479
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Trends of Biosensing: Plasmonics through Miniaturization and Quantum Sensing

ORCID Icon

References

  • Taylor, A. B.; Zijlstra, P. Single-Molecule Plasmon Sensing: Current Status and Future Prospects. ACS Sens. 2017, 2, 1103–1122. DOI: 10.1021/acssensors.7b00382.
  • Haider, F.; Ahmmed Aoni, R.; Ahmed, R.; Amouzad Mahdiraji, G.; Fahmi Azman, M.; Adikan, F. R. M. Mode-Multiplex Plasmonic Sensor for Multi-Analyte Detection. Opt. Lett. 2020, 45, 3945–3948. DOI: 10.1364/OL.396340.
  • Mejía-Salazar, J. R.; Oliveira, O. N. Plasmonic Biosensing. Chem. Rev. 2018, 118, 10617–10625. DOI: 10.1021/acs.chemrev.8b00359.
  • Li, Y.-R.; Lee, K.-L.; Chen, K.-M.; Lu, Y. C.; Wu, P. C.; Chen, S.-H.; Lee, J.-H.; Wei, P.-K. Direct Detection of Virus-like Particles Using Color Images of Plasmonic Nanostructures. Opt. Express 2022, 30, 22233–22246. DOI: 10.1364/OE.461428.
  • Wu, C.; Guo, X.; Duan, Y.; Lyu, W.; Hu, H.; Hu, D.; Chen, K.; Sun, Z.; Gao, T.; Yang, X.; Dai, Q. Ultrasensitive Mid-Infrared Biosensing in Aqueous Solutions with Graphene Plasmons. Adv. Mater. 2022, 34, 2110525. DOI: 10.1002/adma.202110525.
  • Špringer, T.; Piliarik, M.; Homola, J. Surface Plasmon Resonance Sensor with Dispersionless Microfluidics for Direct Detection of Nucleic Acids at the Low Femtomole Level. Sens. Actuators, B 2010, 145, 588–591. DOI: 10.1016/j.snb.2009.11.018.
  • Tokel, O.; Yildiz, U. H.; Inci, F.; Durmus, N. G.; Ekiz, O. O.; Turker, B.; Cetin, C.; Rao, S.; Sridhar, K.; Natarajan, N.; et al. Portable Microfluidic Integrated Plasmonic Platform for Pathogen Detection. Sci. Rep. 2015, 5, 9152. ;. DOI: 10.1038/srep09152.
  • Hassani, A.; Skorobogatiy, M. Design of the Microstructured Optical Fiber-Based Surface Plasmon Resonance Sensors with Enhanced Microfluidics. Opt. Express 2006, 14, 11616–11621. DOI: 10.1364/OE.14.011616.
  • Uddin, S. M. A.; Chowdhury, S. S.; Kabir, E. A Theoretical Model for Determination of Optimum Metal Thickness in Kretschmann Configuration Based Surface Plasmon Resonance Biosensors. In 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), 2017; pp 651–654. DOI: 10.1109/ECACE.2017.7912985.
  • De, A.; Kalita, D. Bio-Fabricated Gold and Silver Nanoparticle Based Plasmonic Sensors for Detection of Environmental Pollutants: An Overview. Crit. Rev. Anal. Chem. 2021, 1–17. DOI: 10.1080/10408347.2021.1970507.
  • Noushin, T.; Tabassum, S. WRRIST: A Wearable, Rapid, and Real-Time Infection Screening Tool for Dual-Mode Detection of Inflammatory Biomarkers in Sweat. In Microfluidics, BioMEMS, and Medical Microsystems XX, 2022; p 1195502.
  • Umesha, M.; Heng, G.; Myeong, N.; Saifur, R. M.; Tan, N.; Limei, T. Wearable Plasmonic Paper–Based Microfluidics for Continuous Sweat Analysis. Sci. Adv. 2022, 8, eabn1736. DOI: 10.1126/sciadv.abn1736.
  • Lee, C.; Lawrie, B.; Pooser, R.; Lee, K.-G.; Rockstuhl, C.; Tame, M. Quantum Plasmonic Sensors. Chem. Rev. 2021, 121, 4743–4804. DOI: 10.1021/acs.chemrev.0c01028.
  • Xavier, J.; Yu, D.; Jones, C.; Zossimova, E.; Vollmer, F. Quantum Nanophotonic and Nanoplasmonic Sensing: Towards Quantum Optical Bioscience Laboratories on Chip. Nanophotonics 2021, 10, 1387–1435. DOI: 10.1515/nanoph-2020-0593.
  • Kongsuwan, N.; Xiong, X.; Bai, P.; You, J.-B.; Png, C. E.; Wu, L.; Hess, O. Quantum Plasmonic Immunoassay Sensing. Nano Lett. 2019, 19, 5853–5861. DOI: 10.1021/acs.nanolett.9b01137.
  • Hassan, N.; Cordero, M. L.; Sierpe, R.; Almada, M.; Juárez, J.; Valdez, M.; Riveros, A.; Vargas, E.; Abou-Hassan, A.; Ruso, J. M.; et al. Peptide Functionalized Magneto-Plasmonic Nanoparticles Obtained by Microfluidics for Inhibition of β-Amyloid Aggregation. J. Mater. Chem. B 2018, 6, 5091–5099. DOI: 10.1039/C8TB00206A.
  • Park, J.; Han, D. H.; Park, J.-K. Towards Practical Sample Preparation in Point-of-Care Testing: User-Friendly Microfluidic Devices. Lab. Chip 2020, 20, 1191–1203. DOI: 10.1039/D0LC00047G.
  • Melin, J.; Quake, S. R. Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 213–231. DOI: 10.1146/annurev.biophys.36.040306.132646.
  • Salieb-Beugelaar, G. B.; Simone, G.; Arora, A.; Philippi, A.; Manz, A. Latest Developments in Microfluidic Cell Biology and Analysis Systems. Anal. Chem. 2010, 82, 4848–4864. DOI: 10.1021/ac1009707.
  • Liyanage, T.; Lai, M.; Slaughter, G. Label-Free Tapered Optical Fiber Plasmonic Biosensor. Anal. Chim. Acta 2021, 1169, 338629. DOI: 10.1016/j.aca.2021.338629.
  • Gong, Y.; Wang, L.; Hu, X.; Li, X.; Liu, X. Broad-Bandgap and Low-Sidelobe Surface Plasmon Polariton Reflector with Bragg-Grating-Based MIM Waveguide. Opt. Express 2009, 17, 13727–13736. DOI: 10.1364/OE.17.013727.
  • Yavas, O.; Svedendahl, M.; Dobosz, P.; Sanz, V.; Quidant, R. On-a-Chip Biosensing Based on All-Dielectric Nanoresonators. Nano Lett. 2017, 17, 4421–4426. DOI: 10.1021/acs.nanolett.7b01518.
  • D'Agata, R.; Bellassai, N.; Allegretti, M.; Rozzi, A.; Korom, S.; Manicardi, A.; Melucci, E.; Pescarmona, E.; Corradini, R.; Giacomini, P.; et al. Direct Plasmonic Detection of Circulating RAS Mutated DNA in Colorectal Cancer Patients. Biosens. Bioelectron. 2020, 170, 112648. DOI: 10.1016/j.bios.2020.112648.
  • Nan, J.; Zhu, S.; Ye, S.; Sun, W.; Yue, Y.; Tang, X.; Shi, J.; Xu, X.; Zhang, J.; Yang, B. Ultrahigh-Sensitivity Sandwiched Plasmon Ruler for Label-Free Clinical Diagnosis. Adv. Mater. 2020, 32, 1905927. DOI: 10.1002/adma.201905927.
  • Simone, G. Surface Plasmon Resonance Study for a Reliable Determination of the Affinity Constant of Multivalent Grafted Beads. Soft Matter 2021, 17, 7047–7057. DOI: 10.1039/D1SM00591J.
  • Das, C. M.; Guo, Y.; Poenar, D. P.; Ramaswamy, Y.; Xiong, J.; Yin, M.-J.; Yong, K.-T. In-Depth Conceptual Study of an Enhanced Plasmonic Sensing System Using Antireflective Coatings and Perovskites for the Detection of Infectious Viral Antigens. ACS Appl. Electron. Mater. 2022, 4, 1732–1740. DOI: 10.1021/acsaelm.2c00017.
  • Wang, Y.; Zeng, S.; Crunteanu, A.; Xie, Z.; Humbert, G.; Ma, L.; Wei, Y.; Brunel, A.; Bessette, B.; Orlianges, J.-C.; et al. Targeted Sub-Attomole Cancer Biomarker Detection Based on Phase Singularity 2D Nanomaterial-Enhanced Plasmonic Biosensor. Nanomicro Lett. 2021, 13, 96. DOI: 10.1007/s40820-021-00613-7.
  • Terao, K.; Kondo, S. AC-Electroosmosis-Assisted Surface Plasmon Resonance Sensing for Enhancing Protein Signals with a Simple Kretschmann Configuration. Sensors 2022, 22,854. DOI: 10.3390/s22030.
  • Cowan, J. J.; Arakawa, E. T. Dispersion of Surface Plasmons in Dielectric-Metal Coatings on Concave Diffraction Gratings. Z. Physik 1970, 235, 97–109. DOI: 10.1007/BF01395160.
  • Ahmed, R.; Guimarães, C. F.; Wang, J.; Soto, F.; Karim, A. H.; Zhang, Z.; Reis, R. L.; Akin, D.; Paulmurugan, R.; Demirci, U. Large-Scale Functionalized Metasurface-Based SARS-CoV-2 Detection and Quantification. ACS Nano 2022, 16, 15946–15958. DOI: 10.1021/acsnano.2c02500.
  • Wu, M.; Li, G.; Ye, X.; Zhou, B.; Zhou, J.; Cai, J. Ultrasensitive Molecular Detection at Subpicomolar Concentrations by the Diffraction Pattern Imaging with Plasmonic Metasurfaces and Convex Holographic Gratings. Adv. Sci. 2022, 9, 2201682. DOI: 10.1002/advs.202201682.
  • Rossi, S.; Gazzola, E.; Capaldo, P.; Borile, G.; Romanato, F. Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber. Sensors 2018, 18, 1621. DOI: 10.3390/s18051621.
  • Kenaan, A.; Li, K.; Barth, I.; Johnson, S.; Song, J.; Krauss, T. F. Guided Mode Resonance Sensor for the Parallel Detection of Multiple Protein Biomarkers in Human Urine with High Sensitivity. Biosens. Bioelectron. 2020, 153, 112047. DOI: 10.1016/j.bios.2020.112047.
  • Maxime Lobry; Hadrien Fasseaux; Médéric Loyez; Karima Chah; Erik Goormaghtigh; Francesco Baldini; Ruddy Wattiez; Christophe Caucheteur; Francesco Chiavaioli, eds. New Demodulation Technique Based on Spectral Envelopes Intersection for Plasmonic Fiber Grating Sensors. In Optical Sensing and Detection VII, 2022.
  • Wang, Q.; Yao, H.; Feng, Y.; Deng, X.; Yang, B.; Xiong, D.; He, M.; Zhang, W. Surface Plasmon Resonances Boost the Transverse Magneto-Optical Kerr Effect in a CoFeB Slab Covered by a Subwavelength Gold Grating for Highly Sensitive Detectors. Opt. Express 2021, 29, 10546–10555. DOI: 10.1364/OE.414749.
  • Miyazaki, H. T.; Kurokawa, Y. Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity. Phys. Rev. Lett. 2006, 96, 097401. DOI: 10.1103/PhysRevLett.96.097401.
  • Slabý, J.; Bocková, M.; Homola, J. Plasmonic Biosensor Based on a Gold Nanostripe Array for Detection of microRNA Related to Myelodysplastic Syndromes. Sens. Actuators, B 2021, 347, 130629. DOI: 10.1016/j.snb.2021.130629.
  • Zhang, N.; Zheng, X.; Couvee, G.; Wolterboer, F.; Zhou, Y.; van deDonk, O.; Yang, H.; Simone, G. Galactose Supramolecular Docking Orchestrates Macrophage Phenotype. Cell Mol. Immunol. 2020, 17, 1111–1113. DOI: 10.1038/s41423-019-0358-2.
  • Bandaru, R.; Divagar, M.; Khanna, S.; Danny, C. G.; Gupta, S.; Janakiraman, V.; Sai, V. V. R. U-Bent Fiber Optic Plasmonic Biosensor Platform for Ultrasensitive Analyte Detection. Sens. Actuators, B 2020, 321, 128463. DOI: 10.1016/j.snb.2020.128463.
  • Liu, Y.; Guang, J.; Liu, C.; Bi, S.; Liu, Q.; Li, P.; Zhang, N.; Chen, S.; Yuan, H.; Zhou, D.; et al. Simple and Low-Cost Plasmonic Fiber-Optic Probe as SERS and Biosensing Platform. Adv. Opt. Mater. 2019, 7, 1900337. DOI: 10.1002/adom.201900337.
  • Simone, G.; Perozziello, G. UV/Vis Visible Optical Waveguides Fabricated Using Organic– Inorganic Nanocomposite Layers. J. Nanosci. Nanotechnol. 2011, 11, 2057–2063. DOI: 10.1166/jnn.2011.3546.
  • Li, Y.; Liu, X.; Xu, X.; Xin, H.; Zhang, Y.; Li, B. Red-Blood-Cell Waveguide as a Living Biosensor and Micromotor. Adv. Funct. Mater. 2019, 29, 1905568. DOI: 10.1002/adfm.201905568.
  • Shi, Y.; Polat, B.; Huang, Q.; Sirbuly, D. J. Nanoscale Fiber-Optic Force Sensors for Mechanical Probing at the Molecular and Cellular Level. Nat. Protoc. 2018, 13, 2714–2739. DOI: 10.1038/s41596-018-0059-9.
  • Sreekanth, K. V.; Mahalakshmi, P.; Han, S.; Mani Rajan, M. S.; Choudhury, P. K.; Singh, R. Brewster Mode-Enhanced Sensing with Hyperbolic Metamaterial. Adv. Opt. Mater. 2019, 7, 1900680. DOI: 10.1002/adom.201900680.
  • Khodami, M.; Hirbodvash, Z.; Krupin, O.; Wong, W. R.; Lisicka-Skrzek, E.; Northfield, H.; Hahn, C.; Berini, P. Fabrication of Bloch Long Range Surface Plasmon Waveguides Integrating Counter Electrodes and Microfluidic Channels for Multimodal Biosensing. J. Microelectromech. Syst. 2021, 30, 686–695. DOI: 10.1109/JMEMS.2021.3097701.
  • Guimarães, C. F.; Ahmed, R.; Mataji-Kojouri, A.; Soto, F.; Wang, J.; Liu, S.; Stoyanova, T.; Marques, A. P.; Reis, R. L.; Demirci, U. Engineering Polysaccharide-Based Hydrogel Photonic Constructs: From Multiscale Detection to the Biofabrication of Living Optical Fibers. Adv. Mater. 2021, 33, 2105361. DOI: 10.1002/adma.202105361.
  • Safaee, M.; M.; Gravely, M.; Roxbury, D. A Wearable Optical Microfibrous Biomaterial with Encapsulated Nanosensors Enables Wireless Monitoring of Oxidative Stress. Adv. Funct. Mater. 2021, 31, 2006254. DOI: 10.1002/adfm.202006254.
  • Choi, H.; Pile, D. F. P.; Nam, S.; Bartal, G.; Zhang, X. Compressing Surface Plasmons for Nano-Scale Optical Focusing. Opt. Express 2009, 17, 7519–7524. DOI: 10.1364/OE.17.007519.
  • Cheben, P.; Halir, R.; Schmid, J. H.; Atwater, H. A.; Smith, D. R. Subwavelength Integrated Photonics. Nature 2018, 560, 565–572. DOI: 10.1038/s41586-018-0421-7.
  • Lee, H.; Berk, J.; Webster, A.; Kim, D.; Foreman, M. R. Label-Free Detection of Single Nanoparticles with Disordered Nanoisland Surface Plasmon Sensor. Nanotechnology 2022, 33, 165502. DOI: 10.1088/1361-6528/ac43e9.
  • Funari, R.; Chu, K.-Y.; Shen, A. Q. Detection of Antibodies against SARS-CoV-2 Spike Protein by Gold Nanospikes in an Opto-Microfluidic Chip. Biosens. Bioelectron. 2020, 169, 112578. DOI: 10.1016/j.bios.2020.112578.
  • Gao, Z.; Song, Y.; Hsiao, T. Y.; He, J.; Wang, C.; Shen, J.; MacLachlan, A.; Dai, S.; Singer, B. H.; Kurabayashi, K.; et al. Machine-Learning-Assisted Microfluidic Nanoplasmonic Digital Immunoassay for Cytokine Storm Profiling in COVID-19 Patients. ACS Nano 2021, 15, 18023–18036. DOI: 10.1021/acsnano.1c06623.
  • Fajmut, A.; Pal, K.; Harkai, S.; Črešnar, D.; Kutnjak, Z.; Kralj, S. The Core Structure of a Laboratory-Made Dust Devil-like Vortex and Its Condensed Matter Analogs. J. Mol. Struct. 2021, 1237, 130335. DOI: 10.1016/j.molstruc.2021.130335.
  • Zhu, J.; He, J.; Verano, M.; Brimmo, A. T.; Glia, A.; Qasaimeh, M. A.; Chen, P.; Aleman, J. O.; Chen, W. An Integrated Adipose-Tissue-on-Chip Nanoplasmonic Biosensing Platform for Investigating Obesity-Associated Inflammation. Lab. Chip 2018, 18, 3550–3560. DOI: 10.1039/C8LC00605A.
  • Simone, G.; Abdalla, S. Ag/Au Alloy Entangled in a Protein Matrix: A Plasmonic Substrate Coupling Surface Plasmons and Molecular Chirality. Appl. Surf. Sci. 2020, 526, 146711. DOI: 10.1016/j.apsusc.2020.146711.
  • Aćimović, S. S.; Šípová-Jungová, H.; Emilsson, G.; Shao, L.; Dahlin, A. B.; Käll, M.; Antosiewicz, T. J. Antibody–Antigen Interaction Dynamics Revealed by Analysis of Single-Molecule Equilibrium Fluctuations on Individual Plasmonic Nanoparticle Biosensors. ACS Nano 2018, 12, 9958–9965. DOI: 10.1021/acsnano.8b04016.
  • Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G. A.; Wang, J. Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection. ACS Nano 2020, 14, 5268–5277. DOI: 10.1021/acsnano.0c02439.
  • Manoccio, M.; Esposito, M.; Primiceri, E.; Leo, A.; Tasco, V.; Cuscunà, M.; Zuev, D.; Sun, Y.; Maruccio, G.; Romano, A.; et al. Femtomolar Biodetection by a Compact Core–Shell 3D Chiral Metamaterial. Nano Lett. 2021, 21, 6179–6187. DOI: 10.1021/acs.nanolett.1c01791.
  • Jahani, Y.; Arvelo, E. R.; Yesilkoy, F.; Koshelev, K.; Cianciaruso, C.; Palma, M.; de, Kivshar, Y.; Altug, H. Imaging-Based Spectrometer-Less Optofluidic Biosensors Based on Dielectric Metasurfaces for Detecting Extracellular Vesicles. Nat. Commun. 2021, 12, 3246. DOI: 10.1038/s41467-021-23257-y.
  • Xiao, C.; Eriksson, J.; Suska, A.; Filippini, D.; Mak, W. C. Print-and-Stick Unibody Microfluidics Coupled Surface Plasmon Resonance (SPR) Chip for Smartphone Imaging SPR (Smart-iSRP). Anal. Chim. Acta 2022, 1201, 339606. DOI: 10.1016/j.aca.2022.339606.
  • Nair, S.; Gomez-Cruz, J.; Manjarrez-Hernandez, Á.; Ascanio, G.; Sabat, R. G.; Escobedo, C. Rapid Label-Free Detection of Intact Pathogenic Bacteria in Situ via Surface Plasmon Resonance Imaging Enabled by Crossed Surface Relief Gratings. Analyst 2020, 145, 2133–2142. DOI: 10.1039/C9AN02339A.
  • Jia, W.; Li, H.; Wilkop, T.; Liu, X.; Yu, X.; Cheng, Q.; Xu, D.; Chen, H.-Y. Silver Decahedral Nanoparticles Empowered SPR imaging-SELEX for High Throughput Screening of Aptamers with Real-Time Assessment. Biosens. Bioelectron. 2018, 109, 206–213. DOI: 10.1016/j.bios.2018.02.029.
  • Arora, P.; Krishnan, A. On-Chip Label-Free Plasmonic Based Imaging Microscopy for Microfluidics. J. Phys. Commun. 2018, 2, 085012. DOI: 10.1088/2399-6528/aad73e.
  • Aoni, R. A.; Manjunath, S.; Karawdeniya, B. I.; Zangeneh Kamali, K.; Xu, L.; Damry, A. M.; Jackson, C. J.; Tricoli, A.; Miroshnichenko, A. E.; Rahmani, M.; et al. Resonant Dielectric Metagratings for Response Intensified Optical Sensing. Adv. Funct. Mater. 2022, 32, 2103143. DOI: 10.1002/adfm.202103143.
  • Simone, G. Propagating Surface Plasmon Polaritons Excited at the Graphene Oxide/AgAu Alloy Interface Enhance Nonlinearity. Phys. Status Solidi B 2021, 258, 2000602. DOI: 10.1002/pssb.202000602.
  • Berkhout, A.; Koenderink, A. F. Perfect Absorption and Phase Singularities in Plasmon Antenna Array Etalons. ACS Photonics 2019, 6, 2917–2925. DOI: 10.1021/acsphotonics.9b01019.
  • van de Donk, O.; Zhang, X.; Simone, G. Superstructure of Silver Crystals in a Caged Framework for Plasmonic Inverse Sensing. Biosens. Bioelectron. 2019, 142, 111514. DOI: 10.1016/j.bios.2019.111514.
  • Duan, L.; Yobas, L. Label-Free Multiplexed Electrical Detection of Cancer Markers on a Microchip Featuring an Integrated Fluidic Diode Nanopore Array. ACS Nano 2018, 12, 7892–7900. DOI: 10.1021/acsnano.8b02260.
  • Liu, W.; Zhuo, Q.; Wen, K.; Zou, Q.; Hu, X.; Qin, Y. Integrated Plasmonic Biosensor on a Vertical Cavity Surface Emitting Laser Platform. Opt. Express 2021, 29, 40643–40651. DOI: 10.1364/OE.445520.
  • Iwanaga, M. All-Dielectric Metasurface Fluorescence Biosensors for High-Sensitivity Antibody/Antigen Detection. ACS Nano 2020, 14, 17458–17467. DOI: 10.1021/acsnano.0c07722.
  • Lv, X.; Geng, Z.; Su, Y.; Fan, Z.; Wang, S.; Fang, W.; Chen, H. Label-Free Exosome Detection Based on a Low-Cost Plasmonic Biosensor Array Integrated with Microfluidics. Langmuir 2019, 35, 9816–9824. DOI: 10.1021/acs.langmuir.9b01237.
  • Yanik, A. A.; Huang, M.; Kamohara, O.; Artar, A.; Geisbert, T. W.; Connor, J. H.; Altug, H. An Optofluidic Nanoplasmonic Biosensor for Direct Detection of Live Viruses from Biological Media. Nano Lett. 2010, 10, 4962–4969. DOI: 10.1021/nl103025u.
  • Klinghammer, S.; Uhlig, T.; Patrovsky, F.; Böhm, M.; Schütt, J.; Pütz, N.; Baraban, L.; Eng, L. M.; Cuniberti, G. Plasmonic Biosensor Based on Vertical Arrays of Gold Nanoantennas. ACS Sens. 2018, 3, 1392–1400. DOI: 10.1021/acssensors.8b00315.
  • Zhou, R.; Wang, C.; Huang, Y.; Huang, K.; Wang, Y.; Xu, W.; Xie, L.; Ying, Y. Label-Free Terahertz Microfluidic Biosensor for Sensitive DNA Detection Using Graphene-Metasurface Hybrid Structures. Biosens. Bioelectron. 2021, 188, 113336. DOI: 10.1016/j.bios.2021.113336.
  • Pal, K.; Asthana, N.; Aljabali, A. A.; Bhardwaj, S. K.; Kralj, S.; Penkova, A.; Thomas, S.; Zaheer, T.; Gomes de Souza, F. A Critical Review on Multifunctional Smart Materials ‘Nanographene’ Emerging Avenue: Nano-Imaging and Biosensor Applications. Crit. Rev. Solid State Mater. Sci. 2022, 47, 691–707. DOI: 10.1080/10408436.2021.1935717.
  • Chen, Z.; Zhuo, Y.; Tu, W.; Li, Z.; Ma, X.; Pei, Y.; Wang, G. High Mobility Indium Tin Oxide Thin Film and Its Application at Infrared Wavelengths: Model and Experiment. Opt. Express 2018, 26, 22123–22134. DOI: 10.1364/OE.26.022123.
  • Pal, K.; M Mohan, M.; Foley, M.; Ahmed, W. Emerging Assembly of ZnO-Nanowires/Graphene Dispersed Liquid Crystal for Switchable Device Modulation. Org. Electron. 2018, 56, 291–304. DOI: 10.1016/j.orgel.2017.12.044.
  • Singh, N.; Ali, M. A.; Rai, P.; Ghori, I.; Sharma, A.; Malhotra, B. D.; John, R. Dual-Modality Microfluidic Biosensor Based on Nanoengineered Mesoporous Graphene Hydrogels. Lab. Chip 2020, 20, 760–777. DOI: 10.1039/C9LC00751B.
  • Ono, T.; Kanai, Y.; Inoue, K.; Watanabe, Y.; Nakakita, S.; Kawahara, T.; Suzuki, Y.; Matsumoto, K. Electrical Biosensing at Physiological Ionic Strength Using Graphene Field-Effect Transistor in Femtoliter Microdroplet. Nano Lett. 2019, 19, 4004–4009. DOI: 10.1021/acs.nanolett.9b01335.
  • Das, S. R.; Srinivasan, S.; Stromberg, L. R.; He, Q.; Garland, N.; Straszheim, W. E.; Ajayan, P. M.; Balasubramanian, G.; Claussen, J. C. Superhydrophobic Inkjet Printed Flexible Graphene Circuits via Direct-Pulsed Laser Writing. Nanoscale 2017, 9, 19058–19065. DOI: 10.1039/C7NR06213C.
  • Ali, M. A.; Hu, C.; Jahan, S.; Yuan, B.; Saleh, M. S.; Ju, E.; Gao, S.-J.; Panat, R. Sensing of COVID-19 Antibodies in Seconds via Aerosol Jet Nanoprinted Reduced-Graphene-Oxide-Coated 3D Electrodes. Adv. Mater. 2021, 33, 2006647. DOI: 10.1002/adma.202006647.
  • Akbari, L.; Abedi, K. A Highly Sensitive and Tunable Plasmonic Sensor Based on a Graphene Tubular Resonator. Opt. Commun. 2020, 458, 124686. DOI: 10.1016/j.optcom.2019.124686.
  • Xu, L.; Xu, J.; Liu, W.; Lin, D.; Lei, J.; Zhou, B.; Shen, Y.; Deng, X. Terahertz Metal-Graphene Hybrid Metamaterial for Monitoring Aggregation of Aβ16–22 Peptides. Sens. Actuators, B 2022, 367, 132016. DOI: 10.1016/j.snb.2022.132016.
  • Bhaskar, S.; Visweswar Kambhampati, N. S.; Ganesh, K. M.; P, M. S.; Srinivasan, V.; Ramamurthy, S. S. Metal-Free, Graphene Oxide-Based Tunable Soliton and Plasmon Engineering for Biosensing Applications. ACS Appl. Mater. Interfaces 2021, 13, 17046–17061. DOI: 10.1021/acsami.1c01024.
  • Sundaram, S.; Jayaprakasam, R.; Dhandapani, M.; Senthil, T. S.; Vijayakumar, V. N. Theoretical (DFT) and Experimental Studies on Multiple Hydrogen Bonded Liquid Crystals Comprising between Aliphatic and Aromatic Acids. J. Mol. Liq. 2017, 243, 14–21. DOI: 10.1016/j.molliq.2017.08.010.
  • Alsaif, M. M. Y. A.; Haque, F.; Alkathiri, T.; Krishnamurthi, V.; Walia, S.; Hu, Y.; Jannat, A.; Mohiuddin, M.; Xu, K.; Khan, M. W.; et al. 3D Visible-Light-Driven Plasmonic Oxide Frameworks Deviated from Liquid Metal Nanodroplets. Adv. Funct. Mater. 2021, 31, 2106397. DOI: 10.1002/adfm.202106397.
  • Ali, M. A.; Tabassum, S.; Wang, Q.; Wang, Y.; Kumar, R.; Dong, L. Integrated Dual-Modality Microfluidic Sensor for Biomarker Detection Using Lithographic Plasmonic Crystal. Lab. Chip 2018, 18, 803–817. DOI: 10.1039/C7LC01211J.
  • Purwidyantri, A.; Ipatov, A.; Domingues, T.; Borme, J.; Martins, M.; Alpuim, P.; Prado, M. Programmable Graphene-Based Microfluidic Sensor for DNA Detection. Sens. Actuators, B 2022, 367, 132044. DOI: 10.1016/j.snb.2022.132044.
  • Kwong Hong Tsang, D.; Lieberthal, T. J.; Watts, C.; Dunlop, I. E.; Ramadan, S.; Del Rio Hernandez, A. E.; Klein, N. Chemically Functionalised Graphene FET Biosensor for the Label-Free Sensing of Exosomes. Sci. Rep. 2019, 9, 13946. DOI: 10.1038/s41598-019-50412-9.
  • Khan, N. I.; Mousazadehkasin, M.; Ghosh, S.; Tsavalas, J. G.; Song, E. An Integrated Microfluidic Platform for Selective and Real-Time Detection of Thrombin Biomarkers Using a Graphene FET. Analyst 2020, 145, 4494–4503. DOI: 10.1039/D0AN00251H.
  • Seo, G.; Lee, G.; Kim, M. J.; Baek, S.-H.; Choi, M.; Ku, K. B.; Lee, C.-S.; Jun, S.; Park, D.; Kim, H. G.; et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano 2020, 14, 5135–5142. DOI: 10.1021/acsnano.0c02823.
  • Kim, S.; Ryu, H.; Tai, S.; Pedowitz, M.; Rzasa, J. R.; Pennachio, D. J.; Hajzus, J. R.; Milton, D. K.; Myers-Ward, R.; Daniels, K. M. Real-Time Ultra-Sensitive Detection of SARS-CoV-2 by Quasi-Freestanding Epitaxial Graphene-Based Biosensor. Biosens. Bioelectron. 2022, 197, 113803. DOI: 10.1016/j.bios.2021.113803.
  • Fan, W.; Lawrie, B. J.; Pooser, R. C. Quantum Plasmonic Sensing. Phys. Rev. A 2015, 92, 53812. DOI: 10.1103/PhysRevA.92.053812.
  • Lee, J.-S.; Yoon, S.-J.; Rah, H.; Tame, M.; Rockstuhl, C.; Song, S. H.; Lee, C.; Lee, K.-G. Quantum Plasmonic Sensing Using Single Photons. Opt. Express 2018, 26, 29272–29282. DOI: 10.1364/OE.26.029272.
  • Georgieva, H.; López, M.; Hofer, H.; Kanold, N.; Kaganskiy, A.; Rodt, S.; Reitzenstein, S.; Kück, S. Absolute Calibration of a Single-Photon Avalanche Detector Using a Bright Triggered Single-Photon Source Based on an InGaAs Quantum Dot. Opt. Express 2021, 29, 23500–23507. DOI: 10.1364/OE.430680.
  • Andersen, U. L. Photonic Chip Brings Optical Quantum Computers a Step Closer. Nature 2021, 591, 40–41. DOI: 10.1038/d41586-021-00488-z.
  • Riemensberger, J.; Kuznetsov, N.; Liu, J.; He, J.; Wang, R. N.; Kippenberg, T. J. A Photonic Integrated Continuous-Travelling-Wave Parametric Amplifier. Nature 2022, 612, 56–61. DOI: 10.1038/s41586-022-05329-1.
  • Zhu, D.; Chen, C.; Yu, M.; Shao, L.; Hu, Y.; Xin, C. J.; Yeh, M.; Ghosh, S.; He, L.; Reimer, C.; et al. Spectral Control of Nonclassical Light Pulses Using an Integrated Thin-Film Lithium Niobate Modulator. Light Sci. Appl. 2022, 11, 327. DOI: 10.1038/s41377-022-01029-7.
  • Qiang, X.; Zhou, X.; Wang, J.; Wilkes, C. M.; Loke, T.; O’Gara, S.; Kling, L.; Marshall, G. D.; Santagati, R.; Ralph, T. C.; et al. Large-Scale Silicon Quantum Photonics Implementing Arbitrary Two-Qubit Processing. Nature Photon. 2018, 12, 534–539. DOI: 10.1038/s41566-018-0236-y.
  • Yoo, D.; Barik, A.; León-Pérez, F.; De; Mohr, D. A.; Pelton, M.; Martín-Moreno, L.; Oh, S.-H. Plasmonic Split-Trench Resonator for Trapping and Sensing. ACS Nano 2021, 15, 6669–6677. DOI: 10.1021/acsnano.0c10014.
  • Peng, Y.; Zhao, Y.; Hu, X.; Yang, Y. Optical Fiber Quantum Biosensor Based on Surface Plasmon Polaritons for the Label-Free Measurement of Protein. Sens. Actuators, B 2020, 316, 128097. DOI: 10.1016/j.snb.2020.128097.
  • Frisk Kockum, A.; Miranowicz, A.; Liberato, S.; de, Savasta, S.; Nori, F. Ultrastrong Coupling between Light and Matter. Nat. Rev. Phys. 2019, 1, 19–40. DOI: 10.1038/s42254-018-0006-2.
  • Le Roux, F.; Taylor, R. A.; Bradley, D. D. C. Enhanced and Polarization-Dependent Coupling for Photoaligned Liquid Crystalline Conjugated Polymer Microcavities. ACS Photonics 2020, 7, 746–758. DOI: 10.1021/acsphotonics.9b01596.
  • Zhang, D.; Tang, L.; Chen, J.; Tang, Z.; Liang, P.; Huang, Y.; Cao, M.; Zou, M.; Ni, D.; Chen, J.; et al. Controllable Self-Assembly of SERS Hotspots in Liquid Environment. Langmuir 2021, 37, 939–948. DOI: 10.1021/acs.langmuir.0c03323.
  • Nie, Y.; Jin, C.; Zhang,.; J. X.; J. Microfluidic in Situ Patterning of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopic Sensing of Biomolecules. ACS Sens. 2021, 6, 2584–2592. DOI: 10.1021/acssensors.1c00117.
  • Masud, M. K.; Na, J.; Lin, T.-E.; Malgras, V.; Preet, A.; Ibn Sina, A. A.; Wood, K.; Billah, M.; Kim, J.; You, J.; et al. Nanostructured Mesoporous Gold Biosensor for microRNA Detection at Attomolar Level. Biosens. Bioelectron. 2020, 168, 112429. DOI: 10.1016/j.bios.2020.112429.
  • Lim, H.; Kim, D.; Kwon, G.; Kim, H.-J.; You, J.; Kim, J.; Eguchi, M.; Nanjundan, A. K.; Na, J.; Yamauchi, Y. Synthesis of Uniformly Sized Mesoporous Silver Films and Their SERS Application. J. Phys. Chem. C 2020, 124, 23730–23737. DOI: 10.1021/acs.jpcc.0c07234.
  • Kim, D.; Kim, J.; Henzie, J.; Ko, Y.; Lim, H.; Kwon, G.; Na, J.; Kim, H.-J.; Yamauchi, Y.; You, J. Mesoporous Au Films Assembled on Flexible Cellulose Nanopaper as High-Performance SERS Substrates. Chem. Eng. J. 2021, 419, 129445. DOI: 10.1016/j.cej.2021.129445.
  • Kim, D.; Lee, K.; Jeon, Y.; Kwon, G.; Kim, U.-J.; Oh, C.-S.; Kim, J.; You, J. Plasmonic Nanoparticle-Analyte Nanoarchitectronics Combined with Efficient Analyte Deposition Method on Regenerated Cellulose-Based SERS Platform. Cellulose 2021, 28, 11493–11502. DOI: 10.1007/s10570-021-04283-x.
  • Rodríguez-Lorenzo, L.; Garrido-Maestu, A.; Bhunia, A. K.; Espiña, B.; Prado, M.; Diéguez, L.; Abalde-Cela, S. Gold Nanostars for the Detection of Foodborne Pathogens via Surface-Enhanced Raman Scattering Combined with Microfluidics. ACS Appl. Nano Mater. 2019, 2, 6081–6086. DOI: 10.1021/acsanm.9b01223.
  • Maity, S.; Ghosh, S.; Bhuyan, T.; Das, D.; Bandyopadhyay, D. Microfluidic Immunosensor for Point-of-Care-Testing of Beta-2-Microglobulin in Tear. ACS Sustainable Chem. Eng. 2020, 8, 9268–9276. DOI: 10.1021/acssuschemeng.0c00289.
  • Litti, L.; Trivini, S.; Ferraro, D.; Reguera, J. 3D Printed Microfluidic Device for Magnetic Trapping and SERS Quantitative Evaluation of Environmental and Biomedical Analytes. ACS Appl. Mater. Interfaces 2021, 13, 34752–34761. DOI: 10.1021/acsami.1c09771.
  • Yang, L.; Kim, T.-H.; Cho, H.-Y.; Luo, J.; Lee, J.-M.; Chueng, S-T. D.; Hou, Y.; Yin, P. T.-T.; Han, J.; Kim, J. H.; et al. Hybrid Graphene-Gold Nanoparticle-Based Nucleic Acid Conjugates for Cancer-Specific Multimodal Imaging and Combined Therapeutics. Adv. Funct. Mater. 2021, 31, 2006918. DOI: 10.1002/adfm.202006918.
  • Sun, D.; Cao, F.; Xu, W.; Chen, Q.; Shi, W.; Xu, S. Ultrasensitive and Simultaneous Detection of Two Cytokines Secreted by Single Cell in Microfluidic Droplets via Magnetic-Field Amplified SERS. Anal. Chem. 2019, 91, 2551–2558. DOI: 10.1021/acs.analchem.8b05892.
  • Dinter, F.; Burdukiewicz, M.; Schierack, P.; Lehmann, W.; Nestler, J.; Dame, G.; Rödiger, S. Simultaneous Detection and Quantification of DNA and Protein Biomarkers in Spectrum of Cardiovascular Diseases in a Microfluidic Microbead Chip. Anal. Bioanal. Chem. 2019, 411, 7725–7735. DOI: 10.1007/s00216-019-02199-x.
  • Zhang, D.; Huang, L.; Liu, B.; Su, E.; Chen, H.-Y.; Gu, Z.; Zhao, X. Quantitative Detection of Multiplex Cardiac Biomarkers with Encoded SERS Nanotags on a Single T Line in Lateral Flow Assay. Sens. Actuators, B 2018, 277, 502–509. DOI: 10.1016/j.snb.2018.09.044.
  • Gao, R.; Lv, Z.; Mao, Y.; Yu, L.; Bi, X.; Xu, S.; Cui, J.; Wu, Y. SERS-Based Pump-Free Microfluidic Chip for Highly Sensitive Immunoassay of Prostate-Specific Antigen Biomarkers. ACS Sens. 2019, 4, 938–943. DOI: 10.1021/acssensors.9b00039.
  • Lim, W. Y.; Goh, C.-H.; Thevarajah, T. M.; Goh, B. T.; Khor, S. M. Using SERS-Based Microfluidic Paper-Based Device (μPAD) for Calibration-Free Quantitative Measurement of AMI Cardiac Biomarkers. Biosens. Bioelectron. 2020, 147, 111792. DOI: 10.1016/j.bios.2019.111792.
  • Gutiérrez, Y.; Losurdo, M.; Prinz, I.; Prinz, A.; Bauer, G.; Bauer, M.; Schmidt, M. M.; Schaller, T. Paving the Way to Industrially Fabricated Disposable and Customizable Surface-Enhanced Raman Scattering Microfluidic Chips for Diagnostic Applications. Adv. Eng. Mater. 2022, 24, 2101365. DOI: 10.1002/adem.202101365.
  • Wu, K.; Nguyen, L. Q.; Rindzevicius, T.; Keller, S. S.; Boisen, A. Wafer-Scale Polymer-Based Transparent Nanocorals with Excellent Nanoplasmonic Photothermal Stability for High-Power and Superfast SERS Imaging. Adv. Opt. Mater. 2019, 7, 1901413. DOI: 10.1002/adom.201901413.
  • Damari, R.; Weinberg, O.; Krotkov, D.; Demina, N.; Akulov, K.; Golombek, A.; Schwartz, T.; Fleischer, S. Strong Coupling of Collective Intermolecular Vibrations in Organic Materials at Terahertz Frequencies. Nat. Commun. 2019, 10, 3248. DOI: 10.1038/s41467-019-11130-y.
  • He, X.; Harris, G. I.; Baker, C. G.; Sawadsky, A.; Sfendla, Y. L.; Sachkou, Y. P.; Forstner, S.; Bowen, W. P. Strong Optical Coupling through Superfluid Brillouin Lasing. Nat. Phys. 2020, 16, 417–421. DOI: 10.1038/s41567-020-0785-0.
  • Bahsoun, H.; Chervy, T.; Thomas, A.; Börjesson, K.; Hertzog, M.; George, J.; Devaux, E.; Genet, C.; Hutchison, J. A.; Ebbesen, T. W. Electronic Light–Matter Strong Coupling in Nanofluidic Fabry–Pérot Cavities. ACS Photonics 2018, 5, 225–232. DOI: 10.1021/acsphotonics.7b00679.
  • Hertzog, M.; Börjesson, K. The Effect of Coupling Mode in the Vibrational Strong Coupling Regime. ChemPhotoChem 2020, 4, 612–617. DOI: 10.1002/cptc.202000047.
  • Vergauwe, R.; M.; A.; Thomas, A.; Nagarajan, K.; Shalabney, A.; George, J.; Chervy, T.; Seidel, M.; Devaux, E.; Torbeev, V.; Ebbesen, T. W. Modification of Enzyme Activity by Vibrational Strong Coupling of Water. Angew. Chem. 2019, 131, 15468–15472. DOI: 10.1002/ange.201908876.
  • Imran, I.; Nicolai, G. E.; Stavinski, N. D.; Sparks, J. R. Tuning Vibrational Strong Coupling with Co-Resonators. ACS Photonics 2019, 6, 2405–2412. DOI: 10.1021/acsphotonics.9b01040.
  • Esteban, R.; Baumberg, J. J.; Aizpurua, J. Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering. Acc. Chem. Res. 2022, 55, 1889–1899. DOI: 10.1021/acs.accounts.1c00759.
  • Angelos, X.; Xuezhi, Z.; Rohit, C.; Zsuzsanna, K.-B.; Ermanno, M.; Edina, R.; Vandenbosch, G. A. E.; Alejandro, M.; Baumberg, J. J. Detecting Mid-Infrared Light by Molecular Frequency Upconversion in Dual-Wavelength Nanoantennas. Science 2021, 374, 1268–1271. DOI: 10.1126/science.abk2593.
  • Schmidt, M. K.; Esteban, R.; González-Tudela, A.; Giedke, G.; Aizpurua, J. Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities. ACS Nano 2016, 10, 6291–6298. DOI: 10.1021/acsnano.6b02484.
  • Fehler, K. G.; Antoniuk, L.; Lettner, N.; Ovvyan, A. P.; Waltrich, R.; Gruhler, N.; Davydov, V. A.; Agafonov, V. N.; Pernice, W.; H.; P.; Kubanek, A. Hybrid Quantum Photonics Based on Artificial Atoms Placed inside One Hole of a Photonic Crystal Cavity. ACS Photonics 2021, 8, 2635–2641. DOI: 10.1021/acsphotonics.1c00530.
  • Zhu, S.; Li, H.; Yang, M.; Pang, S. W. Label-Free Detection of Live Cancer Cells and DNA Hybridization Using 3D Multilayered Plasmonic Biosensor. Nanotechnology 2018, 29, 365503. DOI: 10.1088/1361-6528/aac8fb.
  • Liang, K.; Guo, J.; Wu, F.; Huang, Y.; Yu, L. Dynamic Control of Quantum Emitters Strongly Coupled to the Isolated Plasmon Cavity by the Microfluidic Device. J. Phys. Chem. C 2021, 125, 17303–17310. DOI: 10.1021/acs.jpcc.1c03583.
  • Sreekanth, K. V.; Sreejith, S.; Han, S.; Mishra, A.; Chen, X.; Sun, H.; Lim, C. T.; Singh, R. Biosensing with the Singular Phase of an Ultrathin Metal-Dielectric Nanophotonic Cavity. Nat. Commun. 2018, 9, 369. DOI: 10.1038/s41467-018-02860-6.
  • Watanabe, K.; Wu, H.-Y.; Xavier, J.; Joshi, L. T.; Vollmer, F. Single Virus Detection on Silicon Photonic Crystal Random Cavities. Small 2022, 18, 2107597. DOI: 10.1002/smll.202107597.
  • Shen, Y.; He, K.; Zou, Q.; Xing, S.; Huang, J.; Zheng, M.; She, X.; Jin, C. Ultrasmooth Gold Nanogroove Arrays: Ultranarrow Plasmon Resonators with Linewidth down to 2 nm and Their Applications in Refractive Index Sensing. Adv. Funct. Mater. 2022, 32, 2108741. DOI: 10.1002/adfm.202108741.
  • Li, Z.; Fan, L.; Zhao, H.; Yan, Y.; Gao, J. Optical Properties and Application Potential of a Hybrid Cavity Compound Grating Structure. Opt. Express 2022, 30, 7737–7749. DOI: 10.1364/OE.451445.
  • Elshaari, A. W.; Büyüközer, E.; Zadeh, I. E.; Lettner, T.; Zhao, P.; Schöll, E.; Gyger, S.; Reimer, M. E.; Dalacu, D.; Poole, P. J.; et al. Strain-Tunable Quantum Integrated Photonics. Nano Lett. 2018, 18, 7969–7976. ;. DOI: 10.1021/acs.nanolett.8b03937.
  • Fehler, K. G.; Ovvyan, A. P.; Gruhler, N.; Pernice, W. H. P.; Kubanek, A. Efficient Coupling of an Ensemble of Nitrogen Vacancy Center to the Mode of a High-Q, Si3N4 Photonic Crystal Cavity. ACS Nano 2019, 13, 6891–6898. DOI: 10.1021/acsnano.9b01668.
  • Yu, D.; Humar, M.; Meserve, K.; Bailey, R. C.; Chormaic, S. N.; Vollmer, F. Whispering-Gallery-Mode Sensors for Biological and Physical Sensing. Nat. Rev. Methods Primers 2021, 1, 22. DOI: 10.1038/s43586-021-00079-2.
  • Wang, Y.; Zeng, S.; Humbert, G.; Ho, H.-P. Microfluidic Whispering Gallery Mode Optical Sensors for Biological Applications. Laser Photonics Rev. 2020, 14, 2000135. DOI: 10.1002/lpor.202000135.
  • Lombardi, P.; Ovvyan, A. P.; Pazzagli, S.; Mazzamuto, G.; Kewes, G.; Neitzke, O.; Gruhler, N.; Benson, O.; Pernice, W. H. P.; Cataliotti, F. S.; et al. Photostable Molecules on Chip: Integrated Sources of Nonclassical Light. ACS Photonics 2018, 5, 126–132. DOI: 10.1021/acsphotonics.7b00521.
  • Todisco, F.; Giorgi, M. d.; Esposito, M.; Marco, L. d.; Zizzari, A.; Bianco, M.; Dominici, L.; Ballarini, D.; Arima, V.; Gigli, G.; et al. Ultrastrong Plasmon–Exciton Coupling by Dynamic Molecular Aggregation. ACS Photonics 2018, 5, 143–150. DOI: 10.1021/acsphotonics.7b00554.
  • Degen, C. L.; Reinhard, F.; Cappellaro, P. Quantum Sensing. Rev. Mod. Phys. 2017, 89, 35002. DOI: 10.1103/RevModPhys.89.035002.
  • Crespi, A.; Lobino, M.; Matthews, J. C. F.; Politi, A.; Neal, C. R.; Ramponi, R.; Osellame, R.; O’Brien, J. L. Measuring Protein Concentration with Entangled Photons. Appl. Phys. Lett. 2012, 100, 233704. DOI: 10.1063/1.4724105.
  • Dowran, M.; Kumar, A.; Lawrie, B. J.; Pooser, R. C.; Marino, A. M. Quantum-Enhanced Plasmonic Sensing. Optica 2018, 5, 628. DOI: 10.1364/OPTICA.5.000628.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.