454
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Progress in the Development of Imidazopyridine-Based Fluorescent Probes for Diverse Applications

&

References

  • De Acha, N.; Elosúa, C.; Corres, J. M.; Arregui, F. J. Fluorescent Sensors for the Detection of Heavy Metal Ions in Aqueous Media. Sensors (Basel) 2019, 19, 599. DOI: 10.3390/s19030599.
  • Lee, M. H.; Kim, J. S.; Sessler, J. L. Small Molecule-Based Ratiometric Fluorescence Probes for Cations, Anions, and Biomolecules. Chem. Soc. Rev. 2015, 44, 4185–4191. DOI: 10.1039/C4CS00280F.
  • Chen, Q.; Sun, Y.; Liu, S.; Zhang, J.; Zhang, C.; Jiang, H.; Han, X.; He, L.; Wang, S.; Zhang, K. Colorimetric and Fluorescent Sensors for Detection of Nerve Agents and Organophosphorus Pesticides. Sens. Actuators B Chem. 2021, 344, 130278. DOI: 10.1016/j.snb.2021.130278.
  • Liu, B.; Zhuang, J.; Wei, G. Recent Advances in the Design of Colorimetric Sensors for Environmental Monitoring. Environ. Sci: Nano 2020, 7, 2195–2213. DOI: 10.1039/D0EN00449A.
  • Lv, Y.; Cheng, D.; Su, D.; Chen, M.; Yin, B.-C.; Yuan, L.; Zhang, X.-B. Visualization of Oxidative Injury in the Mouse Kidney Using Selective Superoxide Anion Fluorescent Probes. Chem. Sci. 2018, 9, 7606–7613. DOI: 10.1039/C8SC03308K.
  • Zhang, H.; Chen, J.; Xiong, H.; Zhang, Y.; Chen, W.; Sheng, J.; Song, X. An Endoplasmic Reticulum-Targetable Fluorescent Probe for Highly Selective Detection of Hydrogen Sulfide. Org. Biomol. Chem. 2019, 17, 1436–1441. DOI: 10.1039/C8OB02998A.
  • Ren, T.-B.; Xu, W.; Zhang, W.; Zhang, X.-X.; Wang, Z.-Y.; Xiang, Z.; Yuan, L.; Zhang, X.-B. A General Method to Increase Stokes Shift by Introducing Alternating Vibronic Structures. J. Am. Chem. Soc. 2018, 140, 7716–7722. DOI: 10.1021/jacs.8b04404.
  • Fleming, C. L.; Ashton, T. D.; Nowell, C.; Devlin, M.; Natoli, A.; Schreuders, J.; Pfeffer, F. M. A Fluorescent Histone Deacetylase (HDAC) Inhibitor for Cellular Imaging. Chem Commun (Camb) 2015, 51, 7827–7830. DOI: 10.1039/C5CC02059J.
  • Zhang, P.; Li, J.; Li, B.; Xu, J.; Zeng, F.; Lv, J.; Wu, S. A Logic Gate-Based Fluorescent Sensor for Detecting H2S and NO in Aqueous Media and inside Live Cells. Chem Commun (Camb) 2015, 51, 4414–4416. DOI: 10.1039/C4CC09737H.
  • Zheng, H.; Zhan, X.-Q.; Bian, Q.-N.; Zhang, X.-J. Advances in Modifying Fluorescein and Rhodamine Fluorophores as Fluorescent Chemosensors. Chem Commun (Camb) 2013, 49, 429–447. DOI: 10.1039/C2CC35997A.
  • Wang, S.; Liu, H.; Mack, J.; Tian, J.; Zou, B.; Lu, H.; Li, Z.; Jiang, J.; Shen, Z. A BODIPY-Based ‘Turn-On’ Fluorescent Probe for Hypoxic Cell Imaging. Chem Commun (Camb) 2015, 51, 13389–13392. DOI: 10.1039/C5CC05139H.
  • Jung, H. S.; Ko, K. C.; Kim, G.-H.; Lee, A.-R.; Na, Y.-C.; Kang, C.; Lee, J. Y.; Kim, J. S. Coumarin-Based Thiol Chemosensor: Synthesis, Turn-On Mechanism, and Its Biological Application. Org. Lett. 2011, 13, 1498–1501. DOI: 10.1021/ol2001864.
  • Mao, Z.; Jiang, H.; Song, X.; Hu, W.; Liu, Z. Development of a Silicon-Rhodamine Based near-Infrared Emissive Two-Photon Fluorescent Probe for Nitric Oxide. Anal. Chem. 2017, 89, 9620–9624. DOI: 10.1021/acs.analchem.7b02697.
  • Cheng, G.; Fan, J.; Sun, W.; Cao, J.; Hu, C.; Peng, X. A near-Infrared Fluorescent Probe for Selective Detection of HClO Based on Se-Sensitized Aggregation of Heptamethine Cyanine Dye. Chem. Commun. (Camb). 2014, 50, 1018–1020. DOI: 10.1039/C3CC47864E.
  • Thavornpradit, S.; Usama, S. M.; Park, G. K.; Shrestha, J. P.; Nomura, S.; Baek, Y.; Choi, H. S.; Burgess, K. QuatCy: A Heptamethine Cyanine Modification with Improved Characteristics. Theranostics 2019, 9, 2856–2867. DOI: 10.7150/thno.33595.
  • Zhang, J.; Ye, H.; Jin, Y.; Han, D. Recent Progress in near-Infrared Organic Electroluminescent Materials. Top Curr. Chem. (Cham). 2021, 380, 6. DOI: 10.1007/s41061-021-00357-3.
  • Wu, M.; Zhang, Z.; Yong, J.; Schenk, P. M.; Tian, D.; Xu, Z. P.; Zhang, R. Determination and Imaging of Small Biomolecules and Ions Using Ruthenium(II) Complex-Based Chemosensors. In Metal Ligand Chromophores for Bioassays; Lo, K. K.-W., Leung, P. K.-K., Eds.; Springer International Publishing: Cham, 2023; pp 199–243.
  • Zhang, R.; Yuan, J. Responsive Metal Complex Probes for Time-Gated Luminescence Biosensing and Imaging. Acc. Chem. Res. 2020, 53, 1316–1329. DOI: 10.1021/acs.accounts.0c00172.
  • Zhang, R.; Ye, Z.; Wang, G.; Zhang, W.; Yuan, J. Development of a Ruthenium(II) Complex Based Luminescent Probe for Imaging Nitric Oxide Production in Living Cells. Chemistry 2010, 16, 6884–6891. DOI: 10.1002/chem.200903267.
  • Kamal, A.; Reddy, J. S.; Ramaiah, M. J.; Dastagiri, D.; Bharathi, E. V.; Prem Sagar, M. V.; Pushpavalli, S. N. C. V. L.; Ray, P.; Pal-Bhadra, M. Design, Synthesis and Biological Evaluation of Imidazopyridine/Pyrimidine-Chalcone Derivatives as Potential Anticancer Agents. Med. Chem. Commun. 2010, 1, 355–360. DOI: 10.1039/c0md00116c.
  • Lacerda, R. B.; de Lima, C. K.; da Silva, L. L.; Romeiro, N. C.; Miranda, A. L. P.; Barreiro, E. J.; Fraga, C. A. Discovery of Novel Analgesic and anti-Inflammatory 3-Arylamine-Imidazo [1, 2-a] Pyridine Symbiotic Prototypes. Bioorg. Med. Chem. 2009, 17, 74–84. DOI: 10.1016/j.bmc.2008.11.018.
  • Sayeed, I. B.; Lakshma Nayak, V.; Shareef, M. A.; Chouhan, N. K.; Kamal, A. Design, Synthesis and Biological Evaluation of Imidazopyridine-Propenone Conjugates as Potent Tubulin Inhibitors. Medchemcomm. 2017, 8, 1000–1006. DOI: 10.1039/c7md00043j.
  • Oslob, J. D.; Johnson, R. J.; Cai, H.; Feng, S. Q.; Hu, L.; Kosaka, Y.; Lai, J.; Sivaraja, M.; Tep, S.; Yang, H.; et al. Imidazopyridine-Based Fatty Acid Synthase Inhibitors That Show anti-HCV Activity and in Vivo Target Modulation. ACS Med. Chem. Lett. 2013, 4, 113–117. DOI: 10.1021/ml300335r.
  • Krause, M.; Foks, H.; Gobis, K. Pharmacological Potential and Synthetic Approaches of Imidazo[4,5-b]Pyridine and Imidazo[4,5-c]Pyridine Derivatives. Molecules 2017, 22, 399. DOI: 10.3390/molecules22030399.
  • Martínez-Urbina, M. A.; Zentella, A.; Vilchis-Reyes, M. A.; Guzmán, Á.; Vargas, O.; Ramírez Apan, M. T.; Ventura Gallegos, J. L.; Díaz, E. 6-Substituted 2-(N-Trifluoroacetylamino)Imidazopyridines Induce Cell Cycle Arrest and Apoptosis in SK-LU-1 Human Cancer Cell Line. Eur. J. Med. Chem. 2010, 45, 1211–1219. DOI: 10.1016/j.ejmech.2009.11.049.
  • Jaramillo, C.; de Diego, J. E.; Hamdouchi, C.; Collins, E.; Keyser, H.; Sánchez-Martínez, C.; del Prado, M.; Norman, B.; Brooks, H. B.; Watkins, S. A.; et al. AminoIm[1,2-a]Pys as a New Structural Class of Cyclin-Dependent Kinase Inhibitors. Part 1: Design, Synthesis, and Biological Evaluation. Bioorg. Med. Chem. Lett. 2004, 14, 6095–6099. DOI: 10.1016/j.bmcl.2004.09.053.
  • Thakur, A.; Patwa, J.; Sharma, A.; Flora, S. J. S. Synthesis, Molecular Docking, BSA, and in Vitro Reactivation Study of Imidazopyridine Oximes against Paraoxon Inhibited Acetylcholinesterase. Med. Chem. 2022, 18, 273–287. DOI: 10.2174/1573406417666210208223240.
  • Stasyuk, A. J.; Banasiewicz, M.; Cyrański, M. K.; Gryko, D. T. Im[1,2-a]Pys Susceptible to Excited State Intramolecular Proton Transfer: One-Pot Synthesis via an Ortoleva–King Reaction. J. Org. Chem. 2012, 77, 5552–5558. DOI: 10.1021/jo300643w.
  • Tomoda, H.; Hirano, T.; Saito, S.; Mutai, T.; Araki, K. Substituent Effects on Fluorescent Properties of Imidazo [1, 2-a] Pyridine-Based Compounds. BCSJ. 1999, 72, 1327–1334. DOI: 10.1246/bcsj.72.1327.
  • Yamaguchi, E.; Shibahara, F.; Murai, T. 1-Alkynyl-and 1-Alkenyl-3-Arylimidazo [1, 5-a] Pyridines: Synthesis, Photophysical Properties, and Observation of a Linear Correlation between the Fluorescent Wavelength and Hammett Substituent Constants. J. Org. Chem. 2011, 76, 6146–6158. DOI: 10.1021/jo200864x.
  • Douhal, A.; Amat-Guerri, F.; Acuna, A. U. Photoinduced Intramolecular Proton Transfer and Charge Redistribution in Imidazopyridines. J. Phys. Chem. 1995, 99, 76–80. DOI: 10.1021/j100001a014.
  • Mutai, T.; Tomoda, H.; Ohkawa, T.; Yabe, Y.; Araki, K. Switching of Polymorph-Dependent ESIPT Luminescence of an Im[1,2-a]py Derivative. Angew. Chem. Int. Ed. Engl. 2008, 47, 9522–9524. DOI: 10.1002/anie.200803975.
  • Shono, H.; Ohkawa, T.; Tomoda, H.; Mutai, T.; Araki, K. Fabrication of Colorless Organic Materials Exhibiting White Luminescence Using Normal and Excited-State Intramolecular Proton Transfer Processes. ACS Appl. Mater. Interfaces. 2011, 3, 654–657. DOI: 10.1021/am200022z.
  • Firmansyah, D.; Ciuciu, A. I.; Hugues, V.; Blanchard-Desce, M.; Flamigni, L.; Gryko, D. T. Bright, Fluorescent Dyes Based on Imidazo[1,2-a]Pyridines That Are Capable of Two-Photon Absorption. Chem. Asian J. 2013, 8, 1279–1294. DOI: 10.1002/asia.201300058.
  • Johnee Britto, N.; Panneerselvam, M.; Deepan Kumar, M.; Kathiravan, A.; Jaccob, M. Substituent Effect on the Photophysics and ESIPT Mechanism of N,N′-Bis(Salicylidene)-p-Phenylenediamine: A DFT/TD-DFT Analysis. J. Chem. Inf. Model. 2021, 61, 1825–1839. DOI: 10.1021/acs.jcim.0c01430.
  • Li, Y.; Wen, K.; Feng, S.; Yuan, H.; An, B.; Zhu, Q.; Guo, X.; Zhang, J. Tunable Excited-State Intramolecular Proton Transfer Reactions with NH or OH as a Proton Donor: A Theoretical Investigation. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2017, 187, 9–14. DOI: 10.1016/j.saa.2017.06.019.
  • Behera, S. K.; Karak, A.; Krishnamoorthy, G. Photophysics of 2-(4′-Amino-2′-Hydroxyphenyl)-1H-Imidazo-[4,5-c]Pyridine and Its Analogues: Intramolecular Proton Transfer versus Intramolecular Charge Transfer. J. Phys. Chem. B 2015, 119, 2330–2344. DOI: 10.1021/jp5064808.
  • Sasaki, S.; Drummen, G. P. C.; Konishi, G-i. Recent Advances in Twisted Intramolecular Charge Transfer (TICT) Fluorescence and Related Phenomena in Materials Chemistry. J. Mater. Chem. C 2016, 4, 2731–2743. DOI: 10.1039/C5TC03933A.
  • Jiao, Y.; Zhu, B.; Chen, J.-H.; Duan, X. Fluorescent Sensing of Fluoride in Cellular System. Theranostics 2015, 5, 173–187. DOI: 10.7150/thno.9860.
  • Cao, D.; Zhu, L.; Liu, Z.; Lin, W. Through Bond Energy Transfer (TBET)-Based Fluorescent Chemosensors. J. Photochem. Photobiol. C 2020, 44, 100371. DOI: 10.1016/j.jphotochemrev.2020.100371.
  • Ge, Y.; Ji, R.; Shen, S.; Cao, X.; Li, F. A Ratiometric Fluorescent Probe for Sensing Cu2+ Based on New Imidazo [1, 5-a] Pyridine Fluorescent Dye. Sens. Actuators B Chem. 2017, 245, 875–881. DOI: 10.1016/j.snb.2017.01.169.
  • Mala, R.; Suman, K.; Nandhagopal, M.; Narayanasamy, M.; Thennarasu, S. Chelation of Specific Metal Ions Imparts Coplanarity and Fluorescence in Two Im[1,2-a]py Derivatives: Potential Chemosensors for Detection of Metal Ions in Aqueous and Biosamples. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 222, 117236. DOI: 10.1016/j.saa.2019.117236.
  • Tchounwou, P. B.; Yedjou, C. G.; Patlolla, A. K.; Sutton, D. J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology; Luch, A., Ed. Springer Basel: Basel, 2012; pp 133–164.
  • Paola Posligua, C.; Carlos Banchón, B.; Elvito, V. A Heavy Metal Network: Connecting Remediation Strategies. KnE Eng. 2018, 3, 88–99. DOI: 10.18502/keg.v3i1.1416.
  • Shen, X.; Chi, Y.; Xiong, K. The Effect of Heavy Metal Contamination on Humans and Animals in the Vicinity of a Zinc Smelting Facility. PLoS One. 2019, 14, e0207423. DOI: 10.1371/journal.pone.0207423.
  • Ashoka, S.; Peake, B. M.; Bremner, G.; Hageman, K. J.; Reid, M. R. Comparison of Digestion Methods for ICP-MS Determination of Trace Elements in Fish Tissues. Anal. Chim. Acta. 2009, 653, 191–199. DOI: 10.1016/j.aca.2009.09.025.
  • Acar, O. Determination of Cadmium, Copper and Lead in Soils, Sediments and Sea Water Samples by ETAAS Using a Sc + Pd + NH4NO3 Chemical Modifier. Talanta 2005, 65, 672–677. DOI: 10.1016/j.talanta.2004.07.035.
  • Yuan, C.-G.; Wang, J.; Jin, Y. Ultrasensitive Determination of Mercury in Human Saliva by Atomic Fluorescence Spectrometry Based on Solidified Floating Organic Drop Microextraction. Microchim. Acta 2012, 177, 153–158. DOI: 10.1007/s00604-012-0768-7.
  • Giancarla, A.; Camilla, Z.; Magnaghi, L. R.; Raffaela, B. Low-Cost, Disposable Colourimetric Sensors for Metal Ions Detection. J. Anal. Sci. Technol. 2020, 11, 1–12. DOI: 10.1186/s40543-020-00221-x.
  • Kar, C.; Adhikari, M. D.; Datta, B. K.; Ramesh, A.; Das, G. A CHEF-Based Biocompatible Turn on Ratiometric Sensor for Sensitive and Selective Probing of Cu2+. Sens. Actuators B Chem. 2013, 188, 1132–1140. DOI: 10.1016/j.snb.2013.08.005.
  • Chakraborty, S.; Paul, S.; Roy, P.; Rayalu, S. Detection of Cyanide Ion by Chemosensing and Fluorosensing Technology. Inorg. Chem. Commun. 2021, 128, 108562. DOI: 10.1016/j.inoche.2021.108562.
  • Gosi, M.; Marepu, N.; Sunandamma, Y. Cyanine-Based Fluorescent Probe for Cyanide Ion Detection. J. Fluoresc. 2021, 31, 1409–1415. DOI: 10.21203/rs.3.rs-370177/v1.
  • Mala, R.; Nandhagopal, M.; Narayanasamy, M.; Thennarasu, S. An Imidazo[1,2‐a]Pyridine Derivative That Enables Selective and Sequential Sensing of Cu2+ and CN − Ions in Aqueous and Biological Samples. ChemistrySelect. 2019, 4, 13131–13137. DOI: 10.1002/slct.201903064.
  • Swami, S.; Behera, D.; Agarwala, A.; Verma, V. P.; Shrivastava, R. β-Carboline–Imidazopyridine Hybrids: Selective and Sensitive Optical Sensors for Copper and Fluoride Ions. New J. Chem. 2018, 42, 10317–10326. DOI: 10.1039/C8NJ01851K.
  • Komatsu, H.; Citterio, D.; Fujiwara, Y.; Minamihashi, K.; Araki, Y.; Hagiwara, M.; Suzuki, K. Single Molecular Multianalyte Sensor: Jewel Pendant Ligand. Org. Lett. 2005, 7, 2857–2859. DOI: 10.1021/ol0507219.
  • Tanaka, K.; Takeyama, T.; Yukawa, R.; Iwata, S.; Kurushima, T. Metal Cation-Induced Multifluorescence of Azacrown-Substituted (Tetrafluorophenyl)Im[1,2-a]py. Supramol. Chem. 2010, 22, 186–193. DOI: 10.1080/10610270903173987.
  • Srivastava, S.; Thakur, N.; Singh, A.; Shukla, P.; Maikhuri, V. K.; Garg, N.; Prasad, A.; Pandey, R. Development of a Fused Imidazo [1, 2-a] Pyridine Based Fluorescent Probe for Fe 3+ and Hg 2+ in Aqueous Media and HeLa Cells. RSC Adv. 2019, 9, 29856–29863. DOI: 10.1039/C9RA04743C.
  • Keri, R. S.; Patil, S. A. Quinoline: A Promising Antitubercular Target. Biomed. Pharmacother. 2014, 68, 1161–1175. DOI: 10.1016/j.biopha.2014.10.007.
  • Vandekerckhove, S.; Van Herreweghe, S.; Willems, J.; Danneels, B.; Desmet, T.; de Kock, C.; Smith, P. J.; Chibale, K.; D'Hooghe, M. Synthesis of Functionalized 3-, 5-, 6- and 8-Aminoquinolines via Intermediate (3-Pyrrolin-1-yl)- and (2-Oxopyrrolidin-1-yl)Quinolines and Evaluation of Their Antiplasmodial and Antifungal Activity. Eur. J. Med. Chem. 2015, 92, 91–102. DOI: 10.1016/j.ejmech.2014.12.020.
  • Desai, N. C.; Kotadiya, G. M.; Trivedi, A. R. Studies on Molecular Properties Prediction, Antitubercular and Antimicrobial Activities of Novel Quinoline Based Pyrimidine Motifs. Bioorg. Med. Chem. Lett. 2014, 24, 3126–3130. DOI: 10.1016/j.bmcl.2014.05.002.
  • Lee, C.-H.; Lee, H.-S. Relaxant Effect of Quinoline Derivatives on Histamine-Induced Contraction of the Isolated Guinea Pig Trachea. J. Korean Soc. Appl. Biol. Chem. 2011, 54, 118–123. DOI: 10.3839/jksabc.2011.017.
  • Cretton, S.; Dorsaz, S.; Azzollini, A.; Favre-Godal, Q.; Marcourt, L.; Ebrahimi, S. N.; Voinesco, F.; Michellod, E.; Sanglard, D.; Gindro, K.; et al. Antifungal Quinoline Alkaloids from Waltheria Indica. J. Nat. Prod. 2016, 79, 300–307. DOI: 10.1021/acs.jnatprod.5b00896.
  • Vandekerckhove, S.; D'hooghe, M. Quinoline-Based Antimalarial Hybrid Compounds. Bioorg. Med. Chem. 2015, 23, 5098–5119. DOI: 10.1016/j.bmc.2014.12.018.
  • Ahmed, N.; Brahmbhatt, K. G.; Sabde, S.; Mitra, D.; Singh, I. P.; Bhutani, K. K. Synthesis and anti-HIV Activity of Alkylated Quinoline 2,4-Diols. Bioorg. Med. Chem. 2010, 18, 2872–2879. DOI: 10.1016/j.bmc.2010.03.015.
  • Chen, Y.-L.; Hung, H.-M.; Lu, C.-M.; Li, K.-C.; Tzeng, C.-C. Synthesis and Anticancer Evaluation of Certain Indolo[2,3-b]Quinoline Derivatives. Bioorg. Med. Chem. 2004, 12, 6539–6546. DOI: 10.1016/j.bmc.2004.09.025.
  • Rezvanian, A.; Noorakhtar, F.; Ziarani, G. M.; Mahajer, F. Quinoline Conjugated Imidazopyridine and Pyridopyrimidine Synthesis in Water as Highly Selective Fluoride Sensors via a Catalyst-Free Four-Component Reaction. Monatsh. Chem. 2020, 151, 1581–1589. DOI: 10.1007/s00706-020-02681-8.
  • Shao, N.; Pang, G.-X.; Yan, C.-X.; Shi, G.-F.; Cheng, Y. Reaction of β-Lactam Carbenes with 2-Pyridyl Isonitriles: A One-Pot Synthesis of 2-Carbonyl-3-(Pyridylamino) Imidazo [1, 2-a] Pyridines Useful as Fluorescent Probes for Mercury Ion. J. Org. Chem. 2011, 76, 7458–7465. DOI: 10.1021/jo201273p.
  • Ganesan, K.; Raza, S. K.; Vijayaraghavan, R. Chemical Warfare Agents. J. Pharm. Bioallied Sci. 2010, 2, 166–178. DOI: 10.4103/0975-7406.68498.
  • Thakur, A.; Patil, P.; Sharma, A.; Flora, S. J. S. Advances in the Development of Reactivators for the Treatment of Organophosphorus Inhibited Cholinesterase. COC. 2020, 24, 2845–2864. DOI: 10.2174/1385272824999201020203544.
  • Fan, F.; Xu, C.; Liu, X.; Zhu, M.; Wang, Y. A Novel ESIPT-Based Fluorescent Probe with Dual Recognition Sites for the Detection of Hydrazine in the Environmental Water Samples and in-Vivo Bioimaging. Spectrochim. Acta – A: Mol. Biomol. 2022, 280, 121499. DOI: 10.1016/j.saa.2022.121499.
  • Wang, J.; Zhang, J.; Wang, J.; Fang, G.; Liu, J.; Wang, S. Fluorescent Peptide Probes for Organophosphorus Pesticides Detection. J. Hazard. Mater. 2020, 389, 122074. DOI: 10.1016/j.jhazmat.2020.122074.
  • Aktar, M. W.; Sengupta, D.; Chowdhury, A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip. Toxicol. 2009, 2, 1–12. DOI: 10.2478/v10102-009-0001-7.
  • Eddleston, M. Novel Clinical Toxicology and Pharmacology of Organophosphorus Insecticide Self-Poisoning. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 341–360. DOI: 10.1146/annurev-pharmtox-010818-021842.
  • Shaffo, F. C.; Grodzki, A. C.; Fryer, A. D.; Lein, P. J. Mechanisms of Organophosphorus Pesticide Toxicity in the Context of Airway Hyperreactivity and Asthma. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018, 315, L485–l501. DOI: 10.1152/ajplung.00211.2018.
  • Thakur, A.; Gori, M.; Sharma, A. Synthetic Fluorescent Organic Molecule for the Detection of Diethylcyanophosphonate Via On-Off Sensing Mechanism: Paper Strips System for Real-Time Application. Int. J. Environ. Anal. Chem. 2022. DOI: 10.1080/03067319.2022.2085042.
  • Thakur, A.; Sharma, A. Imidazo [1,2-a] Pyridine Based Small Organic Fluorescent Molecules for Selective Detection of Nerve Agents Simulants. Spectrochim. Acta – A: Mol. Biomol. 2022, 282, 121633. DOI: 10.1016/j.saa.2022.121633.
  • Kohno, T.; Kageyama, H.; Miyamoto, M.; Ishii, M.; Kasai, N.; Nakamura, N.; Akimoto, H. High-Speed Programming Architecture and Image-Sticking Cancellation Technology for High-Resolution Low-Voltage AMOLEDs. IEEE Trans. Electron Devices 2011, 58, 3444–3452. DOI: 10.1109/TED.2011.2162647.
  • Ko, C.; Tao, Y. Bright White Organic Light-Emitting Diode. Appl. Phys. Lett. 2001, 79, 4234–4236. DOI: 10.1063/1.1425454.
  • Fujii, T.; Kon, C.; Motoyama, Y.; Shimizu, K.; Shimayama, T.; Yamazaki, T.; Kato, T.; Sakai, S.; Hashikaki, K.; Tanaka, K.; Nakano, Y. 4032 Ppi High-Resolution OLED Microdisplay. Jnl. Soc. Info. Display 2018, 26, 178–186. DOI: 10.1002/jsid.656.
  • Kim, J. G.; Lee, J. S.; Hwang, H.; Kim, E.; Choi, Y.; Kwak, J. H.; Park, S. J.; Hwang, Y.; Choi, K. W.; Park, Y. W.; Ju, B.-K. Modeling of Flexible Light Extraction Structure: Improved Flexibility and Optical Efficiency for Organic Light-Emitting Diodes. Org. Electron. 2020, 85, 105760. DOI: 10.1016/j.orgel.2020.105760.
  • Zhang, D.; Song, X.; Cai, M.; Kaji, H.; Duan, L. Versatile Indolocarbazole‐Isomer Derivatives as Highly Emissive Emitters and Ideal Hosts for Thermally Activated Delayed Fluorescent OLEDs with Alleviated Efficiency Roll‐off. Adv. Mater. 2018, 30, 1705406. DOI: 10.1002/adma.201705406.
  • Im, Y.; Han, S. H.; Lee, J. Y. Deep Blue Thermally Activated Delayed Fluorescent Emitters Using CN-Modified Indolocarbazole as an Acceptor and Carbazole-Derived Donors. J. Mater. Chem. C 2018, 6, 5012–5017. DOI: 10.1039/C8TC00546J.
  • Zhang, Q.; Kuwabara, H.; Potscavage, W. J.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C. Anthraquinone-Based Intramolecular Charge-Transfer Compounds: Computational Molecular Design, Thermally Activated Delayed Fluorescence, and Highly Efficient Red Electroluminescence. J. Am. Chem. Soc. 2014, 136, 18070–18081. DOI: 10.1021/ja510144h.
  • Wong, M. Y.; Zysman‐Colman, E. Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light‐Emitting Diodes. Adv. Mater. 2017, 29, 1605444. DOI: 10.1002/adma.201605444.
  • Chen, W.-C.; Lee, C.-S.; Tong, Q.-X. Blue-Emitting Organic Electrofluorescence Materials: Progress and Prospective. J. Mater. Chem. C 2015, 3, 10957–10963. DOI: 10.1039/C5TC02420J.
  • Kothavale, S.; Lee, K. H.; Lee, J. Y. CN‐Modified Imidazopyridine as a New Electron Accepting Unit of Thermally Activated Delayed Fluorescent Emitters. Chemistry 2020, 26, 845–852. DOI: 10.1002/chem.201903877.
  • Pu, K. Y.; Liu, B. Fluorescent Conjugated Polyelectrolytes for Bioimaging. Adv. Funct. Mater. 2011, 21, 3408–3423. DOI: 10.1002/adfm.201101153.
  • Madhu, S.; Rao, M. R.; Shaikh, M. S.; Ravikanth, M. 3,5-Diformylboron Dipyrromethenes as Fluorescent pH Sensors. Inorg. Chem. 2011, 50, 4392–4400. DOI: 10.1021/ic102499h.
  • Ribeiro, A. H.; Fakih, A.; van der Zee, B.; Veith, L.; Glaser, G.; Kunz, A.; Landfester, K.; Blom, P. W. M.; Michels, J. J. Green and Stable Processing of Organic Light-Emitting Diodes from Aqueous Nanodispersions. J. Mater. Chem. C 2020, 8, 6528–6535. DOI: 10.1039/D0TC00498G.
  • Nagarajan, N.; Velmurugan, G.; Prakash, A.; Shakti, N.; Katiyar, M.; Venuvanalingam, P.; Renganathan, R. Highly Emissive Luminogens Based on Im[1,2-a]py for Electroluminescent Applications. Chem. Asian J. 2014, 9, 294–304. DOI: 10.1002/asia.201301061.
  • Zhu, Z.-L.; Ni, S.-F.; Chen, W.-C.; Chen, M.; Zhu, J.-J.; Yuan, Y.; Tong, Q.-X.; Wong, F.-L.; Lee, C.-S. Tuning Electrical Properties of Phenanthroimidazole Derivatives to Construct Multifunctional Deep-Blue Electroluminescent Materials. J. Mater. Chem. C. 2018, 6, 3584–3592. DOI: 10.1039/C7TC04972B.
  • Du, X.; Li, G.; Zhao, J.; Tao, S.; Zheng, C.; Lin, H.; Tong, Q.; Zhang, X. X. Multifunctional Phenanthroimidazole Derivatives to Realize High‐Performance Deep‐Blue and White Organic Light‐Emitting Diodes. Adv. Opt. Mater. 2017, 5, 1700498. DOI: 10.1002/adom.201700498.
  • Li, Z.; Li, C.; Xu, Y.; Xie, N.; Jiao, X.; Wang, Y. Nonsymmetrical Connection of Two Identical Building Blocks: Constructing Donor–Acceptor Molecules as Deep Blue Emitting Materials for Efficient Organic Emitting Diodes. J. Phys. Chem. Lett. 2019, 10, 842–847. DOI: 10.1021/acs.jpclett.9b00300.
  • Li, G.; Zhao, J.; Zhang, D.; Zhu, J.; Shi, Z.; Tao, S.; Lu, F.; Tong, Q. Non-Doped Deep Blue Emitters Based on Twisted Phenanthroimidazole Derivatives for Organic Light-Emitting Devices (CIE y≈ 0.04). New J. Chem. 2017, 41, 5191–5197. DOI: 10.1039/C7NJ00155J.
  • Zheng, X. H.; Zhao, J. W.; Chen, X.; Cai, R.; Yang, G. X.; Zhu, J. J.; Tang, S. S.; Lin, Z. H.; Tao, S. L.; Tong, Q. X. Imidazo [1, 2‐a] Pyridine as an Electron Acceptor to Construct High‐Performance Deep‐Blue Organic Light‐Emitting Diodes with Negligible Efficiency Roll‐off. Chemistry 2020, 26, 8588–8596. DOI: 10.1002/chem.202000518.
  • Sutter, A. P.; Maaser, K.; Grabowski, P.; Bradacs, G.; Vormbrock, K.; Höpfner, M.; Krahn, A.; Heine, B.; Stein, H.; Somasundaram, R.; et al. Peripheral Benzodiazepine Receptor Ligands Induce Apoptosis and Cell Cycle Arrest in Human Hepatocellular Carcinoma Cells and Enhance Chemosensitivity to Paclitaxel, Docetaxel, Doxorubicin and the Bcl-2 Inhibitor HA14-1. J. Hepatol. 2004, 41, 799–807. DOI: 10.1016/j.jhep.2004.07.015.
  • Sutter, A. P.; Maaser, K.; Höpfner, M.; Barthel, B.; Grabowski, P.; Faiss, S.; Carayon, P.; Zeitz, M.; Scherübl, H. Specific Ligands of the Peripheral Benzodiazepine Receptor Induce Apoptosis and Cell Cycle Arrest in Human Esophageal Cancer Cells. Int. J. Cancer. 2002, 102, 318–327. DOI: 10.1002/ijc.10724.
  • Musacchio, T.; Laquintana, V.; Latrofa, A.; Trapani, G.; Torchilin, V. P. PEG-PE Micelles Loaded with Paclitaxel and Surface-Modified by a PBR-Ligand: Synergistic Anticancer Effect. Mol. Pharm. 2009, 6, 468–479. DOI: 10.1021/mp800158c.
  • Laquintana, V.; Denora, N.; Lopedota, A.; Suzuki, H.; Sawada, M.; Serra, M.; Biggio, G.; Latrofa, A.; Trapani, G.; Liso, G.; et al. c][1, 2, 5] Oxadiazol-4-Ylamino) Hexyl) Acetamide as a New Fluorescent Probe for Peripheral Benzodiazepine Receptor and Microglial Cell Visualization. Bioconjug. Chem. 2007, 18, 1397–1407. DOI: 10.1021/bc060393c.
  • Chen, Y.; Zheng, X.; Dobhal, M. P.; Gryshuk, A.; Morgan, J.; Dougherty, T. J.; Oseroff, A.; Pandey, R. K. Methyl Pyropheophorbide-a Analogues: Potential Fluorescent Probes for the Peripheral-Type Benzodiazepine Receptor. Effect of Central Metal in Photosensitizing Efficacy. J. Med. Chem. 2005, 48, 3692–3695. DOI: 10.1021/jm050039k.
  • Mattner, F.; Katsifis, A.; Staykova, M.; Ballantyne, P.; Willenborg, D. O. Evaluation of a Radiolabelled Peripheral Benzodiazepine Receptor Ligand in the Central Nervous System Inflammation of Experimental Autoimmune Encephalomyelitis: A Possible Probe for Imaging Multiple Sclerosis. Eur. J. Nucl. Med. Mol. Imaging. 2005, 32, 557–563. DOI: 10.1007/s00259-004-1690-y.
  • Singh, V. D.; Kushwaha, A. K.; Singh, R. S. Achieving Flexibility/Rigidity Balance through Asymmetric Donor − Acceptor Scaffolds in Pursuit of Dual State Emission with Application in Acidochromism. Dyes Pigm. 2021, 187, 109117. DOI: 10.1016/j.dyepig.2020.109117.
  • Deligeorgiev, T.; Vasilev, A.; Kaloyanova, S.; Vaquero, J. J. Styryl Dyes – Synthesis and Applications during the Last 15 Years. Color. Technol. 2010, 126, 55–80. DOI: 10.1111/j.1478-4408.2010.00235.x.
  • Mashraqui, S. H.; Ghorpade, S. S.; Tripathi, S.; Britto, S. A New Indole Incorporated Chemosensor Exhibiting Selective Colorimetric and Fluorescence Ratiometric Signaling of Fluoride. Tetrahedron Lett. 2012, 53, 765–768. DOI: 10.1016/j.tetlet.2011.11.139.
  • Aydıner, B.; Yalçın, E.; Ihmels, H.; Arslan, L.; Açık, L.; Seferoğlu, Z.; ArylstyrylIm, [1,2-a]py-Based Donor–Acceptor Acidochromic Fluorophores: Synthesis, Photophysical, Thermal and Biological Properties. J. Photochem. Photobiol. 2015, 310, 113–121. DOI: 10.1016/j.jphotochem.2015.05.030.
  • Seferoğlu, Z.; Ihmels, H.; Şahin, E. Synthesis and Photophysical Properties of Fluorescent arylstyrylIm[1,2-a]py-Based Donor-Acceptor Chromophores. Dyes Pigm 2015, 113, 465–473. DOI: 10.1016/j.dyepig.2014.09.016.
  • Zhang, T.; Zhang, Y.; Wang, R.; Xu, D. Tuning Dual-Channel Fluorescence-Enhanced Chemosensor for Imaging of Living Cells in Extreme Acidity. Dyes Pigm. 2019, 171, 107672. DOI: 10.1016/j.dyepig.2019.107672.
  • Batarseh, A.; Papadopoulos, V. Regulation of Translocator Protein 18kDa (TSPO) Expression in Health and Disease States. Mol. Cell. Endocrinol. 2010, 327, 1–12. DOI: 10.1016/j.mce.2010.06.013.
  • Gui, Y.; Marks, J. D.; Das, S.; Hyman, B. T.; Serrano-Pozo, A. Characterization of the 18 kDa Translocator Protein (TSPO) Expression in Post-Mortem Normal and Alzheimer’s Disease Brains. Brain Pathol. 2020, 30, 151–164. DOI: 10.1111/bpa.12763.
  • Denora, N.; Laquintana, V.; Pisu, M. G.; Dore, R.; Murru, L.; Latrofa, A.; Trapani, G.; Sanna, E. 2-Phenyl-Imidazo [1, 2-a] Pyridine Compounds Containing Hydrophilic Groups as Potent and Selective Ligands for Peripheral Benzodiazepine Receptors: Synthesis, Binding Affinity and Electrophysiological Studies. J. Med. Chem. 2008, 51, 6876–6888. DOI: 10.1021/jm8006728.
  • Denora, N.; Laquintana, V.; Trapani, A.; Suzuki, H.; Sawada, M.; Trapani, G. New Fluorescent Probes Targeting the Mitochondrial-Located Translocator Protein 18 kDa (TSPO) as Activated Microglia Imaging Agents. Pharm. Res. 2011, 28, 2820–2832. DOI: 10.1007/s11095-011-0552-0.
  • Leopoldo, M.; Lacivita, E.; Passafiume, E.; Contino, M.; Colabufo, N. A.; [ω[Berardi, F.; Perrone, R. 4. 4-Arylpiperazin-1-yl]Alkoxy]Phenyl)Im[1,2-a]py Derivatives: Fluorescent High-Affinity Dopamine D3 Receptor Ligands as Potential Probes for Receptor Visualization. J. Med. Chem. 2007, 50, 5043–5047. DOI: 10.1021/jm070721+.
  • Dorh, N.; Zhu, S.; Dhungana, K. B.; Pati, R.; Luo, F.-T.; Liu, H.; Tiwari, A. BODIPY-Based Fluorescent Probes for Sensing Protein Surface-Hydrophobicity. Sci. Rep. 2015, 5, 18337–18310. DOI: 10.1038/srep18337.
  • Zlatić, K.; Cindrić, M.; Antol, I.; Uzelac, L.; Mihaljević, B.; Kralj, M.; Basarić, N. Wavelength Dependent Photochemistry of BODIPY–Phenols and Their Applications in the Fluorescent Labeling of Proteins. Org. Biomol. Chem. 2021, 19, 4891–4903. DOI: 10.1039/D1OB00278C.
  • Squeo, B. M.; Ganzer, L.; Virgili, T.; Pasini, M. BODIPY-Based Molecules, a Platform for Photonic and Solar Cells. Molecules 2020, 26, 153. DOI: 10.3390/molecules26010153.
  • Wanwong, S.; Khomein, P.; Thayumanavan, S. BODIPY Dyads and Triads: Synthesis, Optical, Electrochemical and Transistor Properties. Chem. Cent. J. 2018, 12, 60. DOI: 10.1186/s13065-018-0430-5.
  • Wang, D.; Wu, Q.; Zhang, X.; Wang, W.; Hao, E.; Jiao, L. A Photochemical Dehydrogenative Strategy for Direct and Regioselective Dimerization of BODIPY Dyes. Org. Lett. 2020, 22, 7694–7698. DOI: 10.1021/acs.orglett.0c02895.
  • Wu, Y.; Yuan, W.; Ji, H.; Qin, Y.; Zhang, J.; Li, H.; Li, Y.; Wang, Y.; Sun, Y.; Liu, W. W. New Fluorescent Imidazo [1, 2-a] pyridine-BODIPY Chromophores: Experimental and Theoretical Approaches, and Cell Imaging Exploration. Dyes Pigm. 2017, 142, 330–339. DOI: 10.1016/j.dyepig.2017.03.052.
  • Banerji, B.; Chatterjee, S.; Chandrasekhar, K.; Bera, S.; Majumder, L.; Prodhan, C.; Chaudhuri, K. Expedient Synthesis of a Phenanthro-Imidazo-Pyridine Fused Heteropolynuclear Framework via CDC Coupling: A New Class of Luminophores. Org. Biomol. Chem. 2017, 15, 4130–4134. DOI: 10.1039/C7OB00564D.
  • Nirogi, R.; Mohammed, A. R.; Shinde, A. K.; Bogaraju, N.; Gagginapalli, S. R.; Ravella, S. R.; Kota, L.; Bhyrapuneni, G.; Muddana, N. R.; Benade, V.; et al. Synthesis and SAR of Imidazo [1, 5-a] Pyridine Derivatives as 5-HT4 Receptor Partial Agonists for the Treatment of Cognitive Disorders Associated with Alzheimer’s Disease. Eur. J. Med. Chem. 2015, 103, 289–301. DOI: 10.1016/j.tetlet.2011.11.139.
  • Fauber, B. P.; Gobbi, A.; Robarge, K.; Zhou, A.; Barnard, A.; Cao, J.; Deng, Y.; Eidenschenk, C.; Everett, C.; Ganguli, A.; et al. Discovery of Imidazo [1, 5-a] Pyridines and-Pyrimidines as Potent and Selective RORc Inverse Agonists. Bioorg. Med. Chem. Lett. 2015, 25, 2907–2912. DOI: 10.1016/j.bmcl.2015.05.055.
  • Alcarazo, M.; Roseblade, S. J.; Cowley, A. R.; Fernández, R.; Brown, J. M.; Lassaletta, J. M. Imidazo [1, 5-a] Pyridine: A Versatile Architecture for Stable N-Heterocyclic Carbenes. J. Am. Chem. Soc. 2005, 127, 3290–3291. DOI: 10.1021/ja0423769.
  • Kundu, N.; Abtab, S. M. T.; Kundu, S.; Endo, A.; Teat, S. J.; Chaudhury, M. Triple-Stranded Helicates of Zinc(II) and Cadmium(II) Involving a New Redox-Active Multiring Nitrogenous Heterocyclic Ligand: Synthesis, Structure, and Electrochemical and Photophysical Properties. Inorg. Chem. 2012, 51, 2652–2661. DOI: 10.1021/ic202595p.
  • Weber, M. D.; Garino, C.; Volpi, G.; Casamassa, E.; Milanesio, M.; Barolo, C.; Costa, R. D. Origin of a Counterintuitive Yellow Light-Emitting Electrochemical Cell Based on a Blue-Emitting Heteroleptic Copper(i) Complex. Dalton Trans. 2016, 45, 8984–8993. DOI: 10.1039/C6DT00970K.
  • Song, G.-J.; Bai, S.-Y.; Dai, X.; Cao, X.-Q.; Zhao, B.-X. A Ratiometric Lysosomal pH Probe Based on the Imidazo[1,5-a]Pyridine–Rhodamine FRET and ICT System. RSC Adv. 2016, 6, 41317–41322. DOI: 10.1039/C5RA25947A.
  • Hasegawa, T.; Malle, E.; Farhood, A.; Jaeschke, H. Generation of Hypochlorite-Modified Proteins by Neutrophils during Ischemia-Reperfusion Injury in Rat Liver: Attenuation by Ischemic Preconditioning. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 289, G760–G767. DOI: 10.1152/ajpgi.00141.2005.
  • Ma, F.; Sun, M.; Zhang, K.; Zhang, Y.; Zhu, H.; Wu, L.; Huang, D.; Wang, S. An Oxidative Cleavage-Based Ratiometric Fluorescent Probe for Hypochlorous Acid Detection and Imaging. RSC Adv. 2014, 4, 59961–59964. DOI: 10.1039/C4RA09611H.
  • Song, G.-J.; Ma, H.-L.; Luo, J.; Cao, X.-Q.; Zhao, B.-X. A New Ratiometric Fluorescent Probe for Sensing HOCl Based on TBET in Real Time. Dyes Pigm. 2018, 148, 206–211. DOI: 10.1016/j.dyepig.2017.09.022.
  • Qu, X.; Liu, Q.; Ji, X.; Chen, H.; Zhou, Z.; Shen, Z. Enhancing the Stokes’ Shift of BODIPY Dyes via through-Bond Energy Transfer and Its Application for Fe 3+-Detection in Live Cell Imaging. Chem. Commun. (Camb). 2012, 48, 4600–4602. DOI: 10.1039/C2CC31011B.
  • Kathiravan, A.; Khamrang, T.; Dhenadhayalan, N.; Lin, K.-C.; Ramasubramanian, K.; Jaccob, M.; Velusamy, M. Internet of Things-Enabled Aggregation-Induced Emission Probe for Cu2+ Ions: Comprehensive Investigations and Three-Dimensional Printed Portable Device Design. ACS Omega. 2020, 5, 32761–32768. DOI: 10.1021/acsomega.0c05262.
  • Chen, S.; Hou, P.; Sun, J.; Wang, H.; Liu, L. Imidazo[1,5-α]Pyridine-Based Fluorescent Probe with a Large Stokes Shift for Specific Recognition of Sulfite. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 225, 117508. DOI: 10.1016/j.saa.2019.117508.
  • Yuan, Q.; Chen, L.-L.; Zhu, X.-H.; Yuan, Z.-H.; Duan, Y.-T.; Yang, Y.-S.; Wang, B.-Z.; Wang, X.-M.; Zhu, H.-L. An Imidazo[1,5-α]Pyridine-Derivated Fluorescence Sensor for Rapid and Selective Detection of Sulfite. Talanta 2020, 217, 121087. DOI: 10.1016/j.talanta.2020.121087.
  • Zhang, G.; Ji, R.; Kong, X.; Ning, F.; Liu, A.; Cui, J.; Ge, Y. A FRET Based Ratiometric Fluorescent Probe for Detection of Sulfite in Food. RSC Adv. 2019, 9, 1147–1150. DOI: 10.1039/C8RA08967A.
  • Pastore, A.; Federici, G.; Bertini, E.; Piemonte, F. Analysis of Glutathione: Implication in Redox and Detoxification.Clin. Chim. Acta. 2003, 333, 19–39. DOI: 10.1016/S0009-8981(03)00200-6.
  • Wickremasinghe, D.; Peiris, H.; Chandrasena, L. G.; Senaratne, V.; Perera, R. Case Control Feasibility Study Assessing the Association between Severity of Coronary Artery Disease with Glutathione Peroxidase-1 (GPX-1) and GPX-1 Polymorphism (Pro198Leu). BMC Cardiovasc. Disord. 2016, 16, 111. DOI: 10.1186/s12872-016-0280-9.
  • Hou, P.; Sun, J.; Wang, H.; Liu, L.; Zou, L.; Chen, S. TCF-Imidazo [1, 5-α] Pyridine: A Potential Robust Ratiometric Fluorescent Probe for Glutathione Detection with High Selectivity. Sens. Actuators B. Chem. 2020, 304, 127244. DOI: 10.1016/j.snb.2019.127244.
  • Wu, D.; Liu, M.; Li, Z.; Dang, M.; Liu, X.; Li, J.; Huang, L.; Ren, Y.; Zhang, Z.; Liu, W.; Liu, A. and Fungicidal Activity of Novel Imidazo[4, 5-b]Pyridine Derivatives. Heterocycl. Comm. 2019, 25, 8–14. DOI: 10.1515/hc-2019-0003.
  • Zapata, F.; Caballero, A.; Espinosa, A.; Tárraga, A.; Molina, P. Imidazole-Annelated Ferrocene Derivatives as Highly Selective and Sensitive Multichannel Chemical Probes for Pb (II) Cations. J. Org. Chem. 2009, 74, 4787–4796. DOI: 10.1021/jo900533x.
  • Freire, S.; Rodríguez‐Prieto, F.; Rios Rodriguez, M. C.; Penedo, J. C.; Al‐Soufi, W.; Novo, M. Towards Ratiometric Sensing of Amyloid Fibrils in Vitro. Chemistry 2015, 21, 3425–3434. DOI: 10.1002/chem.201406110.
  • Brenlla, A.; Veiga, M.; Perez Lustres, J. L.; Rios Rodriguez, M. C.; Rodríguez-Prieto, F.; Mosquera, M. Photoinduced Proton and Charge Transfer in 2-(2′-Hydroxyphenyl) Imidazo [4, 5-b] Pyridine. J. Phys. Chem. B 2013, 117, 884–896. DOI: 10.1021/jp311709c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.