1,071
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Review: Advances in the Accuracy and Traceability of Metalloprotein Measurements Using Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Hu, C.; Chan, S. I.; Sawyer, E. B.; Yu, Y.; Wang, J. Metalloprotein Design Using Genetic Code Expansion. Chem. Soc. Rev. 2014, 43, 6498–6510. DOI: 10.1039/c4cs00018h.
  • Li, J.; Wu, L.; Jin, Y.; Su, P.; Yang, B.; Yang, Y. A Universal SI-Traceable Isotope Dilution Mass Spectrometry Method for Protein Quantitation in a Matrix by Tandem Mass Tag Technology. Anal. Bioanal. Chem. 2016, 408, 3485–3493. DOI: 10.1007/s00216-016-9424-0.
  • Fu, D.; Finney, L. Metalloproteomics: Challenges and Prospective for Clinical Research Applications. Expert Rev. Proteomics. 2014, 11, 13–19. DOI: 10.1586/14789450.2014.876365.
  • Frieden, E. Copper and Iron Metalloproteins. Trends Biochem. Sci. 1976, 1, 273–274. DOI: 10.1016/S0968-0004(76)80131-4.
  • Waldron, K. J.; Rutherford, J. C.; Ford, D.; Robinson, N. J. Metalloproteins and Metal Sensing. Nature 2009, 460, 823–830. DOI: 10.1038/nature08300.
  • Holley, A. K.; Bakthavatchalu, V.; Velez-Roman, J. M.; St Clair, D. K. Manganese Superoxide Dismutase: Guardian of the Powerhouse. Int. J. Mol. Sci. 2011, 12, 7114–7162. DOI: 10.3390/ijms12107114.
  • Labunskyy, V. M.; Hatfield, D. L.; Gladyshev, V. N. Selenoproteins: Molecular Pathways and Physiological Roles. Physiol. Rev. 2014, 94, 739–777. DOI: 10.1152/physrev.00039.2013.
  • Vesper, H. W.; Thienpont, L. M. Traceability in Laboratory Medicine. Clin. Chem. 2009, 55, 1067–1075. DOI: 10.1373/clinchem.2008.107052.
  • Van Gool, A.; Corrales, F.; Čolović, M.; Krstić, D.; Oliver-Martos, B.; Martínez-Cáceres, E.; Jakasa, I.; Gajski, G.; Brun, V.; Kyriacou, K.; et al. Analytical Techniques for Multiplex Analysis of Protein Biomarkers. Expert Rev. Proteomics. 2020, 17, 257–273. DOI: 10.1080/14789450.2020.1763174.
  • Vogl, J. Characterisation of Reference Materials by Isotope Dilution Mass Spectrometry. J. Anal. At. Spectrom. 2007, 22, 475. DOI: 10.1039/b614612k.
  • Sargent, M.; Goenaga-Infante, H.; Inagaki, K.; Ma, L.; Meija, J.; Pramann, A.; Rienitz, O.; Sturgeon, R.; Vogl, J.; Wang, J.; Yang, L. The Role of ICP-MS in Inorganic Chemical Metrology. Metrologia 2019, 56, 034005. DOI: 10.1088/1681-7575/ab0eac.
  • Sargent, M.; Harrington, C.; Harte, R. Guidelines for Achieving High Accuracy in Isotope Dilution Mass Spectrometry; Royal Society of Chemistry: Cambridge, UK, 2002.
  • Vogl, J. Measurement Uncertainty in Single, Double and Triple Isotope Dilution Mass Spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 275–281. DOI: 10.1002/rcm.5306.
  • Henrion, A. Reduction of Systematic Errors in Quantitative Analysis by Isotope Dilution Mass Spectrometry (IDMS): An Iterative Method. Fresenius. J. Anal. Chem. 1994, 350, 657–658. DOI: 10.1007/BF00323658.
  • Catterick, T.; Fairman, B.; Harrington, C. A Structured Approach to Achieving High Accuracy Measurements with Isotope Dilution Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 1998, 13, 1009–1013. DOI: 10.1039/a801233d.
  • Heumann, K. G.; Rottmann, L.; Vogl, J. Elemental Speciation with Liquid Chromatography-Inductively Coupled Plasma Isotope Dilution Mass Spectrometry. J. Anal. At. Spectrom. 1994, 9, 1351–1355. DOI: 10.1039/JA9940901351.
  • Sutton, P.; Harrington, C.; Fairman, B.; Evans, H.; Ebdon, L.; Catterick, T. The Small-Scale Synthesis and NMR Characterisation of Isotopically Enriched Organotin Compounds. Appl. Organometal. Chem. 2000, 14, 691–700. DOI: 10.1002/1099-0739(200011)14:11<691::AID-AOC62>3.0.CO;2-L.
  • Clough, R.; Belt, S.; Evans, E. H.; Sutton, P.; Fairman, B.; Catterick, T. Uncertainty Contributions to Species Specific Isotope Dilution Analysis. Part 1. Characterisation and Stability of 199Hg and13C Isotopically Enriched Methylmercury by 1H NMR. J. Anal. At. Spectrom. 2003, 18, 1033–1038. DOI: 10.1039/B302880C.
  • Vogl, J.; Heumann, K. Determination of Heavy Metal Complexes with Humic Substances by HPLC/ICP-MS Coupling Using on-Line Isotope Dilution Technique. Fresenius J. Anal. Chem. 1997, 359, 438–441. DOI: 10.1007/s002160050606.
  • Harrington, C.; Vidler, D.; Watts, M.; Hall, J. Potential for Using Isotopically Altered Metalloproteins in Species-Specific Isotope Dilution Analysis of Proteins by HPLC Coupled to Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2005, 77, 4034–4041. DOI: 10.1021/ac050256t.
  • Bettmer, J. Application of Isotope Dilution ICP–MS Techniques to Quantitative Proteomics. Anal. Bioanal. Chem. 2010, 397, 3495–3502. DOI: 10.1007/s00216-010-3861-y.
  • Rodrıguez-Gonzalez, P.; Garcia Alonso, J. Recent Advances in Isotope Dilution Analysis for Elemental Speciation. J. Anal. At. Spectrom. 2010, 25, 239.
  • Deitrich, C. L.; Raab, A.; Pioselli, B.; Thomas-Oates, J. E.; Feldmann, J. Chemical Preparation of an Isotopically Enriched Superoxide Dismutase and Its Characterization as a Standard for Species-Specific Isotope Dilution Analysis. Anal. Chem. 2007, 79, 8381–8390. DOI: 10.1021/ac071397t.
  • Sargent, M. Traceability in Analytical Atomic Spectrometry: Elemental Analysis Comes Full Circle. J. Anal. At. Spectrom. 2020, 35, 2479–2486. DOI: 10.1039/D0JA00236D.
  • Swart, C. HLT05 European Metrology Research Programme. Metrology for Metalloproteins - Final Project Report; PTB: Braunschweig, 2015. https://www.euramet.org/research-innovation/search-research-projects/details/project/metrology-for-metalloproteins/?tx_eurametctcp_project%5Baction%5D=show&tx_eurametctcp_project%5Bcontroller%5D=Project&cHash=18c6aa719cf6caf10c8a66f7136c9910 (accessed May 29, 2022).
  • Muñoz, A.; Kral, R.; Schimmel, H. Quantification of Protein Calibrants by Amino Acid Analysis Using Isotope Dilution Mass Spectrometry. Anal. Biochem. 2011, 408, 124–131. DOI: 10.1016/j.ab.2010.08.037.
  • Arsene, C. G.; Ohlendorf, R.; Burkitt, W.; Pritchard, C.; Henrion, A.; O'Connor, G.; Bunk, D. M.; Güttler, B. Protein Quantification by Isotope Dilution Mass Spectrometry of Proteolytic Fragments: Cleavage Rate and Accuracy. Anal. Chem. 2008, 80, 4154–4160. DOI: 10.1021/ac7024738.
  • Mayya, V.; K. Han, D. Proteomic Applications of Protein Quantification by Isotope-Dilution Mass Spectrometry. Expert Rev. Proteomics. 2006, 3, 597–610. DOI: 10.1586/14789450.3.6.597.
  • Bi, J.; Wu, L.; Yang, B.; Yang, Y.; Wang, J. Development of Hemoglobin A1c Certified Reference Material by Liquid Chromatography Isotope Dilution Mass Spectrometry. Anal. Bioanal. Chem. 2012, 403, 549–554. DOI: 10.1007/s00216-012-5834-9.
  • Liu, H.; Wong, L.; Yong, S.; Liu, Q.; Lee, T. K. Achieving Comparability with IFCC Reference Method for the Measurement of Hemoglobin A1c by Use of an Improved Isotope-Dilution Mass Spectrometry Method. Anal. Bioanal. Chem. 2015, 407, 7579–7587. DOI: 10.1007/s00216-015-8961-2.
  • Prange, A.; Schaumlöffel, D.; Brätter, P.; Richarz, A.-N.; Wolf, C. Species Analysis of Metallothionein Isoforms in Human Brain Cytosols by Use of Capillary Electrophoresis Hyphenated to Inductively Coupled Plasma–Sector Field Mass Spectrometry. Fresenius. J. Anal. Chem. 2001, 371, 764–774. DOI: 10.1007/s002160101019.
  • Schaumlöffel, D.; Prange, A.; Marx, G.; Heumann, K. G.; Brätter, P. Characterization and Quantification of Metallothionein Isoforms by Capillary Electrophoresis–Inductively Coupled Plasma–Isotope-Dilution Mass Spectrometry. Anal. Bioanal. Chem. 2002, 372, 155–163. DOI: 10.1007/s00216-001-1164-z.
  • Feng, L.; Zhang, D.; Wang, J.; Shen, D.; Li, H. A Novel Quantification Strategy of Transferrin and Albumin in Human Serum by Species-Unspecific Isotope Dilution Laser Ablation Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Anal. Chim. Acta. 2015, 884, 19–25. DOI: 10.1016/j.aca.2015.05.009.
  • Hermann, G.; Møller, L. H.; Gammelgaard, B.; Hohlweg, J.; Mattanovich, D.; Hann, S.; Koellensperger, G. In Vivo Synthesized 34S Enriched Amino Acid Standards for Species Specific Isotope Dilution of Proteins. J. Anal. At. Spectrom. 2016, 31, 1830–1835. DOI: 10.1039/C6JA00039H.
  • Anderson, C. P.; Shen, M.; Eisenstein, R. S.; Leibold, E. A. Mammalian Iron Metabolism and Its Control by Iron Regulatory Proteins. Biochim. Biophys. Acta. 2012, 1823, 1468–1483. DOI: 10.1016/j.bbamcr.2012.05.010.
  • Bilska-Wilkosz, A.; Iciek, M.; Górny, M.; Kowalczyk-Pachel, D. The Role of Hemoproteins: Hemoglobin, Myoglobin and Neuroglobin in Endogenous Thiosulfate Production Processes. Int. J. Mol. Sci. 2017, 18, 1315. DOI: 10.3390/ijms18061315.
  • Johnson, D. C.; Dean, D. R.; Smith, A. D.; Johnson, M. K. Structure, Function, and Formation of Biological Iron-Sulfur Clusters. Annu. Rev. Biochem. 2005, 74, 247–281. DOI: 10.1146/annurev.biochem.74.082803.133518.
  • Faller, P.; Hureau, C. A Bioinorganic View of Alzheimer’s Disease: When Misplaced Metal Ions (Re)Direct the Electrons to the Wrong Target. Chemistry 2012, 18, 15910–15920. DOI: 10.1002/chem.201202697.
  • Thompson, J. W.; Bruick, R. K. Protein Degradation and Iron Homeostasis. Biochim. Biophys. Acta. 2012, 1823, 1484–1490. DOI: 10.1016/j.bbamcr.2012.02.003.
  • Sousa, L.; Oliveira, M. M.; Pessôa, M. T. C.; Barbosa, L. A. Iron Overload: Effects on Cellular Biochemistry. Clin. Chim. Acta. 2020, 504, 180–189. DOI: 10.1016/j.cca.2019.11.029.
  • Philpott, C. C.; Jadhav, S. The Ins and Outs of Iron: Escorting Iron through the Mammalian Cytosol. Free Radic. Biol. Med. 2019, 133, 112–117. DOI: 10.1016/j.freeradbiomed.2018.10.411.
  • Hider, R. C.; Kong, X. Iron Speciation in the Cytosol: An Overview. Dalton Trans. 2013, 42, 3220–3229. DOI: 10.1039/c2dt32149a.
  • Joppe, K.; Roser, A.-E.; Maass, F.; Lingor, P. The Contribution of Iron to Protein Aggregation Disorders in the Central Nervous System. Front. Neurosci. 2019, 13, 15. DOI: 10.3389/fnins.2019.00015.
  • Swart, C. Metrology for Metalloproteins–Where Are we Now, Where Are we Heading? Anal. Bioanal. Chem. 2013, 405, 5697–5723. DOI: 10.1007/s00216-013-6933-y.
  • Michalke, B.; Willkommen, D.; Drobyshev, E.; Solovyev, N. The Importance of Speciation Analysis in Neurodegeneration Research. Trends Anal. Chem. 2018, 104, 160–170. DOI: 10.1016/j.trac.2017.08.008.
  • Silva, A. M. N.; Moniz, T.; de Castro, B.; Rangel, M. Human Transferrin: An Inorganic Biochemistry Perspective. Coord. Chem. Rev. 2021, 449, 214186. DOI: 10.1016/j.ccr.2021.214186.
  • Feng, L.; Zhang, D.; Wang, J.; Li, H. Simultaneous Quantification of Proteins in Human Serum via Sulfur and Iron Using HPLC Coupled to Post-Column Isotope Dilution Mass Spectrometry. Anal. Methods. 2014, 6, 7655–7662. DOI: 10.1039/C4AY00907J.
  • Bortolotti, F.; Paoli, G. D.; Tagliaro, F. Carbohydrate-Deficient Transferrin (CDT) as a Marker of Alcohol Abuse: A Critical Review of the Literature 2001–2005. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 841, 96–109. DOI: 10.1016/j.jchromb.2006.05.005.
  • Jou, Y.-J.; Lin, C.-D.; Lai, C.-H.; Chen, C.-H.; Kao, J.-Y.; Chen, S.-Y.; Tsai, M.-H.; Huang, S.-H.; Lin, C.-W. Proteomic Identification of Salivary Transferrin as a Biomarker for Early Detection of Oral Cancer. Anal. Chim. Acta. 2010, 681, 41–48. DOI: 10.1016/j.aca.2010.09.030.
  • Babovic-Vuksanovic, D.; O'Brien, J. F. Laboratory Diagnosis of Congenital Disorders of Glycosylation Type I by Analysis of Transferrin Glycoforms. Mol. Diagn. Ther. 2007, 11, 303–311. DOI: 10.1007/BF03256251.
  • del Castillo Busto, M. E.; Montes-Bayón, M.; Sanz-Medel, A. Accurate Determination of Human Serum Transferrin Isoforms: Exploring Metal-Specific Isotope Dilution Analysis as a Quantitative Proteomic Tool. Anal. Chem. 2006, 78, 8218–8226. DOI: 10.1021/ac060956d.
  • Konz, I.; Fernández, B.; Fernández, M. L.; Pereiro, R.; Sanz-Medel, A. Absolute Quantification of Human Serum Transferrin by Species-Specific Isotope Dilution Laser Ablation ICP-MS. Anal. Chem. 2011, 83, 5353–5360. DOI: 10.1021/ac200780b.
  • Frank, C.; Rienitz, O.; Jahrling, R.; Schiel, D.; Zakel, S. Reference Measurement Procedures for the Iron Saturation in Human Transferrin Based on IDMS and Raman Scattering. Metallomics 2012, 4, 1239–1244. DOI: 10.1039/c2mt20183f.
  • Frank, C.; Rienitz, O.; Swart, C.; Schiel, D. Improving Species-Specific IDMS: The Advantages of Triple IDMS. Anal. Bioanal. Chem. 2013, 405, 1913–1919. DOI: 10.1007/s00216-012-6315-x.
  • Brauckmann, C.; Pramann, A.; Rienitz, O.; Schulze, A.; Phukphatthanachai, P.; Vogl, J. Combining Isotope Dilution and Standard Addition-Elemental Analysis in Complex Samples. Molecules 2021, 26, 2649. DOI: 10.3390/molecules26092649.
  • Lynch, S.; Pfeiffer, C. M.; Georgieff, M. K.; Brittenham, G.; Fairweather-Tait, S.; Hurrell, R. F.; McArdle, H. J.; Raiten, D. J. Biomarkers of Nutrition for Development (BOND)—Iron Review. J. Nutr. 2018, 148, 1001S–1067S. DOI: 10.1093/jn/nxx036.
  • Massover, W. H. Ultrastructure of Ferritin and Apoferritin: A Review. Micron 1993, 24, 389–437. DOI: 10.1016/0968-4328(93)90005-L.
  • Konz, T.; Anon Alvarez, E.; Montes-Bayon, M.; Sanz-Medel, A. Antibody Labeling and Elemental Mass Spectrometry (Inductively Coupled Plasma-Mass Spectrometry) Using Isotope Dilution for Highly Sensitive Ferritin Determination and Iron-Ferritin Ratio Measurements. Anal. Chem. 2013, 85, 8334–8340. DOI: 10.1021/ac401692k.
  • Yang, D.; Ng, X. Q.; Walczyk, T. Quantification of Non-Transferrin Bound Iron (NTBI) in Human Serum by Isotope Dilution Mass Spectrometry (IDMS). J. Anal. At. Spectrom. 2019, 34, 1988–1997. DOI: 10.1039/C9JA00142E.
  • Hoppler, M.; Zeder, C.; Walczyk, T. Quantification of Ferritin-Bound Iron in Plant Samples by Isotope Tagging and Species-Specific Isotope Dilution Mass Spectrometry. Anal. Chem. 2009, 81, 7368–7372. DOI: 10.1021/ac900885j.
  • Hoppler, M.; Meile, L.; Walczyk, T. Biosynthesis, Isolation and Characterization of 57Fe-Enriched Phaseolus vulgaris Ferritin after Heterologous Expression in Escherichia coli. Anal. Bioanal. Chem. 2008, 390, 53–59. DOI: 10.1007/s00216-007-1691-3.
  • Ren, Y.; Walczyk, T. Quantification of Ferritin Bound Iron in Human Serum Using Species-Specific Isotope Dilution Mass Spectrometry. Metallomics 2014, 6, 1709–1717. DOI: 10.1039/c4mt00127c.
  • Konz, I.; Fernández, B.; Fernández, M. L.; Pereiro, R.; Sanz-Medel, A. Laser Ablation ICP-MS for Quantitative Biomedical Applications. Anal. Bioanal. Chem. 2012, 403, 2113–2125. DOI: 10.1007/s00216-012-6023-6.
  • Calderon-Celis, F.; Encinar, J. R.; Sanz-Medel, A. Standardization Approaches in Absolute Quantitative Proteomics with Mass Spectrometry. Mass Spectrom. Rev. 2018, 37, 715–737. DOI: 10.1002/mas.21542.
  • Kretschy, D.; Koellensperger, G.; Hann, S. Elemental Labelling Combined with Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry for Quantification of Biomolecules: A Review. Anal. Chim. Acta. 2012, 750, 98–110. DOI: 10.1016/j.aca.2012.06.040.
  • Tchaikovsky, A.; Schoeberl, A.; Schueffl, H.; Raab, A.; Emin, S.; Slany, A.; Heffeter, P.; Koellensperger, G.; Swart, C. Quantification of Ferritin-Bound Iron in Murine Samples for Alzheimer’s Disease Studies Using Species-Specific Isotope Dilution Mass Spectrometry. Metrologia 2020, 57, 042101. DOI: 10.1088/1681-7575/ab8c9f.
  • Hsia, C. C. W. Respiratory Function of Hemoglobin. N. Engl. J. Med. 1998, 338, 239–247. DOI: 10.1056/NEJM199801223380407.
  • Akinsheye, I.; Alsultan, A.; Solovieff, N.; Ngo, D.; Baldwin, C. T.; Sebastiani, P.; Chui, D. H. K.; Steinberg, M. H. Fetal Hemoglobin in Sickle Cell Anemia. Blood 2011, 118, 19–27. DOI: 10.1182/blood-2011-03-325258.
  • Soros, A. A.; Chalew, S. A.; McCarter, R. J.; Shepard, R.; Hempe, J. M. Hemoglobin Glycation Index: A Robust Measure of Hemoglobin A1c Bias in Pediatric Type 1 Diabetes Patients. Pediatr. Diabetes. 2010, 11, 455–461. DOI: 10.1111/j.1399-5448.2009.00630.x.
  • del Castillo Busto, M. E.; Montes-Bayón, M.; Añón, E.; Sanz-Medel, A. Simultaneous Determination of Glycated Haemoglobin, a Long Term Biomarker of Diabetes Mellitus, and Total Haemoglobin by Isotope Dilution and HPLC-ICP-MS. J. Anal. At. Spectrom. 2008, 23, 758. DOI: 10.1039/b718008j.
  • Heuck, C. C.; Reinauer, H.; Wood, W. G. The Alkaline Haematin Detergent (AHD575) Method for the Determination of Haemoglobin in Blood–A Candidate Reference Measurement Procedure. Clin. Lab. 2008, 54, 255–272.
  • Wolf, H. U.; Lang, W.; Zander, R. Alkaline Haematin D-575, a New Tool for the Determination of Haemoglobin as an Alternative to the Cyanhaemiglobin Method. II. Standardisation of the Method Using Pure Chlorohaemin. Clin. Chim. Acta. 1984, 136, 95–104. DOI: 10.1016/0009-8981(84)90251-1.
  • Frank, C.; Brauckmann, C.; Palos, M.; Arsene, C. G.; Neukammer, J.; Del Castillo Busto, M. E.; Zakel, S.; Swart, C.; Guttler, B.; Stosch, R. Comparison of Potential Higher Order Reference Methods for Total Haemoglobin Quantification-An Interlaboratory Study. Anal. Bioanal. Chem. 2017, 409, 2341–2351. DOI: 10.1007/s00216-016-0176-7.
  • Brauckmann, C.; Frank, C.; Schulze, D.; Kaiser, P.; Stosch, R.; Swart, C. Preparation and Characterisation of an 57Fe Enriched Haemoglobin Spike Material for Species-Specific Isotope Dilution Mass Spectrometry. J. Anal. At. Spectrom. 2016, 31, 1846–1857. DOI: 10.1039/C6JA00028B.
  • Hellman, N. E.; Gitlin, J. D. Ceruloplasmin Metabolism and Function. Annu. Rev. Nutr. 2002, 22, 439–458. DOI: 10.1146/annurev.nutr.22.012502.114457.
  • Deitrich, C. L.; Braukmann, S.; Raab, A.; Munro, C.; Pioselli, B.; Krupp, E. M.; Thomas-Oates, J. E.; Feldmann, J. Absolute Quantification of Superoxide Dismutase (SOD) Using Species-Specific Isotope Dilution Analysis. Anal. Bioanal. Chem. 2010, 397, 3515–3524. DOI: 10.1007/s00216-010-3680-1.
  • Gleitzmann, J.; Raab, A.; Schulze, D.; Wätzig, H.; Feldmann, J.; Swart, C. Accurate and Precise Quantification of Cu,Zn-SOD in Human Red Blood Cells Using Species-Specific Double and Triple IDMS. J. Anal. At. Spectrom. 2016, 31, 1922–1928. DOI: 10.1039/C5JA00459D.
  • Ziller, A.; Fraissinet-Tachet, L. Metallothionein Diversity and Distribution in the Tree of Life: A Multifunctional Protein. Metallomics 2018, 10, 1549–1559. DOI: 10.1039/c8mt00165k.
  • Ryvolova, M.; Krizkova, S.; Adam, V.; Beklova, M.; Trnkova, L.; Hubalek, J.; Kizek, R. Analytical Methods for Metallothionein Detection. CAC. 2011, 7, 243–261. DOI: 10.2174/1573411011107030243.
  • Alvarez, L.; Gonzalez-Iglesias, H.; Garcia, M.; Ghosh, S.; Sanz-Medel, A.; Coca-Prados, M. The Stoichiometric Transition from Zn6Cu1-Metallothionein to Zn7-Metallothionein Underlies the up-Regulation of Metallothionein (MT) Expression: Quantitative Analysis of MT-Metal Load in Eye Cells. J. Biol. Chem. 2012, 287, 28456–28469. DOI: 10.1074/jbc.M112.365015.
  • Rodriguez-Menendez, S.; Fernandez, B.; Garcia, M.; Alvarez, L.; Fernandez, M. L.; Sanz-Medel, A.; Coca-Prados, M.; Pereiro, R.; Gonzalez-Iglesias, H. Quantitative Study of Zinc and Metallothioneins in the Human Retina and RPE Cells by Mass Spectrometry-Based Methodologies. Talanta 2018, 178, 222–230. DOI: 10.1016/j.talanta.2017.09.024.
  • Timerbaev, A. R. Capillary Electrophoresis Coupled to Mass Spectrometry for Biospeciation Analysis: Critical Evaluation. Trends Anal. Chem. 2009, 28, 416–425. DOI: 10.1016/j.trac.2009.02.001.
  • Solovyev, N.; Ala, A.; Schilsky, M.; Mills, C.; Willis, K.; Harrington, C. F. Biomedical Copper Speciation in Relation to Wilson’s Disease Using Strong Anion Exchange Chromatography Coupled to Triple Quadrupole Inductively Coupled Plasma Mass Spectrometry. Anal. Chim. Acta. 2020, 1098, 27–36. DOI: 10.1016/j.aca.2019.11.033.
  • Ala, A.; Walker, A. P.; Ashkan, K.; Dooley, J. S.; Schilsky, M. L. Wilson’s Disease. Lancet 2007, 369, 397–408. DOI: 10.1016/S0140-6736(07)60196-2.
  • Del Castillo Busto, M. E.; Cuello-Nunez, S.; Ward-Deitrich, C.; Morley, T.; Goenaga-Infante, H. A Fit-for-Purpose Copper Speciation Method for the Determination of Exchangeable Copper Relevant to Wilson’s Disease. Anal. Bioanal. Chem. 2022, 414, 561–573. DOI: 10.1007/s00216-021-03517-y.
  • Hadaszadeh, B. M.; Beggs, A. H. Selenoproteins and Their Impact on Human Health through Diverse Physiological Pathways. Physiology (Bethesda) 2006, 21, 307–315. DOI: 10.1152/physiol.00021.2006.
  • Youn, H. S.; Lim, H. J.; Choi, Y. J.; Lee, J. Y.; Lee, M. Y.; Ryu, J. H. Selenium Suppresses the Activation of Transcription Factor NF-Kappa B and IRF3 Induced by TLR3 or TLR4 Agonists. Int. Immunopharmacol. 2008, 8, 495–501. DOI: 10.1016/j.intimp.2007.12.008.
  • Tondo, M.; Moreno, J.; Casado, M.; Brandi, N.; Sierra, C.; Vilaseca, M. A.; Ormazabal, A.; Artuch, R. Selenium Concentration in Cerebrospinal Fluid Samples from a Paediatric Population. Neurochem. Res. 2010, 35, 1290–1293. DOI: 10.1007/s11064-010-0182-7.
  • Schomburg, L. Selenium, Selenoproteins and the Thyroid Gland: Interactions in Health and Disease. Nat. Rev. Endocrinol. 2011, 8, 160–171. DOI: 10.1038/nrendo.2011.174.
  • Solovyev, N.; Drobyshev, E.; Blume, B.; Michalke, B. Selenium at the Neural Barriers: A Review. Front. Neurosci. 2021, 15, 630016. DOI: 10.3389/fnins.2021.630016.
  • Rayman, M. P. Selenium and Human Health. Lancet 2012, 379, 1256–1268. DOI: 10.1016/S0140-6736(11)61452-9.
  • Vinceti, M.; Mandrioli, J.; Borella, P.; Michalke, B.; Tsatsakis, A.; Finkelstein, Y. Selenium Neurotoxicity in Humans: Bridging Laboratory and Epidemiologic Studies. Toxicol. Lett. 2014, 230, 295–303. DOI: 10.1016/j.toxlet.2013.11.016.
  • Weekley, C. M.; Harris, H. H. Which Form Is That? The Importance of Selenium Speciation and Metabolism in the Prevention and Treatment of Disease. Chem. Soc. Rev. 2013, 42, 8870–8894. DOI: 10.1039/c3cs60272a.
  • Ingold, I.; Berndt, C.; Schmitt, S.; Doll, S.; Poschmann, G.; Buday, K.; Roveri, A.; Peng, X.; Porto Freitas, F.; Seibt, T.; et al. Selenium Utilization by GPX4 is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell 2018, 172, 409–422.e21. DOI: 10.1016/j.cell.2017.11.048.
  • Stadtman, T. C. Selenocysteine. Annu. Rev. Biochem. 1996, 65, 83–100. DOI: 10.1146/annurev.bi.65.070196.000503.
  • Arner, E. S. Selenoproteins-What Unique Properties Can Arise with Selenocysteine in Place of Cysteine? Exp. Cell. Res. 2010, 316, 1296.
  • Savaskan, N. E.; Brauer, A. U.; Kuhbacher, M.; Eyupoglu, I. Y.; Kyriakopoulos, A.; Ninnemann, O.; Behne, D.; Nitsch, R. Selenium Deficiency Increases Susceptibility to Glutamate-Induced Excitotoxicity. FASEB J. 2003, 17, 112–114. DOI: 10.1096/fj.02-0067fje.
  • Zhang, S.; Rocourt, C.; Cheng, W. H. Selenoproteins and the Aging Brain. Mech. Ageing Dev. 2010, 131, 253–260. DOI: 10.1016/j.mad.2010.02.006.
  • Solovyev, N. D. Importance of Selenium and Selenoprotein for Brain Function: From Antioxidant Protection to Neuronal Signalling. J. Inorg. Biochem. 2015, 153, 1–12. DOI: 10.1016/j.jinorgbio.2015.09.003.
  • Kryukov, G. V.; Castellano, S.; Novoselov, S. V.; Lobanov, A. V.; Zehtab, O.; Guigo, R.; Gladyshev, V. N. Characterization of Mammalian Selenoproteomes. Science 2003, 300, 1439–1443. DOI: 10.1126/science.1083516.
  • Weekley, C. M.; Aitken, J. B.; Vogt, S.; Finney, L. A.; Paterson, D. J.; de Jonge, M. D.; Howard, D. L.; Musgrave, I. F.; Harris, H. H. Uptake, Distribution, and Speciation of Selenoamino Acids by Human Cancer Cells: X-Ray Absorption and Fluorescence Methods. Biochemistry 2011, 50, 1641–1650. DOI: 10.1021/bi101678a.
  • Gammelgaard, B.; Gabel-Jensen, C.; Sturup, S.; Hansen, H. R. Complementary Use of Molecular and Element-Specific Mass Spectrometry for Identification of Selenium Compounds Related to Human Selenium Metabolism. Anal. Bioanal. Chem. 2008, 390, 1691–1706. DOI: 10.1007/s00216-007-1788-8.
  • Köhrl, J.; Brigelius-Flohé, R.; Böck, A.; Gärtner, R.; Meyer, O.; Flohé, L. Selenium in Biology: Facts and Medical Perspectives. Biol. Chem. 2000, 381, 849–864.
  • Combs, G. F. Jr., Biomarkers of Selenium Status. Nutrients 2015, 7, 2209–2236. DOI: 10.3390/nu7042209.
  • Brigelius-Flohe, R.; Flohe, L. Selenium and Redox Signaling. Arch. Biochem. Biophys. 2017, 617, 48.
  • Solovyev, N. Selenoprotein P and Its Potential Role in Alzheimer’s Disease. Hormones (Athens) 2020, 19, 73–79. DOI: 10.1007/s42000-019-00112-w.
  • Brigelius-Flohe, R.; Maiorino, M. Glutathione Peroxidases. Biochim. Biophys. Acta. 2013, 1830, 3289–3303. DOI: 10.1016/j.bbagen.2012.11.020.
  • Steinbrenner, H.; Brigelius-Flohé, R. Das Essenzielle Spurenelement Selen: Selenbedarf in Gesundheit Und Krankheit. Aktuel. Ernahrungsmed. 2015, 40, 368–378. DOI: 10.1055/s-0035-1552774.
  • Solovyev, N.; Drobyshev, E.; Bjørklund, G.; Dubrovskii, Y.; Lysiuk, R.; Rayman, M. P. Selenium, Selenoprotein P, and Alzheimer’s Disease: Is There a Link? Free Radic. Biol. Med. 2018, 127, 124–133. DOI: 10.1016/j.freeradbiomed.2018.02.030.
  • Burk, R. F.; Hill, K. E. Selenoprotein P-Expression, Functions, and Roles in Mammals. Biochim. Biophys. Acta. 2009, 1790, 1441–1447. DOI: 10.1016/j.bbagen.2009.03.026.
  • Encinar, J. R.; Schaumlöffel, D.; Ogra, Y.; Lobinski, R. Determination of Selenomethionine and Selenocysteine in Human Serum Using Speciated Isotope Dilution-Capillary HPLC − Inductively Coupled Plasma Collision Cell Mass Spectrometry. Anal. Chem. 2004, 76, 6635–6642. DOI: 10.1021/ac049280h.
  • Jitaru, P.; Goenaga-Infante, H.; Vaslin-Reimann, S.; Fisicaro, P. A Systematic Approach to the Accurate Quantification of Selenium in Serum Selenoalbumin by HPLC-ICP-MS. Anal. Chim. Acta. 2010, 657, 100–107. DOI: 10.1016/j.aca.2009.10.037.
  • Gómez-Espina, J.; Blanco-González, E.; Montes-Bayón, M.; Sanz-Medel, A. Elemental Mass Spectrometry for Se-Dependent Glutathione Peroxidase Determination in Red Blood Cells as Oxidative Stress Biomarker. J. Anal. At. Spectrom. 2012, 27, 1949. DOI: 10.1039/c2ja30115f.
  • Lobanov, A. V.; Hatfield, D. L.; Gladyshev, V. N. Eukaryotic Selenoproteins and Selenoproteomes. Biochim. Biophys. Acta. 2009, 1790, 1424–1428. DOI: 10.1016/j.bbagen.2009.05.014.
  • Schweizer, U.; Schomburg, L.; Köhrle, J. Selenoprotein P and Selenium Distribution in Mammals. In Selenium: Its Molecular Biology and Role in Human Health, 4th ed.; Hatfield, D.L., Schweizer, U., Tsuji, P.A., Gladyshev, V.N. Eds.; Springer International Publishing: Cham, 2016; pp. 261.
  • Chen, J.; Berry, M. J. Selenium and Selenoproteins in the Brain and Brain Diseases. J. Neurochem. 2003, 86, 1–12. DOI: 10.1046/j.1471-4159.2003.01854.x.
  • Deitrich, C.L.; Cuello-Nuñez, S.; Kmiotek, D.; Torma, F.A.; del Castillo Busto, M.E.; Fisicaro, P.; Goenaga-Infante, H. Accurate Quantification of Selenoprotein P (SEPP1) in Plasma Using Isotopically Enriched Seleno-peptides and Species-Specific Isotope Dilution with HPLC Coupled to ICP-MS/MS. Analytical Chemistry, 2016, 88, 6357–6365. DOI: 10.1021/acs.analchem.6b00715
  • Castillo Busto, M. E. d.; Oster, C.; Cuello-Nuñez, S.; Deitrich, C. L.; Raab, A.; Konopka, A.; Lehmann, W. D.; Goenaga-Infante, H.; Fisicaro, P. Accurate Quantification of Selenoproteins in Human Plasma/Serum by Isotope Dilution ICP-MS: Focus on Selenoprotein P. J. Anal. At. Spectrom. 2016, 31, 1904–1912. DOI: 10.1039/C6JA00122J.
  • Solovyev, N.; Berthele, A.; Michalke, B. Selenium Speciation in Paired Serum and Cerebrospinal Fluid Samples. Anal. Bioanal. Chem. 2013, 405, 1875–1884. DOI: 10.1007/s00216-012-6294-y.
  • Featherstone, A. M.; Townsend, A. T.; Jacobson, G. A.; Peterson, G. M. Comparison of Methods for the Determination of Total Selenium in Plasma by Magnetic Sector Inductively Coupled Plasma Mass Spectrometry. Anal. Chim. Acta. 2004, 512, 319–327. DOI: 10.1016/j.aca.2004.02.058.
  • Elwaer, N.; Hintelmann, H. Comparing the Precision of Selenium Isotope Ratio Measurements Using Collision Cell and Sector Field Inductively Coupled Plasma Mass Spectrometry. Talanta 2008, 75, 205–214. DOI: 10.1016/j.talanta.2007.10.046.
  • Solovyev, N.; Vanhaecke, F.; Michalke, B. Selenium and Iodine in Diabetes Mellitus with a Focus on the Interplay and Speciation of the Elements. J. Trace Elem. Med. Biol. 2019, 56, 69–80. DOI: 10.1016/j.jtemb.2019.07.005.
  • Bolea-Fernandez, E.; Balcaen, L.; Resano, M.; Vanhaecke, F. Interference-Free Determination of Ultra-Trace Concentrations of Arsenic and Selenium Using Methyl Fluoride as a Reaction Gas in ICP-MS/MS. Anal. Bioanal. Chem. 2015, 407, 919–929. DOI: 10.1007/s00216-014-8195-8.
  • Carter, O. W. L.; Xu, Y.; Sadler, P. J. Minerals in Biology and Medicine. RSC Adv. 2021, 11, 1939–1951. DOI: 10.1039/d0ra09992a.
  • Larios, R.; Del Castillo Busto, M. E.; Garcia-Sar, D.; Ward-Deitrich, C.; Goenaga-Infante, H. Accurate Quantification of Carboplatin Adducts with Serum Proteins by Monolithic Chromatography Coupled to ICPMS with Isotope Dilution Analysis. J. Anal. At. Spectrom. 2019, 34, 729–740. DOI: 10.1039/C8JA00409A.