007/s10853-020-05285-z.
  • Cai, F.; Wang, Q.; Chen, X.; Qiu, W.; Zhan, F.; Gao, F.; Wang, Q. Selective Binding of Pb(2+) with Manganese-Terephthalic Acid MOF/SWCNTs: Theoretical Modeling, Experimental Study and Electroanalytical Application. Biosens. Bioelectron. 2017, 98, 310–316. DOI: 10.1016/j.bios.2017.07.007.
  • Yao, J.; Li, J.; Owens, J.; Zhong, W. Combing DNAzyme with Single-Walled Carbon Nanotubes for Detection of Pb(II) in Water. Analyst 2011, 136, 764–768. DOI: 10.1039/c0an00709a.
  • Liu, N, Key Lab of Modern Precision Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing, 100083, PR China Sensitive Stripping Voltammetric Determination of Pb (II) in Soil Using a Bi/Single-Walled Carbon Nanotubes-Nafion/Ionic Liquid Nanocomposite Modified Screen-Printed Electrode. Int. J. Electrochem. Sci. 2020, 15,7868–7882. DOI: 10.20964/2020.08.99.
  • Genchi, G.; Sinicropi, M. S.; Carocci, A.; Lauria, G.; Catalano, A. Mercury Exposure and Heart Diseases. IJERPH 2017, 14, 74. DOI: 10.3390/ijerph14010074.
  • Zhao, G.; Liu, G. Synthesis of a Three-Dimensional (BiO)2CO3@Single-Walled Carbon Nanotube Nanocomposite and Its Application for Ultrasensitive Detection of Trace Pb(II) and Cd(II) by Incorporating Nafion. Sens. Actuators, B 2019, 288, 71–79. DOI: 10.1016/j.snb.2019.02.106.
  • Zhao, G.; Liu, G. Synthesis and Characterization of a Single-Walled Carbon Nanotubes/l-Cysteine/Nafion-Ionic Liquid Nanocomposite and Its Application in the Ultrasensitive Determination of Cd(II) and Pb(II). J. Appl. Electrochem. 2019, 49, 609–619. DOI: 10.1007/s10800-019-01309-y.
  • Bui, M. P.; Li, C. A.; Han, K. N.; Pham, X. H.; Seong, G. H. Electrochemical Determination of Cadmium and Lead on Pristine Single-Walled Carbon Nanotube Electrodes. Anal. Sci. 2012, 28, 699–704. DOI: 10.2116/analsci.28.699.
  • Aragay, G.; Merkoçi, A. Nanomaterials Application in Electrochemical Detection of Heavy Metals. Electrochim. Acta 2012, 84, 49–61. DOI: 10.1016/j.electacta.2012.04.044.
  • Wanekaya, A. K. Applications of Nanoscale Carbon-Based Materials in Heavy Metal Sensing and Detection. Analyst 2011, 136, 4383–4391. DOI: 10.1039/c1an15574a.
  • Zhao, G, Key Lab of Modern Precision Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing 100083 P.R. China Simultaneous Determination of Cd(II) and Pb(II) Based on Bismuth Film/Carboxylic Acid Functionalized Multi-Walled Carbon Nanotubes-β-cyclodextrin-Nafion Nanocomposite Modified Electrode. Int. J. Electrochem. Sci. 2016, 11, 8109–8122. DOI: 10.20964/2016.10.07.
  • Oularbi, L.; Turmine, M.; El Rhazi, M. Preparation of Novel Nanocomposite Consisting of Bismuth Particles, Polypyrrole and Multi-Walled Carbon Nanotubes for Simultaneous Voltammetric Determination of Cadmium(II) and Lead(II). Synth. Met. 2019, 253, 1–8. DOI: 10.1016/j.synthmet.2019.04.011.
  • Lu, Z.; Zhao, W.; Wu, L.; He, J.; Dai, W.; Zhou, C.; Du, H.; Ye, J. Tunable Electrochemical of Electrosynthesized Layer-by-Layer Multilayer Films Based on Multi-Walled Carbon Nanotubes and Metal-Organic Framework as High-Performance Electrochemical Sensor for Simultaneous Determination Cadmium and Lead. Sens. Actuators, B 2021, 326, 128957. DOI: 10.1016/j.snb.2020.128957.
  • Aravind, A.; Mathew, B. Tailoring of Nanostructured Material as an Electrochemical Sensor and Sorbent for Toxic Cd(II) Ions from Various Real Samples. J. Anal. Sci. Technol. 2018, 9, 22. DOI: 10.1186/s40543-018-0153-1.
  • Sreekanth, S. P.; Alodhayb, A.; Assaifan, A. K.; Alzahrani, K. E.; Muthuramamoorthy, M.; Alkhammash, H. I.; Pandiaraj, S.; Alswieleh, A. M.; Van Le, Q.; Mangaiyarkarasi, R.; et al. Multi-Walled Carbon Nanotube-Based Nanobiosensor for the Detection of Cadmium in Water. Environ. Res. 2021, 197, 111148. DOI: 10.1016/j.envres.2021.111148.
  • Jiang, M.; Chen, H. R.; Li, S. S.; Liang, R.; Liu, J. H.; Yang, Y.; Wu, Y. J.; Yang, M.; Huang, X. J. The Selective Capture of Pb2+ in Rice Phloem Sap Using Glutathione-Functionalized Gold Nanoparticles/Multi-Walled Carbon Nanotubes: enhancing anti-Interference Electrochemical Detection. Environ. Sci.: Nano 2018, 5, 2761–2771. DOI: 10.1039/C8EN00879E.
  • Rahm, C. E.; Torres‐Canas, F.; Gupta, P.; Poulin, P.; Alvarez, N. T. Inkjet Printed Multi‐Walled Carbon Nanotube Sensor for the Detection of Lead in Drinking Water. Electroanalysis 2020, 32, 1533–1545. DOI: 10.1002/elan.202000040.
  • Shao, Y.; Dong, Y.; Bin, L.; Fan, L.; Wang, L.; Yuan, X.; Li, D.; Liu, X.; Zhao, S. Application of Gold Nanoparticles/Polyaniline-Multi-Walled Carbon Nanotubes Modified Screen-Printed Carbon Electrode for Electrochemical Sensing of Zinc, Lead, and Copper. Microchem. J. 2021, 170, 106726. DOI: 10.1016/j.microc.2021.106726.
  • Wu, W.; Jia, M.; Zhang, Z.; Chen, X.; Zhang, Q.; Zhang, W.; Li, P.; Chen, L. Sensitive, Selective and Simultaneous Electrochemical Detection of Multiple Heavy Metals in Environment and Food Using a Lowcost Fe3O4 Nanoparticles/Fluorinated Multi-Walled Carbon Nanotubes Sensor. Ecotoxicol. Environ. Saf. 2019, 175, 243–250. DOI: 10.1016/j.ecoenv.2019.03.037.
  • Carvalho, R. C.; Gouveia-Caridade, C.; Brett, C. M. Glassy Carbon Electrodes Modified by Multiwalled Carbon Nanotubes and Poly(Neutral Red): a Comparative Study of Different Brands and Application to Electrocatalytic Ascorbate Determination. Anal. Bioanal. Chem. 2010, 398, 1675–1685. DOI: 10.1007/s00216-010-3966-3.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. DOI: 10.1126/science.1102896.
  • Scotto, J.; Piccinini, E.; Von Bilderling, C.; Coria-Oriundo, L. L.; Battaglini, F.; Knoll, W.; Marmisolle, W. A.; Azzaroni, O. Flexible Conducting Platforms Based on PEDOT and Graphite Nanosheets for Electrochemical Biosensing Applications. Appl. Surf. Sci. 2020, 525, 146440. DOI: 10.1016/j.apsusc.2020.146440.
  • Ma, Y.; Wang, Y.; Xie, D.; Gu, Y.; Zhu, X.; Zhang, H.; Wang, G.; Zhang, Y.; Zhao, H. Hierarchical MgFe-Layered Double Hydroxide Microsphere/Graphene Composite for Simultaneous Electrochemical Determination of Trace Pb(II) and Cd(II). Chem. Eng. J. 2018, 347, 953–962. DOI: 10.1016/j.cej.2018.04.172.
  • Lin, X.; Lu, Z.; Dai, W.; Liu, B.; Zhang, Y.; Li, J.; Ye, J. Laser Engraved Nitrogen-Doped Graphene Sensor for the Simultaneous Determination of Cd(II) and Pb(II). Electroanal. Chem. 2018, 828, 41–49. DOI: 10.1016/j.jelechem.2018.09.016.
  • Raril, C.; Manjunatha, J. G. Fabrication of Novel Polymer-Modified Graphene-Based Electrochemical Sensor for the Determination of Mercury and Lead Ions in Water and Biological Samples. J. Anal. Sci. Technol. 2020, 11, 3. DOI: 10.1186/s40543-019-0194-0.
  • Tan, Z.; Wu, W.; Feng, C.; Wu, H.; Zhang, Z. Simultaneous Determination of Heavy Metals by an Electrochemical Method Based on a Nanocomposite Consisting of Fluorinated Graphene and Gold Nanocage. Mikrochim Acta 2020, 187, 414. DOI: 10.1007/s00604-020-04393-6.
  • Pan, F.; Tong, C.; Wang, Z.; Han, H.; Liu, P.; Pan, D.; Zhu, R. Nanocomposite Based on Graphene and Intercalated Covalent Organic Frameworks with Hydrosulphonyl Groups for Electrochemical Determination of Heavy Metal Ions. Mikrochim Acta 2021, 188, 295. DOI: 10.1007/s00604-021-04956-1.
  • Qiu, N.; Liu, Y.; Guo, R. A Novel Sensitive Electrochemical Sensor for Lead Ion Based on Three-Dimensional Graphene/Sodium Dodecyl Benzene Sulfonate Hemimicelle Nanocomposites. Electrochim. Acta 2016, 212, 147–154. DOI: 10.1016/j.electacta.2016.06.136.
  • Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228–240. DOI: 10.1039/b917103g.
  • Paul, T.; Bera, S. C.; Agnihotri, N.; Mishra, P. P. Single-Molecule FRET Studies of the Hybridization Mechanism during Noncovalent Adsorption and Desorption of DNA on Graphene Oxide. J. Phys. Chem. B 2016, 120, 11628–11636. DOI: 10.1021/acs.jpcb.6b06017.
  • Wang, Y.; Li, Z.; Hu, D.; Lin, C. T.; Li, J.; Lin, Y. Aptamer/Graphene Oxide Nanocomplex for in Situ Molecular Probing in Living Cells. J. Am. Chem. Soc. 2010, 132, 9274–9276. DOI: 10.1021/ja103169v.
  • Justino, C. I. L.; Gomes, A. R.; Freitas, A. C.; Duarte, A. C.; Rocha-Santos, T. A. P. Graphene Based Sensors and Biosensors. TrAC, Trends Anal. Chem. 2017, 91, 53–66. DOI: 10.1016/j.trac.2017.04.003.
  • Li, L.; Liu, D.; Shi, A.; You, T. Simultaneous Stripping Determination of Cadmium and Lead Ions Based on the N-Doped Carbon Quantum Dots-Graphene Oxide Hybrid. Sens. Actuators, B 2018, 255, 1762–1770. DOI: 10.1016/j.snb.2017.08.190.
  • Dai, H.; Wang, N.; Wang, D.; Ma, H.; Lin, M. An Electrochemical Sensor Based on Phytic Acid Functionalized Polypyrrole/Graphene Oxide Nanocomposites for Simultaneous Determination of Cd(II) and Pb(II). Chem. Eng. J. 2016, 299, 150–155. DOI: 10.1016/j.cej.2016.04.083.
  • Eshlaghi, M. A.; Kowsari, E.; Ehsani, A.; Akbari-Adergani, B.; Hekmati, M. Functionalized Graphene Oxide GO-[Imi-(CH2)2-NH2] as a High Efficient Material for Electrochemical Sensing of Lead: Synthesis Surface and Electrochemical Characterization. Electroanal. Chem. 2020, 858, 113784. DOI: 10.1016/j.jelechem.2019.113784.
  • Zhou, S. F.; Han, X. J.; Fan, H. L.; Huang, J.; Liu, Y. Q. Enhanced Electrochemical Performance for Sensing Pb(II) Based on Graphene Oxide Incorporated Mesoporous MnFe2O4 Nanocomposites. J. Alloys Compd. 2018, 747, 447–454. DOI: 10.1016/j.jallcom.2018.03.037.
  • Thiruppathi, A. R.; Sidhureddy, B.; Keeler, W.; Chen, A. Facile One-Pot Synthesis of Fluorinated Graphene Oxide for Electrochemical Sensing of Heavy Metal Ions. Electrochem. Commun. 2017, 76, 42–46. DOI: 10.1016/j.elecom.2017.01.015.
  • Song, Y.; Bian, C.; Hu, J.; Li, Y.; Tong, J.; Sun, J.; Gao, G.; Xia, S. Porous Polypyrrole/Graphene Oxide Functionalized with Carboxyl Composite for Electrochemical Sensor of Trace Cadmium (II). J. Electrochem. Soc. 2019, 166, B95–B102. DOI: 10.1149/2.0801902jes.
  • Gumpu, M. B.; Veerapandian, M.; Krishnan, U. M.; Rayappan, J. B. Simultaneous Electrochemical Detection of Cd(II), Pb(II), as(III) and Hg(II) Ions Using Ruthenium(II)-Textured Graphene Oxide Nanocomposite. Talanta 2017, 162, 574–582. DOI: 10.1016/j.talanta.2016.10.076.
  • Yi, W.; He, Z.; Fei, J.; He, X. Sensitive Electrochemical Sensor Based on Poly(l-Glutamic Acid)/Graphene Oxide Composite Material for Simultaneous Detection of Heavy Metal Ions. RSC Adv. 2019, 9, 17325–17334. DOI: 10.1039/c9ra01891c.
  • Baccarin, M.; Santos, F. A.; Vicentini, F. C.; Zucolotto, V.; Janegitz, B. C.; Fatibello-Filho, O. Electrochemical Sensor Based on Reduced Graphene Oxide/Carbon Black/Chitosan Composite for the Simultaneous Determination of Dopamine and Paracetamol Concentrations in Urine Samples. Electroanal. Chem. 2017, 799, 436–443. DOI: 10.1016/j.jelechem.2017.06.052.
  • Jiang, Z, School of Chemistry and Chemical Engineering, Southwest University, Chong Qing 400715, PR China A Novel Electrochemical Sensor Based on SH-β-Cyclodextrin Functionalized Gold Nanoparticles/Reduced-Graphene Oxide Nanohybrids for Ultrasensitive Electrochemical Sensing of Acetaminophen and Ofloxacin. Int. J. Electrochem. Sci. 2017, 12, 5157–5173. DOI: 10.20964/2017.06.28.
  • Hu, Y.; Luo, B.; Ye, D.; Zhu, X.; Lyu, M.; Wang, L. An Innovative Freeze-Dried Reduced Graphene Oxide Supported SnS2 Cathode Active Material for Aluminum-Ion Batteries. Adv. Mater. 2017, 29, 1606132. DOI: 10.1002/adma.201606132.
  • Ercarikci, E.; Alanyalioglu, M. Dual-Functional Graphene-Based Flexible Material for Membrane Filtration and Electrochemical Sensing of Heavy Metal Ions. IEEE Sensors J. 2021, 21, 2468–2475. DOI: 10.1109/JSEN.2020.3021988.
  • Silva, M. K. L.; Cesarino, I. Electrochemical Sensor Based on Sb Nanoparticles/Reduced Graphene Oxide for Heavy Metal Determination. Int. J. Environ. Anal. Chem. 2022, 102, 3109–3123. DOI: 10.1080/03067319.2020.1763973.
  • Hanif, F.; Tahir, A.; Akhtar, M.; Waseem, M.; Haider, S.; Aly Aboud, M. F.; Shakir, I.; Imran, M.; Warsi, M. F. Ultra-Selective Detection of Cd2+ and Pb2+ Using Glycine Functionalized Reduced Graphene Oxide/Polyaniline Nanocomposite Electrode. Synth. Met. 2019, 257, 116185. DOI: 10.1016/j.synthmet.2019.116185.
  • Xuan, X.; Hossain, M. D. F.; Park, J. Y. Solvothermal-Assisted, Reduced-Graphene-Oxide-Modified Bismuth Electrode for an Electrochemical Heavy-Metal-Ion Sensor. J. Nanosci. Nanotechnol. 2016, 16, 11421–11424. DOI: 10.1166/jnn.2016.13521.
  • Xing, H.; Xu, J.; Zhu, X.; Duan, X.; Lu, L.; Zuo, Y.; Zhang, Y.; Wang, W. A New Electrochemical Sensor Based on Carboimidazole Grafted Reduced Graphene Oxide for Simultaneous Detection of Hg 2+ and Pb2. +Electroanal. Chem. 2016, 782, 250–255. DOI: 10.1016/j.jelechem.2016.10.043.
  • Gode, C.; Yola, M. L.; Yilmaz, A.; Atar, N.; Wang, S. A Novel Electrochemical Sensor Based on Calixarene Functionalized Reduced Graphene Oxide: Application to Simultaneous Determination of Fe(III), Cd(II) and Pb(II) Ions. J. Colloid Interface Sci. 2017, 508, 525–531. DOI: 10.1016/j.jcis.2017.08.086.
  • Akhtar, M.; Tahir, A.; Zulfiqar, S.; Hanif, F.; Warsi, M. F.; Agboola, P. O.; Shakir, I. Ternary Hybrid of Polyaniline-Alanine-Reduced Graphene Oxide for Electrochemical Sensing of Heavy Metal Ions. Synth. Met. 2020, 265, 116410. DOI: 10.1016/j.synthmet.2020.116410.
  • Hu, Y.; Huang, T.; Zhang, H.; Lin, H.; Zhang, Y.; Ke, L.; Cao, W.; Hu, K.; Ding, Y.; Wang, X.; et al. Ultrasensitive and Wearable Carbon Hybrid Fiber Devices as Robust Intelligent Sensors. ACS Appl. Mater. Interfaces 2021, 13, 23905–23914. DOI: 10.1021/acsami.1c03615.
  • Yu, P.; Wei, H.; Zhong, P.; Xue, Y.; Wu, F.; Liu, Y.; Fei, J.; Mao, L. Single-Carbon-Fiber-Powered Microsensor for in Vivo Neurochemical Sensing with High Neuronal Compatibility. Angew. Chem. Int. Ed. Engl. 2020, 59, 22652–22658. DOI: 10.1002/anie.202010195.
  • Islam, M.; Sadaf, A.; Gomez, M. R.; Mager, D.; Korvink, J. G.; Lantada, A. D. Carbon Fiber/Microlattice 3D Hybrid Architecture as Multi-Scale Scaffold for Tissue Engineering. Mater. Sci. Eng. C Mater. Bio.l Appl. 2021, 126, 112140. DOI: 10.1016/j.msec.2021.112140.
  • Dang, V. H.; Yen, P. T. H.; Giao, N. Q.; Phong, P. H.; Ha, V. T. T.; Duy, P. K.; Hoeil, C. A Versatile Carbon Fiber Cloth-Supported Au Nanodendrite Sensor for Simultaneous Determination of Cu(II), Pb(II) and Hg(II). Electroanalysis 2018, 30, 2222–2227. DOI: 10.1002/elan.201800332.
  • Wu, J.; Xu, Z.; Wang, X.; Wang, L.; Qiu, H.; Lu, K.; Zhang, W.; Feng, Q.; Chen, J.; Yang, L. Cadmium-Sensitive Measurement Using a Nano-Copper-Enhanced Carbon Fiber Electrode. Sensors (Basel )2019, 19, 4901. DOI: 10.3390/s19224901.
  • Wang, W. J.; Cai, Y. L.; Li, B. C.; Zeng, J.; Huang, Z. Y.; Chen, X. M. A Voltammetric Sensor for Simultaneous Determination of Lead, Cadmium and Zinc on an Activated Carbon Fiber Rod. Chin. Chem. Lett. 2018, 29, 111–114. DOI: 10.1016/j.cclet.2017.05.009.
  • Gao, X.; Liu, H.; Wang, D.; Zhang, J. Graphdiyne: synthesis, Properties, and Applications. Chem. Soc. Rev. 2019, 48, 908–936. DOI: 10.1039/c8cs00773j.
  • Bao, H.; Wang, L.; Li, C.; Luo, J. Structural Characterization and Identification of Graphdiyne and Graphdiyne-Based Materials. ACS Appl. Mater. Interfaces 2019, 11, 2717–2729. DOI: 10.1021/acsami.8b05051.
  • Malko, D.; Neiss, C.; Vines, F.; Gorling, A. Competition for Graphene: graphynes with Direction-Dependent Dirac Cones. Phys. Rev. Lett. 2012, 108, 086804. DOI: 10.1103/PhysRevLett.108.086804.
  • Li, Y.; Huang, H.; Cui, R.; Wang, D.; Yin, Z.; Wang, D.; Zheng, L.; Zhang, J.; Zhao, Y.; Yuan, H.; et al. Electrochemical Sensor Based on Graphdiyne is Effectively Used to Determine Cd2+ and Pb2+ in Water. Sens. Actuators, B 2021, 332, 129519. DOI: 10.1016/j.snb.2021.129519.
  • Guo, X.; Li, Y.; Huang, H.; Wang, D.; Cui, R.; Li, J.; Zhao, Y.; Wang, D.; Yuan, H.; Dong, J.; Sun, B. Triazine-Graphdiyne with Well-Defined Two Kinds of Active Sites for Simultaneous Detection of Pb2+ and Cd2+. J. Environ. Chem. Eng. 2022, 10, 107159–103437. DOI: 10.1016/j.jece.2022.107159.
  • Chen, X.; Jiang, X.; Yang, N. Graphdiyne Electrochemistry: Progress and Perspectives. Small 2022, 18, e2201135. DOI: 10.1002/smll.202201135.
  • Li, F.; Song, J.; Shan, C.; Gao, D.; Xu, X.; Niu, L. Electrochemical Determination of Morphine at Ordered Mesoporous Carbon Modified Glassy Carbon Electrode. Biosens. Bioelectron. 2010, 25, 1408–1413. DOI: 10.1016/j.bios.2009.10.037.
  • Zhang, Y.; Waterhouse, G. I. N.; Xiang, Z. P.; Che, J.; Chen, C.; Sun, W. A Highly Sensitive Electrochemical Sensor Containing Nitrogen-Doped Ordered Mesoporous Carbon (NOMC) for Voltammetric Determination of l-Tryptophan. Food Chem. 2020, 326, 126976. DOI: 10.1016/j.foodchem.2020.126976.
  • Wang, L.; Teng, Q.; Sun, X.; Chen, Y.; Wang, Y.; Wang, H.; Zhang, Y. Facile Synthesis of Metal-Organic Frameworks/Ordered Mesoporous Carbon Composites with Enhanced Electrocatalytic Ability for Hydrazine. J. Colloid Interface Sci. 2018, 512, 127–133. DOI: 10.1016/j.jcis.2017.10.050.
  • Zhao, G.; Wang, H.; Liu, G.; Wang, Z. Simultaneous and Sensitive Detection of Cd(II) and Pb(II) Using a Novel Bismuth Film/Ordered Mesoporous Carbon-Molecular Wire Modified Graphite Carbon Paste Electrode. Electroanalysis 2017, 29, 497–505. DOI: 10.1002/elan.201600430.
  • Yin, Y, Key Lab of Modern Precision Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing 100083 P. R. China A Sensitive Electrochemical Sensor Using a Mesoporous Carbon and Nafion Composite for the Simultaneous Detection of Cadmium and Lead. Int. J. Electrochem. Sci. 2017, 12, 5378–5391. DOI: 10.20964/2017.06.93.
  • Thinakaran, N.; Subramani, S. E.; Priya, T.; Dhanalakshmi, N.; Vineesh, T. V.; Kathikeyan, V. Electrochemical Determination of Cd2+ and Pb2+ Using NSAID-Mefenamic Acid Functionalized Mesoporous Carbon Microspheres Modified Glassy Carbon Electrode. Electroanalysis 2017, 29, 1903–1910. DOI: 10.1002/elan.201700200.
  • Zeinu, K. M.; Hou, H.; Liu, B.; Yuan, X.; Huang, L.; Zhu, X.; Hu, J.; Yang, J.; Liang, S.; Wu, X. A Novel Hollow Sphere Bismuth Oxide Doped Mesoporous Carbon Nanocomposite Material Derived from Sustainable Biomass for Picomolar Electrochemical Detection of Lead and Cadmium. J. Mater. Chem. A 2016, 4, 13967–13979. DOI: 10.1039/C6TA04881A.
  • Baker, S. N.; Baker, G. A. Luminescent Carbon Nanodots: emergent Nanolights. Angew. Chem.Int. Ed. Engl. 2010, 49, 6726–6744. DOI: 10.1002/anie.200906623.
  • Mashkani, M.; Mehdinia, A.; Jabbari, A.; Bide, Y.; Nabid, M. R. Preconcentration and Extraction of Lead Ions in Vegetable and Water Samples by N-Doped Carbon Quantum Dot Conjugated with Fe3O4 as a Green and Facial Adsorbent. Food Chem. 2018, 239, 1019–1026. DOI: 10.1016/j.foodchem.2017.07.042.
  • Pizarro, J.; Segura, R.; Tapia, D.; Navarro, F.; Fuenzalida, F.; Jesus Aguirre, M. Inexpensive and Green Electrochemical Sensor for the Determination of Cd(II) and Pb(II) by Square Wave Anodic Stripping Voltammetry in Bivalve Mollusks. Food Chem. 2020, 321, 126682. DOI: 10.1016/j.foodchem.2020.126682.
  • Zhang, Y. N.; Niu, Q.; Gu, X.; Yang, N.; Zhao, G. Recent Progress on Carbon Nanomaterials for the Electrochemical Detection and Removal of Environmental Pollutants. Nanoscale 2019, 11, 11992–12014. DOI: 10.1039/c9nr02935d.
  • He, Y.; Xiang, K.; Wang, Y.; Zhou, W.; Zhu, Y.; Xiao, L.; Chen, W.; Chen, X.; Chen, H.; Cheng, H.; Lu, Z. Scalable and Controllable Synthesis of Multi-Shell Hollow Carbon Microspheres for High-Performance Supercapacitors. Carbon 2019, 154, 330–341. DOI: 10.1016/j.carbon.2019.08.022.
  • Wei, Y.; Yang, R.; Liu, J. H.; Huang, X. J. Selective Detection toward Hg(II) and Pb(II) Using Polypyrrole/Carbonaceous Nanospheres Modified Screen-Printed Electrode. Electrochim. Acta 2013, 105, 218–223. DOI: 10.1016/j.electacta.2013.05.004.
  • Liu, Y.; Xiong, W. Controllable Synthesis of Phenolic Resin-Based Carbon Nanospheres for Simultaneous Detection of Heavy-Metal Ions. J. Mater. Sci.: Mater. Electron 2022, 33, 1542–1554. DOI: 10.1007/s10854-021-07669-6.
  • Fu, S.; Zhu, Y.; Zhang, Y.; Zhang, M.; Zhang, Y.; Qiao, L.; Yin, N.; Song, K.; Liu, M.; Wang, D. Recent Advances in Carbon Nanomaterials-Based Electrochemical Sensors for Phenolic Compounds Detection. Microchem. J. 2021, 171, 106776. DOI: 10.1016/j.microc.2021.106776.
  • Karimi-Maleh, H.; Beitollahi, H.; Senthil Kumar, P.; Tajik, S.; Mohammadzadeh Jahani, P.; Karimi, F.; Karaman, C.; Vasseghian, Y.; Baghayeri, M.; Rouhi, J.; et al. Recent Advances in Carbon Nanomaterials-Based Electrochemical Sensors for Food Azo Dyes Detection. Food Chem. Toxicol. 2022, 164, 112961. DOI: 10.1016/j.fct.2022.112961.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.