564
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Smartphone-Facilitated Mobile Colorimetric Probes for Rapid Monitoring of Chemical Contaminations in Food: Advances and Outlook

, , , , , , , , & ORCID Icon show all

References

  • Yang, T.; Duncan, T. V. Challenges and Potential Solutions for Nanosensors Intended for Use with Foods. Nat. Nanotechnol. 2021, 16, 251–265. DOI: 10.1038/s41565-021-00867-7.
  • Xiao, X.; Wu, T.; Cao, J.; Zhu, C.; Liu, Y.; Zhang, X.; Shen, Y. Rational Engineering of Chromic Material as near-Infrared Ratiometric Fluorescent Nanosensor for H2S Monitoring in Real Food Samples. Sens. Actuators B 2020, 323, 128707. DOI: 10.1016/j.snb.2020.128707.
  • DeFlorio, W.; Liu, S.; White, A. R.; Taylor, T. M.; Cisneros‐Zevallos, L.; Min, Y.; Scholar, E. M. Recent Developments in Antimicrobial and Antifouling Coatings to Reduce or Prevent Contamination and Cross‐Contamination of Food Contact Surfaces by Bacteria. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3093–3134. DOI: 10.1111/1541-4337.12750.
  • Wang, Z.; Ren, P.; Wu, Y.; He, Q. Recent Advances in Analytical Techniques for the Detection of Adulteration and Authenticity of Bee Products–a Review. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2021, 38, 533–549. DOI: 10.1080/19440049.2020.1871081.
  • Robson, K.; Dean, M.; Haughey, S.; Elliott, C. A Comprehensive Review of Food Fraud Terminologies and Food Fraud Mitigation Guides. Food Control. 2021, 120, 107516. DOI: 10.1016/j.foodcont.2020.107516.
  • Zhou, Q.; Tang, D. Recent Advances in Photoelectrochemical Biosensors for Analysis of Mycotoxins in Food. TrAC, Trends Anal. Chem. 2020, 124, 115814. DOI: 10.1016/j.trac.2020.115814.
  • Su, L.; Tong, P.; Zhang, L.; Luo, Z.; Fu, C.; Tang, D.; Zhang, Y. Photoelectrochemical Immunoassay of Aflatoxin B 1 in Foodstuff Based on Amorphous TiO2 and CsPbBr 3 Perovskite Nanocrystals. Analyst 2019, 144, 4880–4886. DOI: 10.1039/c9an00994a.
  • Su, L.; Song, Y.; Fu, C.; Tang, D. Etching Reaction-Based Photoelectrochemical Immunoassay of Aflatoxin B1 in Foodstuff Using Cobalt Oxyhydroxide Nanosheets-Coating Cadmium Sulfide Nanoparticles as the Signal Tags. Anal. Chim. Acta. 2019, 1052, 49–56. DOI: 10.1016/j.aca.2018.11.059.
  • Lai, W.; Wei, Q.; Xu, M.; Zhuang, J.; Tang, D. Enzyme-Controlled Dissolution of MnO2 Nanoflakes with Enzyme Cascade Amplification for Colorimetric Immunoassay. Biosens. Bioelectron. 2017, 89, 645–651. DOI: 10.1016/j.bios.2015.12.035.
  • Lai, W.; Wei, Q.; Zhuang, J.; Lu, M.; Tang, D. Fenton Reaction-Based Colorimetric Immunoassay for Sensitive Detection of Brevetoxin B. Biosens. Bioelectron. 2016, 80, 249–256. DOI: 10.1016/j.bios.2016.01.088.
  • Shen, Y.; Wei, Y.; Zhu, C.; Cao, J.; Han, D.-M. Ratiometric Fluorescent Signals-Driven Smartphone-Based Portable Sensors for Onsite Visual Detection of Food Contaminants. Coord. Chem. Rev. 2022, 458, 214442. DOI: 10.1016/j.ccr.2022.214442.
  • Yu, Z.; Gong, H.; Xue, F.; Zeng, Y.; Liu, X.; Tang, D. Flexible and High-Throughput Photothermal Biosensors for Rapid Screening of Acute Myocardial Infarction Using Thermochromic Paper-Based Image Analysis. Anal. Chem. 2022, 94, 13233–13242. DOI: 10.1021/acs.analchem.2c02957.
  • Xu, J.; Zeng, R.; Huang, L.; Qiu, Z.; Tang, D. Dual-Signaling Photoelectrochemical Biosensor Based on Biocatalysis-Induced Vulcanization of Bi2MoO6 Nanosheets. Anal. Chem. 2022, 94, 11441–11448. DOI: 10.1021/acs.analchem.2c02848.
  • Huang, L.; Cai, G.; Zeng, R.; Yu, Z.; Tang, D. Contactless Photoelectrochemical Biosensor Based on the Ultraviolet–Assisted Gas Sensing Interface of Three-Dimensional SnS2 Nanosheets: From Mechanism Reveal to Practical Application. Anal. Chem. 2022, 94, 9487–9495. DOI: 10.1021/acs.analchem.2c02010.
  • Yu, Z.; Gong, H.; Gao, Y.; Li, L.; Xue, F.; Zeng, Y.; Li, M.; Liu, X.; Tang, D. Integrated Photothermal‐Pyroelectric Biosensor for Rapid and Point‐of‐Care Diagnosis of Acute Myocardial Infarction: A Convergence of Theoretical Research and Commercialization. Small 2022, 18, 2202564. DOI: 10.1002/smll.202202564.
  • Chen, Z.; Zhang, Z.; Qi, J.; You, J.; Ma, J.; Chen, L. Colorimetric Detection of Heavy Metal Ions with Various Chromogenic Materials: Strategies and Applications. J. Hazard. Mater. 2023, 441, 129889. DOI: 10.1016/j.jhazmat.2022.129889.
  • Shende, P.; Prabhakar, B.; Patil, A. Color Changing Sensors: A Multimodal System for Integrated Screening. TrAC, Trends Anal. Chem. 2019, 121, 115687. DOI: 10.1016/j.trac.2019.115687.
  • Huang, L.; Zeng, R.; Xu, J.; Tang, D. Point-of-Care Immunoassay Based on a Multipixel Dual-Channel Pressure Sensor Array with Visual Sensing Capability of Full-Color Switching and Reliable Electrical Signals. Anal. Chem. 2022, 94, 13278–13286. DOI: 10.1021/acs.analchem.2c03393.
  • Zeng, R.; Gong, H.; Li, Y.; Li, Y.; Lin, W.; Tang, D.; Knopp, D. CRISPR-Cas12a-Derived Photoelectrochemical Biosensor for Point-Of-Care Diagnosis of Nucleic Acid. Anal. Chem. 2022, 94, 7442–7448. DOI: 10.1021/acs.analchem.2c01373.
  • Yu, Z.; Gong, H.; Xu, J.; Li, Y.; Zeng, Y.; Liu, X.; Tang, D. Exploiting Photoelectric Activities and Piezoelectric Properties of NaNbO3 Semiconductors for Point-of-Care Immunoassay. Anal. Chem. 2022, 94, 3418–3426. DOI: 10.1021/acs.analchem.2c00066.
  • Huang, X.; Xu, D.; Chen, J.; Liu, J.; Li, Y.; Song, J.; Ma, X.; Guo, J. Smartphone-Based Analytical Biosensors. Analyst 2018, 143, 5339–5351. DOI: 10.1039/c8an01269e.
  • Zhang, D.; Liu, Q. Biosensors and Bioelectronics on Smartphone for Portable Biochemical Detection. Biosens. Bioelectron. 2016, 75, 273–284. DOI: 10.1016/j.bios.2015.08.037.
  • Geng, Z.; Zhang, X.; Fan, Z.; Lv, X.; Su, Y.; Chen, H. Recent Progress in Optical Biosensors Based on Smartphone Platforms. Sensors 2017, 17, 2449. DOI: 10.3390/s17112449.
  • Wang, Y.; Liu, X.; Chen, P.; Tran, N. T.; Zhang, J.; Chia, W. S.; Boujday, S.; Liedberg, B. Smartphone Spectrometer for Colorimetric Biosensing. Analyst 2016, 141, 3233–3238. DOI: 10.1039/c5an02508g.
  • Roda, A.; Michelini, E.; Cevenini, L.; Calabria, D.; Calabretta, M. M.; Simoni, P. Integrating Biochemiluminescence Detection on Smartphones: mobile Chemistry Platform for Point-of-Need Analysis. Anal. Chem. 2014, 86, 7299–7304. DOI: 10.1021/ac502137s.
  • Yetisen, A. K.; Martinez-Hurtado, J.; Garcia-Melendrez, A.; da Cruz Vasconcellos, F.; Lowe, C. R. A Smartphone Algorithm with Inter-Phone Repeatability for the Analysis of Colorimetric Tests. Sens. Actuators B 2014, 196, 156–160. DOI: 10.1016/j.snb.2014.01.077.
  • Hong, J. I.; Chang, B.-Y. Development of the Smartphone-Based Colorimetry for Multi-Analyte Sensing Arrays. Lab Chip. 2014, 14, 1725–1732. DOI: 10.1039/c3lc51451j.
  • Di Nonno, S.; Ulber, R. Smartphone-Based Optical Analysis Systems. Analyst 2021, 146, 2749–2768. DOI: 10.1039/d1an00025j.
  • Ren, R.; Cai, G.; Yu, Z.; Zeng, Y.; Tang, D. Metal-Polydopamine Framework: An Innovative Signal-Generation Tag for Colorimetric Immunoassay. Anal. Chem. 2018, 90, 11099–11105. DOI: 10.1021/acs.analchem.8b03538.
  • Ren, R.; Cai, G.; Yu, Z.; Tang, D. Glucose-Loaded Liposomes for Amplified Colorimetric Immunoassay of Streptomycin Based on Enzyme-Induced Iron (II) Chelation Reaction with Phenanthroline. Sens. Actuators B 2018, 265, 174–181. DOI: 10.1016/j.snb.2018.03.049.
  • Zhu, D.; Liu, B.; Wei, G. Two-Dimensional Material-Based Colorimetric Biosensors: A Review. Biosensors 2021, 11, 259. DOI: 10.3390/bios11080259.
  • Liu, X.; Mei, X.; Yang, J.; Li, Y. Hydrogel-Involved Colorimetric Platforms Based on Layered Double Oxide Nanozymes for Point-of-Care Detection of Liver-Related Biomarkers. ACS Appl. Mater. Interfaces. 2022, 14, 6985–6993. DOI: 10.1021/acsami.1c21578.
  • Pang, H.-H.; Ke, Y.-C.; Li, N.-S.; Chen, Y.-T.; Huang, C.-Y.; Wei, K.-C.; Yang, H.-W. A New Lateral Flow Plasmonic Biosensor Based on Gold-Viral Biomineralized Nanozyme for on-Site Intracellular Glutathione Detection to Evaluate Drug-Resistance Level. Biosens. Bioelectron. 2020, 165, 112325. DOI: 10.1016/j.bios.2020.112325.
  • Zhang, M.; Zhang, Y.; Yang, C.; Ma, C.; Tang, J. A Smartphone-Assisted Portable Biosensor Using Laccase-Mineral Hybrid Microflowers for Colorimetric Determination of Epinephrine. Talanta 2021, 224, 121840. DOI: 10.1016/j.talanta.2020.121840.
  • Shu, J.; Qiu, Z.; Tang, D. Self-Referenced Smartphone Imaging for Visual Screening of H2S Using Cu x O-Polypyrrole Conductive Aerogel Doped with Graphene Oxide Framework. Anal. Chem. 2018, 90, 9691–9694. DOI: 10.1021/acs.analchem.8b03011.
  • Lv, S.; Zhang, K.; Tang, D. A New Visual Immunoassay for Prostate-Specific Antigen Using near-Infrared Excited Cu x S Nanocrystals and Imaging on a Smartphone. Analyst 2019, 144, 3716–3720. DOI: 10.1039/c9an00724e.
  • Cai, G.; Yu, Z.; Tong, P.; Tang, D. Ti 3 C 2 MXene Quantum Dot-Encapsulated Liposomes for Photothermal Immunoassays Using a Portable near-Infrared Imaging Camera on a Smartphone. Nanoscale 2019, 11, 15659–15667. DOI: 10.1039/c9nr05797h.
  • Zeng, R.; Li, Y.; Li, Y.; Wan, Q.; Huang, Z.; Qiu, Z.; Tang, D. Smartphone-Based Photoelectrochemical Immunoassay with Co9S8@ ZnIn2S4 for Point-of-Care Diagnosis of Breast Cancer Biomarker. Research (Wash D C) 2022, 2022, 9831521. DOI: 10.34133/2022/9831521.
  • Yu, Z.; Gong, H.; Li, M.; Tang, D. Hollow Prussian Blue Nanozyme-Richened Liposome for Artificial Neural Network-Assisted Multimodal Colorimetric-Photothermal Immunoassay on Smartphone. Biosens. Bioelectron. 2022, 218, 114751. DOI: 10.1016/j.bios.2022.114751.
  • Coleman, B.; Coarsey, C.; Kabir, M. A.; Asghar, W. Point-of-Care Colorimetric Analysis through Smartphone Video. Sens. Actuators B Chem. 2019, 282, 225–231. DOI: 10.1016/j.snb.2018.11.036.
  • Liu, X.; Huang, X.; Jiang, Y.; Xu, H.; Guo, J.; Hou, H. W.; Yan, M.; Yu, H. A Microfluidic Cytometer for Complete Blood Count with a 3.2-Megapixel, 1.1-μm-Pitch Super-Resolution Image Sensor in 65-nm BSI CMOS. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 794–803. DOI: 10.1109/TBCAS.2017.2697451.
  • Wang, T.; Xu, G.; Wu, W.; Wang, X.; Chen, X.; Zhou, S.; You, F. A Novel Combination of Quick Response Code and Microfluidic Paper-Based Analytical Devices for Rapid and Quantitative Detection. Biomed. Microdev. 2018, 20, 1. DOI: 10.1007/s10544-018-0325-1.
  • Jalal, U. M.; Jin, G. J.; Shim, J. S. Paper–Plastic Hybrid Microfluidic Device for Smartphone-Based Colorimetric Analysis of Urine. Anal. Chem. 2017, 89, 13160–13166. DOI: 10.1021/acs.analchem.7b02612.
  • Wang, X.; Li, F.; Cai, Z.; Liu, K.; Li, J.; Zhang, B.; He, J. Sensitive Colorimetric Assay for Uric Acid and Glucose Detection Based on Multilayer-Modified Paper with Smartphone as Signal Readout. Anal. Bioanal. Chem. 2018, 410, 2647–2655. DOI: 10.1007/s00216-018-0939-4.
  • Mercan, Ö. B.; Kılıç, V.; Şen, M. Machine Learning-Based Colorimetric Determination of Glucose in Artificial Saliva with Different Reagents Using a Smartphone Coupled μPAD. Sens. Actuators B 2021, 329, 129037. DOI: 10.1016/j.snb.2020.129037.
  • Baek, S. H.; Park, C.; Jeon, J.; Park, S. Three-Dimensional Paper-Based Microfluidic Analysis Device for Simultaneous Detection of Multiple Biomarkers with a Smartphone. Biosensors 2020, 10, 187. DOI: 10.3390/bios10110187.
  • Hou, P.; Deng, R.; Guo, J.; Chen, W.; Li, X.; Yu, H.-Z. A WiFi Scanner in Conjunction with Disposable Multiplex Paper Assay for the Quantitation of Disease Markers in Blood Plasma. Anal. Bioanal. Chem. 2021, 413, 4625–4634. DOI: 10.1007/s00216-021-03234-6.
  • Umapathi, R.; Ghoreishian, S. M.; Sonwal, S.; Rani, G. M.; Huh, Y. S. Portable Electrochemical Sensing Methodologies for on-Site Detection of Pesticide Residues in Fruits and Vegetables. Coord. Chem. Rev. 2022, 453, 214305. DOI: 10.1016/j.ccr.2021.214305.
  • Meng, X.; Schultz, C. W.; Cui, C.; Li, X.; Yu, H.-Z. On-Site Chip-Based Colorimetric Quantitation of Organophosphorus Pesticides Using an Office Scanner. Sens. Actuators, B 2015, 215, 577–583. DOI: 10.1016/j.snb.2015.04.011.
  • Fu, Q.; Zhang, C.; Xie, J.; Li, Z.; Qu, L.; Cai, X.; Ouyang, H.; Song, Y.; Du, D.; Lin, Y.; Tang, Y. Ambient Light Sensor Based Colorimetric Dipstick Reader for Rapid Monitoring Organophosphate Pesticides on a Smart Phone. Anal. Chim. Acta. 2019, 1092, 126–131. DOI: 10.1016/j.aca.2019.09.059.
  • Guo, J.; Wong, J. X.; Cui, C.; Li, X.; Yu, H.-Z. A Smartphone-Readable Barcode Assay for the Detection and Quantitation of Pesticide Residues. Analyst 2015, 140, 5518–5525. DOI: 10.1039/c5an00874c.
  • Tsagkaris, A. S.; Migliorelli, D.; Uttl, L.; Filippini, D.; Pulkrabova, J.; Hajslova, J. A Microfluidic Paper-Based Analytical Device (μPAD) with Smartphone Readout for Chlorpyrifos-Oxon Screening in Human Serum. Talanta 2021, 222, 121535. DOI: 10.1016/j.talanta.2020.121535.
  • Jin, R.; Zhao, L.; Yan, X.; Han, X.; Liu, M.; Chen, Y.; Li, Q.; Su, D.; Liu, F.; Sun, P.; et al. Lab in Hydrogel Portable Kit: On-Site Monitoring of Oxalate. Biosens. Bioelectron. 2020, 167, 112457. DOI: 10.1016/j.bios.2020.112457.
  • Zhu, H.; Xu, L.; Hu, P.; Liu, B.; Wang, M.; Yin, X.; Pan, J.; Niu, X. Smartphone-Assisted Bioenzyme-Nanozyme-Chromogen All-in-One Test Strip with Enhanced Cascade Signal Amplification for Convenient Paraoxon Sensing. Biosens. Bioelectron. 2022, 215, 114583. DOI: 10.1016/j.bios.2022.114583.
  • Rakkhun, W.; Jantra, J.; Cheubong, C.; Teepoo, S. Colorimetric Test Strip Cassette Readout with a Smartphone for on-Site and Rapid Screening Test of Carbamate Pesticides in Vegetables. Microchem. J. 2022, 181, 107837. DOI: 10.1016/j.microc.2022.107837.
  • Delatour, T.; Racault, L.; Bessaire, T.; Desmarchelier, A. Screening of Veterinary Drug Residues in Food by LC-MS/MS. Background and Challenges. Food Additives & Contaminants: Part A 2018, 35, 633–646. DOI: 10.1080/19440049.2018.1426890.
  • Liang, W.; Zheng, F.; Chen, T.; Zhang, X.; Xia, Y.; Li, Z.; Lu, X.; Zhao, C.; Xu, G. Nontargeted Screening Method for Veterinary Drugs and Their Metabolites Based on Fragmentation Characteristics from Ultrahigh-Performance Liquid Chromatography-High-Resolution Mass Spectrometry. Food Chem. 2022, 369, 130928. DOI: 10.1016/j.foodchem.2021.130928.
  • Masawat, P.; Harfield, A.; Namwong, A. An iPhone-Based Digital Image Colorimeter for Detecting Tetracycline in Milk. Food Chem. 2015, 184, 23–29. DOI: 10.1016/j.foodchem.2015.03.089.
  • Wu, W.-J.; Zhao, Q.; Zhou, R.; Liang, Y.-C.; Zhao, W.-B.; Shan, C.-X. Ratiometric Fluorescence Sensor Based on Europium-Grafted ZnO Quantum Dots for Visual and Colorimetric Detection of Tetracycline. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 259, 119901. DOI: 10.1016/j.saa.2021.119901.
  • Wang, X.; Li, J.; Jian, D.; Zhang, Y.; Shan, Y.; Wang, S.; Liu, F. Based Antibiotic Sensor (PAS) Relying on Colorimetric Indirect Competitive Enzyme-Linked Immunosorbent Assay for Quantitative Tetracycline and Chloramphenicol Detection. Sens. Actuators B 2021, 329, 129173. DOI: 10.1016/j.snb.2020.129173.
  • Chen, H.; Zhu, C.; Chen, F.; Xu, J.; Jiang, X.; Wu, Z.; Ding, X.; Fan, G.-C.; Shen, Y.; Ye, Y. Profiling the Interaction of Al (III)-GFLX Complex, a Potential Pollution Risk, with Bovine Serum Albumin. Food Chem. Toxicol. 2020, 136, 111058. DOI: 10.1016/j.fct.2019.111058.
  • Rudnicki, K.; Sipa, K.; Brycht, M.; Borgul, P.; Skrzypek, S.; Poltorak, L. Electrochemical Sensing of Fluoroquinolone Antibiotics. TrAC, Trends Anal. Chem. 2020, 128, 115907. DOI: 10.1016/j.trac.2020.115907.
  • Sousa, J.; Alves, G.; Abrantes, J.; Fortuna, A.; Falcão, A. Analytical Methods for Determination of New Fluoroquinolones in Biological Matrices and Pharmaceutical Formulations by Liquid Chromatography: A Review. Anal. Bioanal. Chem. 2012, 403, 93–129. DOI: 10.1007/s00216-011-5706-8.
  • Ye, Y.; Wu, T.; Jiang, X.; Cao, J.; Ling, X.; Mei, Q.; Chen, H.; Han, D.; Xu, J.-J.; Shen, Y. Portable Smartphone-Based QDs for the Visual Onsite Monitoring of Fluoroquinolone Antibiotics in Actual Food and Environmental Samples. ACS Appl. Mater. Interfaces. 2020, 12, 14552–14562. DOI: 10.1021/acsami.9b23167.
  • Jiang, R.; Lin, D.; Zhang, Q.; Li, L.; Yang, L. Multiplex Chroma-Response Based Fluorescent Smartphone Sensing Platform for Rapid and Visual Quantitative Determination of Antibiotic Residues. Sens. Actuators B 2022, 350, 130902. DOI: 10.1016/j.snb.2021.130902.
  • Cheng, Y.; Wang, H.; Zhuo, Y.; Song, D.; Li, C.; Zhu, A.; Long, F. Reusable Smartphone-Facilitated Mobile Fluorescence Biosensor for Rapid and Sensitive on-Site Quantitative Detection of Trace Pollutants. Biosens. Bioelectron. 2022, 199, 113863. DOI: 10.1016/j.bios.2021.113863.
  • Xu, Z.; Wang, K.; Zhang, M.; Wang, T.; Du, X.; Gao, Z.; Hu, S.; Ren, X.; Feng, H. Machine Learning Assisted Dual-Emission Fluorescence/Colorimetric Sensor Array Detection of Multiple Antibiotics under Stepwise Prediction Strategy. Sens. Actuators, B 2022, 359, 131590. DOI: 10.1016/j.snb.2022.131590.
  • Hua, Y.; Ahmadi, Y.; Sonne, C.; Kim, K.-H. Progress and Challenges in Sensing of Mycotoxins Using Molecularly Imprinted Polymers. Environ. Pollut. 2022, 305, 119218. DOI: 10.1016/j.envpol.2022.119218.
  • Rushing, B. R.; Selim, M. I. Aflatoxin B1: A Review on Metabolism, Toxicity, Occurrence in Food, Occupational Exposure, and Detoxification Methods. Food Chem. Toxicol. 2019, 124, 81–100. DOI: 10.1016/j.fct.2018.11.047.
  • Ferreira, R. G.; Cardoso, M. V.; De Souza Furtado, K. M.; Espíndola, K. M. M.; Amorim, R. P.; Monteiro, M. C. Epigenetic Alterations Caused by Aflatoxin b1: A Public Health Risk in the Induction of Hepatocellular Carcinoma. Transl. Res. 2019, 204, 51–71. DOI: 10.1016/j.trsl.2018.09.001.
  • Li, X.; Yang, F.; Wong, J. X.; Yu, H.-Z. Integrated Smartphone-App-Chip System for on-Site Parts-per-Billion-Level Colorimetric Quantitation of Aflatoxins. Anal. Chem. 2017, 89, 8908–8916. DOI: 10.1021/acs.analchem.7b01379.
  • Tang, X.; Su, R.; Luo, H.; Zhao, Y.; Feng, L.; Chen, J. Colorimetric Detection of Aflatoxin B1 by Using Smartphone-Assisted Microfluidic Paper-Based Analytical Devices. Food Control. 2022, 132, 108497. DOI: 10.1016/j.foodcont.2021.108497.
  • Yu, Y.; Li, Y.; Zhang, Q.; Zha, Y.; Lu, S.; Yang, Y.; Li, P.; Zhou, Y. Colorimetric Immunoassay via Smartphone Based on Mn2+-Mediated Aggregation of AuNPs for Convenient Detection of Fumonisin B1. Food Control. 2022, 132, 108481. DOI: 10.1016/j.foodcont.2021.108481.
  • Zhang, H.; Liu, X.; Zhang, C.; Xu, Y.; Su, J.; Lu, X.; Shi, J.; Wang, L.; Landry, M. P.; Zhu, Y.; et al. A DNA Tetrahedral Structure-Mediated Ultrasensitive Fluorescent Microarray Platform for Nucleic Acid Test. Sens. Actuators B 2020, 321, 128538. DOI: 10.1016/j.snb.2020.128538.
  • Petralia, S.; Vigilanza, A.; Sciuto, E.; Maffia, M.; Romanini, A.; Conoci, S. The MC1R Single Nucleotide Polymorphisms Identification by DNA-Microarray on Miniaturized Silicon Chip. Sens. Actuators B 2021, 346, 130514. DOI: 10.1016/j.snb.2021.130514.
  • Sergeyeva, T.; Yarynka, D.; Dubey, L.; Dubey, I.; Piletska, E.; Linnik, R.; Antonyuk, M.; Ternovska, T.; Brovko, O.; Piletsky, S.; El’skaya, A. Sensor Based on Molecularly Imprinted Polymer Membranes and Smartphone for Detection of Fusarium Contamination in Cereals. Sensors 2020, 20, 4304. DOI: 10.3390/s20154304.
  • Wu, W.; Zhou, D.; Chen, X.; Tang, X.; Jiang, J.; Yu, L.; Li, H.; Zhang, Q.; Zhang, Z.; Li, P. Intelligent Point-of-Care Test via Smartphone-Enabled Microarray for Multiple Targets: Mycotoxins in Food. Sens. Actuators B 2022, 360, 131648. DOI: 10.1016/j.snb.2022.131648.
  • Mi, F.; Hu, C.; Wang, Y.; Wang, L.; Peng, F.; Geng, P.; Guan, M. Recent Advancements in Microfluidic Chip Biosensor Detection of Foodborne Pathogenic Bacteria: A Review. Anal. Bioanal. Chem. 2022, 414, 2883–2902. DOI: 10.1007/s00216-021-03872-w.
  • Sohrabi, H.; Majidi, M. R.; Fakhraei, M.; Jahanban-Esfahlan, A.; Hejazi, M.; Oroojalian, F.; Baradaran, B.; Tohidast, M.; de la Guardia, M.; Mokhtarzadeh, A. Lateral Flow Assays (LFA) for Detection of Pathogenic Bacteria: A Small Point-of-Care Platform for Diagnosis of Human Infectious Diseases. Talanta 2022, 243, 123330. DOI: 10.1016/j.talanta.2022.123330.
  • Heredia, N.; García, S. Animals as Sources of Food-Borne Pathogens: A Review. Anim. Nutr. 2018, 4, 250–255. DOI: 10.1016/j.aninu.2018.04.006.
  • Tack, D. M.; Marder, E. P.; Griffin, P. M.; Cieslak, P. R.; Dunn, J.; Hurd, S.; Scallan, E.; Lathrop, S.; Muse, A.; Ryan, P.; et al. Preliminary Incidence and Trends of Infections with Pathogens Transmitted Commonly through Food—Foodborne Diseases Active Surveillance Network, 10 US Sites, 2015–2018. MMWR. Morb. Mortal. Wkly. Rep. 2019, 68, 369–373. DOI: 10.15585/mmwr.mm6816a2.
  • Lin, Q.; Jia, K.; Gou, H.; He, H.; Wen, J.; Shen, H.; Chen, K.; Wu, Y.; Lu, B.; Liao, M.; et al. A Smartphone-Assisted High-Throughput Integrated Color-Sensing Platform for the Rapid Detection of Campylobacter coli. LWT 2022, 167, 113790. DOI: 10.1016/j.lwt.2022.113790.
  • Wen, J.; Gou, H.; Wang, S.; Lin, Q.; Chen, K.; Wu, Y.; Huang, X.; Shen, H.; Qu, X.; Lin, J.; et al. Competitive Activation Cross Amplification Combined with Smartphone-Based Quantification for Point-of-Care Detection of Single Nucleotide Polymorphism. Biosens. Bioelectron. 2021, 183, 113200. DOI: 10.1016/j.bios.2021.113200.
  • Zeinhom, M. M. A.; Wang, Y.; Sheng, L.; Du, D.; Li, L.; Zhu, M.-J.; Lin, Y. Smart Phone Based Immunosensor Coupled with Nanoflower Signal Amplification for Rapid Detection of Salmonella Enteritidis in Milk, Cheese and Water. Sens. Actuators, B 2018, 261, 75–82. DOI: 10.1016/j.snb.2017.11.093.
  • Cheng, N.; Song, Y.; Zeinhom, M. M. A.; Chang, Y.-C.; Sheng, L.; Li, H.; Du, D.; Li, L.; Zhu, M.-J.; Luo, Y.; et al. Nanozyme-Mediated Dual Immunoassay Integrated with Smartphone for Use in Simultaneous Detection of Pathogens. ACS Appl. Mater. Interfaces. 2017, 9, 40671–40680. DOI: 10.1021/acsami.7b12734.
  • Yang, T.; Luo, Z.; Bewal, T.; Li, L.; Xu, Y.; Mahdi Jafari, S.; Lin, X. When Smartphone Enters Food Safety: A Review in on-Site Analysis for Foodborne Pathogens Using Smartphone-Assisted Biosensors. Food Chem. 2022, 394, 133534. DOI: 10.1016/j.foodchem.2022.133534.
  • Yang, T.; Wang, Z.; Song, Y.; Yang, X.; Chen, S.; Fu, S.; Qin, X.; Zhang, W.; Man, C.; Jiang, Y. A Novel Smartphone-Based Colorimetric Aptasensor for on-Site Detection of Escherichia coli O157: H7 in Milk. J. Dairy Sci. 2021, 104, 8506–8516. DOI: 10.3168/jds.2020-19905.
  • Yu, Q.; Chen, X.; Qi, L.; Yang, H.; Wang, Y.; Zhang, M.; Huang, K.; Yuan, X. Smartphone Readable Colorimetry and ICP-MS Dual-Mode Sensing Platform for Ultrasensitive and Label-Free Detection of Escherichia coli Based on Filter-Assisted Separation. Talanta 2023, 251, 123760. DOI: 10.1016/j.talanta.2022.123760.
  • Nguyen, H. V.; Nguyen, V. D.; Liu, F.; Seo, T. S. An Integrated Smartphone-Based Genetic Analyzer for Qualitative and Quantitative Pathogen Detection. ACS Omega. 2020, 5, 22208–22214. DOI: 10.1021/acsomega.0c02317.
  • Nguyen, T.; Chidambara, V. A.; Andreasen, S. Z.; Golabi, M.; Huynh, V. N.; Linh, Q. T.; Bang, D. D.; Wolff, A. Point-of-Care Devices for Pathogen Detections: The Three Most Important Factors to Realise towards Commercialization. TrAC Trends Anal. Chem. 2020, 131, 116004. DOI: 10.1016/j.trac.2020.116004.
  • Yin, J.; Zou, Z.; Hu, Z.; Zhang, S.; Zhang, F.; Wang, B.; Lv, S.; Mu, Y. A “Sample-in-Multiplex-Digital-Answer-out” Chip for Fast Detection of Pathogens. Lab Chip. 2020, 20, 979–986. DOI: 10.1039/c9lc01143a.
  • Yin, K.; Pandian, V.; Kadimisetty, K.; Zhang, X.; Ruiz, C.; Cooper, K.; Liu, C. Real-Time Colorimetric Quantitative Molecular Detection of Infectious Diseases on Smartphone-Based Diagnostic Platform. Sci. Rep. 2020, 10, 1. DOI: 10.1038/s41598-020-65899-w.
  • Chauhan, S.; Dahiya, D.; Sharma, V.; Khan, N.; Chaurasia, D.; Nadda, A. K.; Varjani, S.; Pandey, A.; Bhargava, P. C. Advances from Conventional to Real Time Detection of Heavy Metal(Loid)s for Water Monitoring: An Overview of Biosensing Applications. Chemosphere 2022, 307, 136124. DOI: 10.1016/j.chemosphere.2022.136124.
  • Taheri, H.; Khayatian, G. Smartphone-Based Microfluidic Chip Modified Using Pyrrolidine-1-Dithiocarboxylic Acid for Simultaneous Colorimetric Determination of Cr3+ and Al3+ Ions. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2022, 272, 121000. DOI: 10.1016/j.saa.2022.121000.
  • Ulloa-Gomez, A. M.; Lucas, A.; Koneru, A.; Barui, A.; Stanciu, L. Simultaneous Colorimetric and Electrochemical Detection of Trace Mercury (Hg2+) Using a Portable and Miniaturized Aptasensor. Biosens. Bioelectron. 2023, 221, 114419. DOI: 10.1016/j.bios.2022.114419.
  • Jiang, B.; Liang, M. Advances in Single‐Atom Nanozymes Research. Chin. J. Chem. 2021, 39, 174–180. DOI: 10.1002/cjoc.202000383.
  • Li, R.; He, X.; Javed, R.; Cai, J.; Cao, H.; Liu, X.; Chen, Q.; Ye, D.; Zhao, H. Switching on-off-on Colorimetric Sensor Based on Fe-N/SC Single-Atom Nanozyme for Ultrasensitive and Multimodal Detection of Hg2+. Sci. Total Environ. 2022, 834, 155428. DOI: 10.1016/j.scitotenv.2022.155428.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.