410
Views
3
CrossRef citations to date
0
Altmetric
Review Article

A Comprehensive Study: Traditional and Cutting-Edge Analytical Techniques for the Biomarker Based Detection of the Micronutrients & POC Sensing Directions for Next-Generation Diagnostic

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Phinney, K. W.; Rimmer, C. A.; Thomas, J. B.; Sander, L. C.; Sharpless, K. E.; Wise, S. A. Isotope Dilution Liquid Chromatography – Mass Spectrometry Methods for Fat- and Water-Soluble Vitamins in Nutritional Formulations. Anal. Chem. 2011, 83, 92–98. DOI: 10.1021/ac101950r.
  • Stevens, S. L. Fat-Soluble Vitamins. Nurs. Clin. North Amer. 2021, 56, 33–45. DOI: 10.1016/j.cnur.2020.10.003.
  • Godswill, A. G.; Somtochukwu, I. V.; Ikechukwu, A. O.; Kate, E. C. Health Benefits of Micronutrients (Vitamins and Minerals) and Their Associated Deficiency Diseases: A Systematic Review. IJF. 2020, 3, 1–32. DOI: 10.47604/ijf.1024.
  • Castillo-Durän, C.; Cassorla, F. Trace Minerals in Human Growth and Development. J. Pediat. Endocrinol. Metabol. 1999, 601, 589–601.
  • Hvas, A. M.; Nexo, E. Diagnosis and Treatment of Vitamin B12 Deficiency. An Update. Haematologica 2006, 91, 1506–1512.
  • Rai, S. N.; Singh, P.; Steinbusch, H. W. M.; Vamanu, E.; Ashraf, G.; Singh, M. P. The Role of Vitamins in Neurodegenerative Disease: An Update. Biomedicines 2021, 9, 1284. DOI: 10.3390/biomedicines9101284.
  • Srinivasan, B.; Lee, S.; Erickson, D.; Mehta, S. Precision Nutrition – Review of Methods for Point-of-Care Assessment of Nutritional Status. Curr. Opin. Biotechnol. 2017, 44, 103–108. DOI: 10.1016/j.copbio.2016.12.001.
  • Sempionatto, J. R.; Montiel, V. R.; Vargas, E.; Teymourian, H.; Wang, J. Wearable and Mobile Sensors for Personalized Nutrition. Sensors ACS 2021, 2 (1). DOI: 10.1021/acssensors.1c00553..
  • Gleeson, M.; Nieman, D. C.; Pedersen, B. K. E. Exercise, nutrition and immune function. J. Sport. Sci. 2013, 37–41. DOI: 10.1080/0264041031000140590.
  • Berger, M. M.; Shenkin, A.; Schweinlin, A.; Amrein, K.; Augsburger, M.; Biesalski, H.-K.; Bischoff, S. C.; Casaer, M. P.; Gundogan, K.; Lepp, H.-L.; et al. ESPEN Micronutrient Guideline. Clin. Nutr. 2022, 41, 1357–1424. DOI: 10.1016/j.clnu.2022.02.015.
  • Tulchinsky, T. H.; Md, M. Micronutrient Deficiency Conditions: Global Health Issues. Public Health Rev. 2010, 32, 243–255. DOI: 10.1007/BF03391600.
  • WHO. Nutritional Fact Sheet. https://apps.who.int/iris/handle/10665/42716. (accessed 2022-12-12).
  • Berger, M. M.; Shenkin, A.; Schweinlin, A.; Amrein, K.; Augsburger, M.; Biesalski, H. K.; Bischoff, S. C.; Casaer, M. P.; Gundogan, K.; Lepp, H. L.; et al. ESPEN Micronutrient Guideline. Clin. Nutr.  2022, 41, 1357–1424. DOI: 10.1016/j.clnu.2022.02.015.
  • CLSI. Global Laboratory for Standards for a Healthier World. https://clsi.org/standards/products/method-evaluation/. (accessed 2022-12-13).
  • National Instiute of Health. Vitamin D fact Sheet, CDC, Micronutrients. https://ods.od.nih.gov/factsheets/VitaminD-Consumer/. (accessed 2022-12-12).
  • Mohammad, S.; Gharibzahedi, T.; Jafari, S. M. Direct Fortification of Minerals Crop Mineral Biofortification. Trends Food Sci Technol 2017, DOI: 10.1016/j.tifs.2017.02.017.
  • Clinic Diagnostic Vitros 5600. 05/12/2022https://go.orthoclinicaldiagnostics.com/us/en/clinical-labs/vitros-systems/integrated-systems/vitros-5600. (accessed 2022-12-05).
  • Alinity Abbott for Vitamin B12. https://www.corelaboratory.abbott/int/en/offerings/brands/alinity. (accessed 2022-12-05).
  • DiaSorin for Vitamin D. https://www.diasorin.com/en/immunodiagnostic-solutions/systems/clia-systems/liaisonr-xl. (accessed 2022-12-05).
  • Lee, S.; Srinivasan, B.; Vemulapati, S.; Mehta, S.; Erickson, D. Personalized Nutrition Diagnostics at the Point-of-Need. Lab Chip. 2016, 16, 2408–2417. DOI: 10.1039/c6lc00393a.
  • NIH.gov Biomarkers. https://www.niehs.nih.gov/health/topics/science/biomarkers/index.cfm. (accessed 2022-12-03).
  • DAPA Measurement Toolkit Ascorbic acid, 2018 (mrc.ac.uk). https://dapa-toolkit.mrc.ac.uk/diet/objective-methods/biomarkers#:∼:text=Recovery%20biomarkers%20are%20directly%20associated%20with%20dietary%20intake,dietary%20intake%20and%20used%20for%20ranking%20of%20individuals. (accessed 2022-12-05).
  • Moll, R.; Davis, B. Iron, Vitamin B12 and Folate. Medicine (United Kingdom) 2017, 45, 198–203. DOI: 10.1016/j.mpmed.2017.01.007.
  • World Health Organization. Food and Agricultural Organization of the United Nations, The World Health Reports 2000. World Health Organization: Geneva, Switzerland. https://www.who.int/whr/2000/en/whr00_en.pdf. (accessed 2021-12-10).
  • Tumor.org/Micronutrients, WHO. https://apps.who.int/nutrition/topics/ida/en/. (accessed 2022-03-23)
  • Pan, D.; Wang, S.; Su, M.; Sun, G.; Zhu, X.; Ghahvechi Chaeipeima, M.; Guo, Z.; Wang, N.; Zhang, Z.; Cui, M. Vitamin B12 May Play a Preventive Role in Esophageal Precancerous Lesions: A Case–Control Study Based on Markers in Blood and 3-Day Duplicate Diet Samples. Eur. J. Nutr. 2021, 60, 3375–3386. DOI: 10.1007/s00394-021-02516-0.
  • DeGruttola, V. G.; DeMets, D. L.; Downing, G. J.; Hoth, D. F.; Oates, J. A.; Peck, C. C.; Schooley, R. T.; Spilker, B. A.; Woodcock, J.; Zeger, S. L. Biomarkers and Surrogate Endpoints: Preferred Definitions and Conceptual Framework. Clin. Pharmacol. Ther 2001, 69, 89–95. DOI: 10.1067/mcp.2001.113989.
  • Portillo, D. M. T. E, Department of Medical Science-University Collage of Science and Technology Vitamin B12 Levels in Type 2 Diabetes Patients on Metformin in Gaza Strip-Palestine. Ra J. 2018, 4, 1993–1998. DOI: 10.31142/rajar/v4i10.01.
  • Galloway, M.; Hamilton, M. Cases in Primary Care Laboratory Medicine. Macrocytosis: Pitfalls in Testing and Summary of Guidance. Br. Med. J. 2007, 335, 884–886. DOI: 10.1136/bmj.39325.689641.471.
  • Collin, S. M.; Metcalfe, C.; Refsum, H.; Lewis, S. J.; Zuccolo, L.; Smith, G. D.; Chen, L.; Harris, R.; Davis, M.; Marsden, G.; et al. Circulating Folate, Vitamin B 12, Homocysteine, Vitamin B 12 Transport Proteins, and Risk of Prostate Cancer: A Case-Control Study. Systemat. Rev. Meta-Anal. 2010, 19, 1632–1643. DOI: 10.1158/1055-9965.EPI-10-0180.
  • Savage, D. G.; Lindenbaum, J.; Stabler, S. P.; Allen, R. H. Sensitivity of Serum Methylmalonic Acid and Total Homocysteine Determinations for Diagnosing Cobalamin and Folate Deficiencies. Am. J. Med. 1994, 96, 239–246. DOI: 10.1016/0002-9343(94)90149-X.
  • Atkinson, A. J.; Colburn, W. A.; DeGruttola, V. G.; DeMets, D. L.; Downing, G. J.; Hoth, D. F.; Oates, J. A.; Peck, C. C.; Schooley, R. T.; Spilker, B. A.; et al. Biomarkers and Surrogate Endpoints: Preferred Definitions and Conceptual Framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. DOI: 10.1067/mcp.2001.113989.
  • Douglas, P.; Zipes, M. D. Biomarkers and Use in Precision Medicine. A Textbook of Cardiovascular Medicine 2019, 1.
  • Li, H.; Steckl, A. J. Paper Microfluidics for Point-of-Care Blood-Based Analysis and Diagnostics. Anal. Chem. 2019, 91, 352–371. DOI: 10.1021/acs.analchem.8b03636.
  • Thiamine Deficiency and Its Prevention and Control in Major Emergencies. https://www.who.int/publications/i/item/WHO-NHD-99.13. (accessed 2022-12-23).
  • Solomon, L. R. Disorders of Cobalamin (Vitamin B12) Metabolism: Emerging Concepts in Pathophysiology, Diagnosis and Treatment. Blood Rev. 2007, 21, 113–130. DOI: 10.1016/j.blre.2006.05.001.
  • Dietary Reference Intake for Iron, Vitamin A. https://www.ncbi.nlm.nih.gov/books/NBK222318/.
  • National Health. https://ods.od.nih.gov/factsheets/Biotin-HealthProfessional/. (accessed 2021-03-23).
  • NHL. National Health Library. https://www.lybrate.com/lab-test/vitamin-b9-folic-acid#:∼. :text = Normal range of Vitamin B9, means that there is deficiency. (accessed 2022-03-23).
  • Mounstinal.org. https://www.mountsinai.org/health-library/tests/vitamin-b12. level #:∼:texNormal values are 160 to, or may test different samples (accessed 2022-03-23).
  • Medspace reference. https://reference.medscape.com/(accessed. 2022-03-23).
  • Medline plus. https://medlineplus.gov/ency/article/003569.htm#:∼:text=Thenormalrangeofvitamin., for results of these tests (accessed 2021-03-23).
  • Gunter, E. W.; Lewis, B. G.; Koncikowski, S. M. Laboratory Procedures Used for the Third National Health and Nutrition Examination Survey (NHANES III), 1988-1994. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES: Atlanta, GA,1996.
  • Mayo clinic. Levels are generally between; normal hemoglobin levels indicate anemia. https://www.mayoclinic.org/diseases-conditions/iron-deficiency-anemia/diagnosis-treatment/drc-20355040#:∼:text=Normal. (accessed 2021-03-23).
  • UCLA health. https://www.uclahealth.org/endocrine-center/normal-calcium-levels. (accessed 2021-03-27).
  • Health professional fact sheet. The iodine-replete healthy adult, intakes are adequate %5B3%5D. https://ods.od.nih.gov/factsheets/Iodine-HealthProfessional/text=The. (accessed 2021-03-21).
  • Harrington, J. M.; Young, D. J.; Essader, A. S.; Sumner, S. J.; Levine, K. E. Analysis of Human Serum and Whole Blood for Mineral Content by ICP-MS and ICP-OES: Development of a Mineralomics Method. Biol. Trace Elem. Res. 2014, 160, 132–142. DOI: 10.1007/s12011-014-0033-5.
  • Tanumihardjo, S. A.; Russell, R. M.; Stephensen, C. B.; Gannon, B. M.; Craft, N. E.; Haskell, M. J.; Lietz, G.; Schulze, K.; Raiten, D. J. Biomarkers of Nutrition for Development (BOND)-Vitamin a Review. J. Nutr. 2016, 146, 1816S–1848S. DOI: 10.3945/jn.115.229708.
  • Arnold, S. L. M.; Amory, J. K.; Walsh, T. J.; Isoherranen, N. A Sensitive and Specific Method for Measurement of Multiple Retinoids in Human Serum with UHPLC-MS/MS. J. Lipid. Res. 2012, 53, 587–598. DOI: 10.1194/jlr.D019745.
  • Höller, U.; Bakker, S. J. L.; Düsterloh, A.; Frei, B.; Köhrle, J.; Konz, T.; Lietz, G.; McCann, A.; Michels, A. J.; Molloy, A. M.; et al. 2018, 110–122. Micronutrient Status Assessment in Humans: Current Methods of Analysis and Future Trends. TrAC. Elsevier B.V. DOI: 10.1016/j.trac.2018.02.001.
  • Huisjes, R.; Card, D. J. Methods for Assessment of Pantothenic Acid (Vitamin B5). In Laboratory Assessment of Vitamin Status. Elsevier, 2018; 173–179. DOI: 10.1016/B978-0-12-813050-6.00008-5.
  • Gonthier, A.; Boullanger, P.; Fayol, V.; Hartmann, D. J. Development of an ELISA for Pantothenic Acid (Vitamin B5) for Application in the Nutrition and Biological Fields. J Immunoassay 1998, 19, 167–194. DOI: 10.1080/01971529808005479.
  • Takahashi, K.; Fukuwatari, T.; Shibata, K. Fluorometric Determination of Pantothenic Acid in Human Urine by Isocratic Reversed-Phase Ion-Pair High-Performance Liquid Chromatography with Post-Column Derivatization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.  2009, 877, 2168–2172. DOI: 10.1016/j.jchromb.2009.05.056.
  • Heudi, O.; Fontannaz, P. Determination of Vitamin B5 in Human Urine by High-Performance Liquid Chromatography Coupled with Mass Spectrometry. J. Sep. Sci.  2005, 28, 669–672. DOI: 10.1002/jssc.200500048.
  • Zhang, Q.; Ford, L. A.; Goodman, K. D.; Freed, T. A.; Hauser, D. M.; Conner, J. K.; Vroom, K. E. T.; Toal, D. R. LC–MS/MS Method for Quantitation of Seven Biomarkers in Human Plasma for the Assessment of Insulin Resistance and Impaired Glucose Tolerance. J Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2016, 1038, 101–108. DOI: 10.1016/j.jchromb.2016.10.025.
  • Martin, F.; Campos-Giménez, E.; Aoude-Werner, A.; Bandhari, S.; Jaudzems, G.; Malaviole, I.; Nixon, M.; Norloos, T.; Tanderup, L. T.; Tennyson, S.; et al. Pantothenic Acid (Vitamin B5) in Infant Formula and Adult/Pediatric Nutritional Formula by Ultra-High Pressure Liquid Chromatography/Tandem Mass Spectrometry Method: Collaborative Study, Final Action 2012.16. J. AOAC Int. 2015, 98, 1697–1701. DOI: 10.5740/jaoacint.15-127.
  • Ueland, P. M.; Ulvik, A.; Rios-Avila, L.; Midttun, Ø.; Gregory, J. F. Direct and Functional Biomarkers of Vitamin B6 Status. Annu. Rev. Nutr. 2015, 35, 33–70. DOI: 10.1146/annurev-nutr-071714-034330.
  • Ulvik, A.; Theofylaktopoulou, D.; Midttun, Ø.; Nygård, O.; Eussen, S. J.; Ueland, P. M. Substrate Product Ratios of Enzymes in the Kynurenine Pathway Measured in Plasma as Indicators of Functional Vitamin B-6 Status. Am. J. Clin. Nutr. 2013, 98, 934–940. DOI: 10.3945/ajcn.113.064998.
  • Zhang, Q.; Ford, L. A.; Goodman, K. D.; Freed, T. A.; Hauser, D. M.; Conner, J. K.; Vroom, K. E. T.; Toal, D. R. LC–MS/MS Method for Quantitation of Seven Biomarkers in Human Plasma for the Assessment of Insulin Resistance and Impaired Glucose Tolerance. J Chromatogr. B Analyt. Technol. Biomed. Life Sci.  2016, 1038, 101–108. DOI: 10.1016/j.jchromb.2016.10.025.
  • Talwar, D.; Quasim, T.; McMillan, D. C.; Kinsella, J.; Williamson, C.; O’Reilly, D.; St, J. Optimization and Validation of a Sensitive High-Performance Liquid Chromatography Assay for Routine Measurement of Pyridoxal 5-Phosphate in Human Plasma and Red Cells Using Pre-Column Semicarbazide Derivatization. J. Chromatogr. B 2003, 792, 333–343. DOI: 10.1016/S1570-0232(03)00320-9.
  • Sauberlich, H. E.; Dowdy, R. P.; Skala, J. H. Laboratory Tests for the Assessment of Nutritional Status. CRC Crit. Rev. Clin. Lab. Sci. 1973,
  • World Health Organization. Technical Report Series 405 Nutritional Anemia; 1968. https://apps.who.int/iris/bitstream/handle/10665/40707/WHO_TRS_405.pdf?sequence=1&isAllowed=y. (accessed 2022-12-08).
  • Höller, U.; Bakker, S. J. L.; Düsterloh, A.; Frei, B.; Köhrle, J.; Konz, T.; Lietz, G.; McCann, A.; Michels, A. J.; Molloy, A. M.; et al. Micronutrient Status Assessment in Humans: Current Methods of Analysis and Future Trends. TrAC. Elsevier B.V. 2018, 110–122. DOI: 10.1016/j.trac.2018.02.001.
  • Devalia, V.; Hamilton, M. S.; Molloy, A. M, British Committee for Standards in Haematology Guidelines for the Diagnosis and Treatment of Cobalamin and Folate Disorders. Br J. Haematol. 2014, 166, 496–513. DOI: 10.1111/bjh.12959.
  • Agata, S. M. Methods for Assessment of Folate (Vitamin B9); 2018. DOI: 10.1016/B978-0-12-813050-6.00011-5.
  • Padayatty, S. J.; Katz, A.; Wang, Y.; Eck, P.; Kwon, O.; Lee, J. H.; Chen, S.; Corpe, C.; Dutta, A.; Dutta, S. K.; L, M. Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention. Amer. Col. Nutr. 2003, 22, 18–35. DOI: 10.1080/07315724.2003.10719272.
  • Prentice, A.; Goldberg, G. R.; Schoenmakers, I. Vitamin D across the Lifecycle: Physiology and Biomarkers. Am. J. Clin. Nutr. 2008, 88, 500S–506S. DOI: 10.1093/ajcn/88.2.500S.
  • Seamans, K. M.; Cashman, K. D. Existing and Potentially Novel Functional Markers of Vitamin D Status: A Systematic Review. Am. J. Clin. Nutr. 2009, 89, 1997S–2008S. DOI: 10.3945/ajcn.2009.27230D.
  • Zerwekh, J. E. Blood Biomarkers of Vitamin D Status. Am. Soc. Nutr. 2008, 87, 1087–1091.
  • Emadzadeh, M.; Mehdizadeh, A.; Sharifan, P.; Khoshakhlagh, M.; Sahebi, R.; Sadeghi, R.; Ferns, G. A.; Ghayour-Mobarhan, M. The Effects of Vitamin D Fortified Products on Bone Bi-Omarkers. Syst. Rev. Meta-Anal. 2022, 51, https://creativecommons.org/licenses/by-nc/4.0/.
  • De Leenheer, A.P.; Nelis, H.J.; Lambert, W.E.; Bauwens, R.M. Chromatography of fat-soluble vitamins in clinical chemistry. J Chromatogr. 1988, 429, 3–58. doi:10.1016/s0378-4347(00)83866-9.
  • Chen, H.; McCoy, L. F.; Schleicher, R. L.; Cm, P. Measurement of 25-Hydroxyvitamin D3 (25OHD3) and 25-Hydroxyvitamin D2 (25OHD2) in Human Serum Using Liquid Chromatography-Tandem Mass Spectrometry and Its Comparison to a Radioimmunoassay Method. Clin. Chim. Acta 2008, 391(1-2): 1, 6–12.
  • Lindenbaum, J.; Savage, D. G.; Stabler, S. P.; Allen, R. H. Diagnosis of Cobalamin Deficiency: II. Relative Sensitivities of Serum Cobalamin, Methylmalonic Acid, and Total Homocysteine Concentrations. Am. J. Hematol. 1990, 34, 99–107. DOI: 10.1002/ajh.2830340205.
  • Hoey, L.; McNulty, H.; Strain, J. J. Studies of Biomarker Responses to Intervention with Riboflavin: A Systematic Review. Am. J. Clin. Nutr. 2009, 89, 198–209. DOI: 10.3945/ajcn.2009.27230B.
  • Vugteveen, I.; Hoeksma, M.; Monsen, A. L. B.; Fokkema, M. R.; Reijngoud, D. J.; van Rijn, M.; van Spronsen, F. J. Serum Vitamin B12 Concentrations within Reference Values Do Not Exclude Functional Vitamin B12 Deficiency in PKU Patients of Various Ages. Mol. Genet. Metab. 2011, 102, 13–17. DOI: 10.1016/j.ymgme.2010.07.004.
  • Allen, R. H.; Stabler, S. P.; Savage, D. G.; Lindenbaum, J. Diagnosis of Cobalamin Deficiency I: Usefulness of Serum Methylmalonic Acid and Total Homocysteine Concentrations. Am. J. Hematol. 1990, 34, 90–98. DOI: 10.1002/ajh.2830340204.
  • Lindgren, A. Elevated Serum Methylmalonic Acid. How Much Comes from Cobalamin de Ciency and How Much Comes from the Kidneys. Taylor & Francis Heal. Sci. 2002.
  • Gauchan, D.; Joshi, N.; Gill, A. S.; Patel, V.; Debari, V. A.; Guron, G.; Maroules, M. Does an Elevated Serum Vitamin B12 Level Mask Actual Vitamin B12 Deficiency in Myeloproliferative Disorders? Clin. Lymphoma. Myeloma Leuk. 2012, 12, 269–273. DOI: 10.1016/j.clml.2012.01.008.
  • Loikas, S.; Löppönen, M.; Suominen, P.; Møller, J.; Irjala, K.; Isoaho, R.; Kivelä, S. L.; Koskinen, P.; Pelliniemi, T. T. RIA for Serum Holo-Transcobalamin: Method Evaluation in the Clinical Laboratory and Reference Interval. Clin. Chem. 2003, 49, 455–462. DOI: 10.1373/49.3.455.
  • Hvas, A. M.; Nexo, E. H. A First Choice Assay for Diagnosing Early Vitamin B12 Deficiency? J. Intern. Med. 2005, 257, 289–298. DOI: 10.1111/j.1365-2796.2004.01437.x.
  • Simkin, Dr. H. R. V. A. dr. j l. VITAMIN B12 in Rat Liver. 1959 Nature Publishing Group 1959, 1 (2).
  • England, J. M.; Wd, H. Problems with the Serum Vitamin B12 Assay. The Lancet 1980, 316, 1072–1074, DOI: 10.1016/s0140-6736(80)92287-4.
  • Hannibal, L.; Lysne, V.; Bjørke-Monsen, A. L.; Behringer, S.; Grünert, S. C.; Spiekerkoetter, U.; Jacobsen, D. W.; Blom, H. J. Biomarkers and Algorithms for the Diagnosis of Vitamin B 12 Deficiency. Front. Mol. Biosci. 2016, 3, DOI: 10.3389/fmolb.2016.00027.
  • Herrmann, W.; Obeid, R. Ursachen Und Frühzeitige Diagnostik Von Vitamin-B12-Mangel. Dtsch Arztebl 2008, 105, 680–685. DOI: 10.3238/arztebl.2008.0680.
  • Lloyd-Wright, Z.; Hvas, A.M.; Møller, J.; Sanders, T.A.; Nexø, E.; Holotranscobalamin as an indicator of dietary vitamin B12 deficiency. Clin. Chem. 2003, 49, 2076–2078.
  • Herrmann, W.; Obeid, R.; Schorr, H.; Geisel, J. Functional Vitamin B 12 Deficiency and Determination of Holotranscobalamin in Populations at Risk. Clin. Chem. Lab. Med. 2003, 41, 1478–1488.
  • Mei, Z.; Cogswell, M. E.; Parvanta, I.; Lynch, S.; Beard, J. L.; Stoltzfus, R. J.; Grummer-Strawn, L. M. Hemoglobin and Ferritin Are Currently the Most Efficient Indicators of Population Response to Iron Interventions: An Analysis of Nine Randomized Controlled Trials. J. Nutr. 2005, 135, 1974–1980. DOI: 10.1093/jn/135.8.1974.
  • Miles, L. E. M.; Lipschitz, D. A.; Bieber, C. P.; Cook, J. D. Measurement of Serum Ferritin by a 2-Site Immunoradiometric Assay. Anal. Biochem. 1974, 61, 209–224. DOI: 10.1016/0003-2697(74)90347-9.
  • Elsayed, M. E.; Sharif, M. U.; Stack, A. G. Transferrin Saturation. Transferrin Saturation 2016, 71–97. DOI: 10.1016/bs.acc.2016.03.002.
  • Lynch, S. C. Studies: Iron. Am. J. Clin. Nutr. 2011, 94, 673S–678S. DOI: 10.3945/ajcn.110.005959.
  • Ramsay, W. N. M. The Determination of the Total Iron-Binding Capacity of Serum. Clin. Chim. Acta 1957, 2, 221–226. DOI: 10.1016/0009-8981(57)90106-7.
  • Cook, J.; Finch, C.; Smith, N. Evaluation of the Iron Status of a Population. Blood 1976, 48, 449–455. DOI: 10.1182/blood.V48.3.449.449.
  • Cook, J. D.; Flowers, C. H.; Skikne, B. S. The Quantitative Assessment of Body Iron. Blood 2003, 101, 3359–3364. DOI: 10.1182/blood-2002-10-3071.
  • Sun, J.-K.; Zhang, W.-H.; Zou, L.; Liu, Y.; Li, J.-J.; Kan, X.-H.; Dai, L.; Shi, Q.-K.; Yuan, S.-T.; Yu, W.-K.; et al. Serum Calcium as a Biomarker of Clinical Severity and Prognosis in Patients with Coronavirus Disease 2019. Aging (Albany NY) 2020, 12, 11287–11295. DOI: 10.18632/aging.103526.
  • Ramsay, J. A.; Brown, R. H. J.; Falloon, S. W. H. W. Simultaneous Determination of Sodium and Potassium in Small Volumes of Fluid by Flame Photometry. Journal of Experimental Biology 1953, 30, 1–17. DOI: 10.1242/jeb.30.1.1.
  • Barnes, R. B.; Richardson, D.; Berry, J. W.; Hood, R. L. Flame Photometry a Rapid Analytical Procedure. Ind. Eng. Chem. Anal. Ed. 1945, 17, 605–611. DOI: 10.1021/i560146a001.
  • Buzanovskii, V. A. Determination of Sodium in Blood. Ref. J. Chem. 2018, 8, 197–222. DOI: 10.1134/S2079978018020012.
  • Vitamin and mineral requirements in Human Nutrition Edition; 2004. http://apps.who.int/iris/bitstream/handle/10665/42716/9241546123.pdf;jsessionid=65511B4876A56B231CAE1187ACCEC189?sequence=1. (accessed 2022-12-07).
  • Inside Tracker. https://blog.insidetracker.com/magnesium-makeover-new-biomarker-better-optimization#:∼:text=Cue%20applause%3A%20Welcome%20our%20newest%20biomarker%2C%20RBC%20Magnesium%21,times%20higher%20than%20it%20is%20in%20your%20serum. (accessed 2022-12-07).
  • Methylomic Biomarkers for Magnesium Deficiency and Colon Neoplasia Prevention. https://www.clinicaltrials.gov/ct2/show/NCT04196803
  • Baltaci, A. K.; Yuce, K. Zinc Transporter Proteins. Neurochem. Res. 2018, 43, 517–530. DOI: 10.1007/s11064-017-2454-y.
  • Freitas, E.; Cunha, A.; Aquino, S.; Pedrosa, L.; Lima, S.; Lima, J.; Almeida, M.; Sena-Evangelista, K. Zinc Status Biomarkers and Cardiometabolic Risk Factors in Metabolic Syndrome: A Case Control Study. Nutrients 2017, 9, 175. DOI: 10.3390/nu9020175.
  • Ristic-Medic, D.; Piskackova, Z.; Hooper, L.; Ruprich, J.; Casgrain, A.; Ashton, K.; Pavlovic, M.; Glibetic, M. Methods of Assessment of Iodine Status in Humans: A Systematic Review. Am. J. Clin. Nutr. 2009, 89, 2052S–2069S. Vol DOI: 10.3945/ajcn.2009.27230H.
  • Russo, F. Exploring Noninvasive Biomarkers with the miRandola Database: A Tool for Translational Medicine. Methods Mol. Biol. 2021, 2284, 445–455. DOI: 10.1007/978-1-0716-1307-8_23.
  • Ford, J. The Microbiological Assay. University of Reading 1952, 6, 324–330
  • Davis, R.; Moulton, J.; K, A. An Automated Microbiological Method for the Measurement of Vitamin B12. J. Clin. Pathol. 1973, 26, 494–498.
  • Karmi, O.; Zayed, A.; Baraghethi, S.; Qadi, M.; Ghanem, R. Review: Medical Lab Technology Measurement of Vitamin b 12 Concentration. Rev. Avail. Meth. 2011, 2, 23–32.
  • Lau, K.; Gottlieb, C.; Wasserman, L.; H, V. Measurement of Serum Vitamin B12 Level Using Radioisotope Dilution and Coated Charcoal. Blood Rev. 1965, 26, 202–214. DOI: 10.1182/blood.V26.2.202.202.
  • T. D.; Thacher, M. D. B. L.; Clarke, M.; Vitamin.; D.; Insufficiency. MayoClinic Procedings 2011, 86 (1), 50–60.
  • Elisa kit, thermofischer scientific. https://www.thermofisher.com/in/en/home/life-science/antibodies/immunoassays/elisakits.html.com. (accessed 2022-07-12).
  • Ansari, A. Photolysis and Interactions of Cyanocobalamin with Some B Vitamins and Ascorbic Acid in Parenteral Solutions. University of Karachi 2001, 75270, 24–326
  • Chen, J. J. S. Determination of Cobalamin in Nutritive Supplements and Chlorella Foods by Capillary Electrophoresis Inductively Coupled Plasma Mass Spectrometry. Am. Chem. Soc. 2008, 56, 1210–1215.
  • Vitamin Analysis by Capillary Electrophoresis. https://www.chromatographyonline.com/view/vitamin-analysis-capillary-electrophoresis.
  • Thermofisher. Analysis of vitamins method development using HPLC. https://assets.thermofisher.com/TFS-Assets/CMD/Technical-Notes/tn-72488-hplc-water-fat-soluble-vitamins-tn72488-en.pdf.
  • Binkley, N.; Krueger, D.; Gemar, D.; Drezner, MK. Correlation among 25-hydroxy-vitamin D assays. J. Clin. Endocrinol. Metab. 2008, 93, 1804-1808. DOI: 10.1210/jc.2003-031979.
  • Miguel Herrero, A. C. Compositional Analysis of Foods. In Encyclopedia of Analytical Science (Third Edition); Elsevier: Madrid, Spain, 2019; 10.
  • Osório, M. V.; Marques, S. S.; Oliveira, H. M.; Barreiros, L.; Segundo, M. A. Fluorometric Method Based on Molecular Recognition Solid-Phase Extraction for Determination of Riboflavin in Milk and Infant Formula. J. Food Comp. Anal. 2016, 45, 141–146. DOI: 10.1016/j.jfca.2015.10.007.
  • Vállez-Gomis, V.; Peris-Pastor, G.; Benedé, J. L.; Chisvert, A.; Salvador, A. Journal of Pharmaceutical and Biomedical Analysis Green Determination of Eight Water-Soluble B Vitamins in Cosmetic Products by Liquid Chromatography with Ultraviolet Detection. J. Pharm. Biomed. Anal. 2021, 205, 114308. DOI: 10.1016/j.jpba.2021.114308.
  • Patle, T.K.; Shrivas, K.; Patle, A.; Patel, S.; Harmukh, N.; Kumar, A. Simultaneous determination of B1, B3, B6 and C vitamins in green leafy vegetables using reverse phase-high performance liquid chromatography. Microchem. J. 2022, 176, 107249.
  • Sim, H. J.; Kim, B.; Lee, J. A Systematic Approach for the Determination of B-Group Vitamins in Multivitamin Dietary Supplements by High-Performance Liquid Chromatography with Diode-Array Detection and Mass Spectrometry. J. AOAC Int. 2016, 99, 1223–1232. DOI: 10.5740/jaoacint.16-0093.
  • Kall, M. A. Determination of Total Vitamin B6 in Foods by Isocratic HPLC: A Comparison with Microbiological Analysis. Food Chem. 2003, 82, 315–327. DOI: 10.1016/S0308-8146(02)00568-X.
  • Vitamin b12 Assay using Electrochemilumiscence. http://refhub.elsevier.com/S0958-1669(16)30279-8/sbref0480. (accessed 2022-12-12).
  • Kong, D.; Liu, L.; Song, S.; Kuang, H.; Xu, C. Development of Sensitive, Rapid, and Effective Immunoassays for the Detection of Vitamin B12 in Fortified Food and Nutritional Supplements. Food Anal. Method. 2017, 10, 10–18. DOI: 10.1007/s12161-016-0543-1.
  • Ford, J.E. The microbiological assay of vitamin B12. Br. J. Nutr. 1952, 6, 324–330.
  • ShiSong, T.; XuWei, C.; J, W. Selective Separation/Preconcentration of Vitamin B12 with Aqueous Two-Phase System and Its Detection by Electrothermal Atomic Absorption Spectrometry. DOI: 10.1360/zb2010-40-6-711.
  • Sunitha, Y.; Kumar, S. Vitamin D Rapid Self-testing kit . https://kiweno.com/en/shop/vitamin-d-test/ (accesesd on 2022-7-4).
  • Lok, K. S.; Muttalib, S. Z. B. A.; Lee, P. P. F.; Kwok, Y. C.; Nguyen, N. T. Rapid Determination of Vitamin B12 Concentration with a Chemiluminescence Lab on a Chip. Lab Chip. 2012, 12, 2353–2361. DOI: 10.1039/c2lc00037g.
  • Pizzo, J.S.; Cruz, V.H.; Rodrigues, C.A.; Manin, L.P.; Visentainer, L.; Santos, O.O.; Maldaner, L.; Visentainer, J.V. Rapid determination of L‐ascorbic acid content in vitamin C serums by ultra‐high‐performance liquid chromatography–tandem mass spectrometry. Int. J. Cosmet. Sci. 2022, 44, 131–141.
  • Luo, X.; Chen, B.; Ding, L.; Tang, F.; Yao, S. HPLC–ESI– MS Analysis of Vitamin B12 in Food Products and in Multivitamins–Multimineral Tablets. Analytica Chem. Acta 2006, 562, 185–189. DOI: 10.1016/j.aca.2006.01.073.
  • Nierenberg, D. W.; Lester, D. C. Determination of Vitamins a and e in Serum and Plasma Using a Simplified Clarification Method and High-Performance Liquid Chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1985, 345, 275–284. DOI: 10.1016/0378-4347(85)80165-1.
  • Lau, K.; Gottlieb, C.; Wasserman, L. H. V. Radioisotope, Measurement of Serum Vitamin B12. J. Chromat. C 1965, 26, 202–214.
  • Gonthier, A.; Boullanger, P.; Fayol, V.; Hartmann, D. J. Development of an ELISA for Pantothenic Acid (Vitamin B5) for Application in the Nutrition and Biological Fields. J. Immunoassay 1998, 19, 167–194. DOI: 10.1080/01971529808005479.
  • Takahashi, K.; Fukuwatari, T.; Shibata, K. Fluorometric Determination of Pantothenic Acid in Human Urine by Isocratic Reversed-Phase Ion-Pair High-Performance Liquid Chromatography with Post-Column Derivatization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 877, 2168–2172. DOI: 10.1016/j.jchromb.2009.05.056.
  • Zhang, Q.; Ford, L. A.; Goodman, K. D.; Freed, T. A.; Hauser, D. M.; Conner, J. K.; Vroom, K. E. T.; Toal, D. R. LC–MS/MS Method for Quantitation of Seven Biomarkers in Human Plasma for the Assessment of Insulin Resistance and Impaired Glucose Tolerance. J Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1038, 101–108. DOI: 10.1016/j.jchromb.2016.10.025.
  • Heudi, O.; Fontannaz, P. Determination of Vitamin B5 in Human Urine by High-Performance Liquid Chromatography Coupled with Mass Spectrometry. J. Sep. Sci. 2005, 28, 669–672. DOI: 10.1002/jssc.200500048.
  • Guan, X.; Hoffman, B.; Dwivedi, C.; Matthees, DP. A simultaneous liquid chromatography/mass spectrometric assay of glutathione, cysteine, homocysteine and their disulfides in biological samples. J.Pharm.Biomed.Anal. 2003, 31, 251–261.
  • Pfeiffer, C. M.; Fazili, Z.; McCoy, L.; Zhang, M.; Gunter, E. W. Determination of Folate Vitamers in Human Serum by Stable-Isotope-Dilution Tandem Mass Spectrometry and Comparison with Radioassay and Microbiologic Assay. Clin. Chem. 2004, 50, 423–432. DOI: 10.1373/clinchem.2003.026955.
  • Obeid, R.; Geisel, J.; Herrmann, W. Comparison of Two Methods for Measuring Methylmalonic Acid as a Marker for Vitamin B12 Deficiency. Diagnosis (Berl) 2015, 2, 67–72. DOI: 10.1515/dx-2014-0030.
  • Magera, M. J.; Lacey, J. M.; Casetta, B.; Rinaldo, P. Method for the Determination of Total Homocysteine in Plasma and Urine by Stable Isotope Dilution and Electrospray Tandem Mass Spectrometry. Clin. Chem. 1999, 45, 1517–1522. DOI: 10.1093/clinchem/45.9.1517.
  • Ducros, V.; Schmitt, D.; Pernod, G.; Faure, H.; Polack, B.; Favier, A. Gas Chromatographic–Mass Spectrometric Determination of Total Homocysteine in Human Plasma by Stable Isotope Dilution: Method and Clinical Applications. J. Chromatogr. B Biomed. Sci. Appl. 1999, 729, 333–339.
  • J. W.; Erdman, Jr, I. A.; M. S. H. Z. Present Knowledge in Nutrition. 2012.
  • Nelson, D.; Xu, N.; Carlson, J. Semi-Automated Quantification of Methylmalonic Acid in Human Serum by LC-MS/MS. Scand. J. Clin. Lab. Invest. 2012, 72, 441–446. DOI: 10.3109/00365513.2012.679963.
  • The, C. G. Atomic Absorption Spectroscopy for Topic, Determination of Elements in Medical Biological Samples. Current chem. 1972, 26, 77–112.
  • Van Gorkom, G.; Gijsbers, B.; Ververs, E.; El Molla, A.; Sarodnik, C.; Riess, C.; Wodzig, W.; Bos, G.; Van Elssen, C. Easy-to-Use HPLC Method to Measure Intracellular Ascorbic Acid Levels in Human Peripheral Blood Mononuclear Cells and in Plasma. 2022.
  • Wang, K.; Liu, J.; Wang, X.; Liu, X.; Hu, J.; Li, E.; Zhao, Y.; Zhao, R.; Yang, S. Ratiometric Fluorescent Detection System Based on Dual-Driving Catalysis of CuO Nanozyme with a Classical Univariate Calibration for the Determination of Ascorbic Acid in Serum and Fruits. J Chromatogr A 172. DOI: 10.1016/j.microc.2021.106921.
  • Kong, L.; Wang, J.; Gao, Q.; Li, X.; Zhang, W.; Wang, P.; Ma, L.; He, L. Simultaneous Determination of Fat-Soluble Vitamins and Carotenoids in Human Serum Using a Nanostructured Ionic Liquid Based Microextraction. J. Chromatogr. A 2022, 1666, 462861. DOI: 10.1016/j.chroma.2022.462861.
  • Socas-Rodríguez, B.; Pilařová, V.; Sandahl, M.; Holm, C.; Turner, C. Simultaneous Determination of Vitamin D and Its Hydroxylated and Esterified Metabolites by Ultrahigh-Performance Supercritical Fluid Chromatography–Tandem Mass Spectrometry. Anal.Chem. 2022, 94, 3065-3073. DOI: 10.102.1/acs.analchem.1c04016.
  • Tai, S. S. C.; Bedner, M.; Phinney, K. W. Development of a Candidate Reference Measurement Procedure for the Determination of 25-Hydroxyvitamin D3 and 25-Hydroxyvitamin D 2 in Human Serum Using Isotope-Dilution Liquid Chromatography Tandem Mass Spectrometry. Anal. Chem. 2010, 82, 1942–1948. DOI: 10.1021/ac9026862.
  • Nierenberg, D. W.; Lester, D. C. Determination of Vitamins a and e in Serum and Plasma Using a Simplified Clarification Method and High-Performance Liquid Chromatography. J Chromatograph B Biomed Sci Appl. 1985, 345, 275–284. DOI: 10.1016/0378-4347(85)80165-1.
  • Oertel, J.; Gerhartz, H. Die Ferritin Konzentration in Serum Be Verschiedenen Typen Der Eisenmangelanämie. Dtsch. med. Wochenschr. 1977, 102, 1147–1150. DOI: 10.1055/s-0028-1105475.
  • Aljerf, L.; Mashlah, A. Characterization and Validation of Candidate Reference Methods for the Determination of Calcium and Magnesium in Biological Fluids. Microchem. J. 2017, 132, 411–421. DOI: 10.1016/j.microc.2017.03.001.
  • Kost, G. J.; Ehrmeyer, S. S.; Chernow, B.; Winkelman, J. W.; Zaloga, G. P.; Dellinger, R. P.; Shirey, T. The Laboratory-Clinical Interface: point-of-Care Testing. Chest 1999, 115, 1140–1154. 1DOI: 10.1378/chest.115.4.1140.
  • Land, K. J.; Boeras, D. I.; Chen, X. S.; Ramsay, A. R.; Peeling, R. W. Reassured Diagnostics to Inform Disease Control Strategies, Strengthen Health Systems and Improve Patient Outcomes. Nat. Microbiol. 2019, 4 (1), 46–54. DOI: 10.1038/s41564-018-0295-3.
  • Prickril, B.; Rasooly, A. Biosensors and Biodetection. Springer Science+ Business Media LLC, 2017.
  • Christodouleas, D. C.; Kaur, B.; Chorti, P. From Point-of-Care Testing to E Health Diagnostic Devices (EDiagnostics). ACS Central Science. 2018, 1600–1616. DOI: 10.1021/acscentsci.8b00625.
  • de Almeida, M. P.; Pereira, E.; Baptista, P.; Gomes, I.; Figueiredo, S.; Soares, L.; Franco, R. Chapter 13 - Gold Nanoparticles as (Bio)Chemical Sensors. In Comprehensive Analytical Chemistry; Elsevier, 2014; Vol. 66, pp 529–567. https://doi.org/10.1016/B978-0-444-63285-2.00013-4.
  • Sun, B. R.; Zhou, A. G.; Li, X.; Yu, H. Z. Development and Application of Mobile Apps for Molecular Sensing: A Review. ACS Sensors. 2021, 1731–1744. DOI: 10.1021/acssensors.1c00512.
  • Hernández-Rodríguez, J. F.; Rojas, D.; Escarpa, A. Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Anal. Chem. 2021, 93, 167–183. DOI: 10.1021/acs.analchem.0c04378.
  • USFDA guidelines for Medical Device. https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance. (accessed 2022-12-12).
  • Yang, Y.; Gao, W. Wearable and Flexible Electronics for Continuous Molecular Monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491. DOI: 10.1039/C7CS00730B.
  • Soda, Y.; Bakker, E. Quantification of Colorimetric Data for Paper-Based Analytical Devices. ACS Sens. 2019, 4, 3093–3101. DOI: 10.1021/acssensors.9b01802.
  • Chaimongkol, L.; Pinkaew, S.; Furr, H. C.; Estes, J.; Craft, N. E.; Wasantwisut, E.; Winichagoon, P. Performance of the CRAFTi Portable Fluorometer Comparing with the HPLC Method for Determining Serum Retinol. Clin. Biochem. 2011, 44, 1030–1032. DOI: 10.1016/j.clinbiochem.2011.05.023.
  • Albrecht, K.; Lotz, J.; Frommer, L.; Lackner, K. J.; Kahaly, G. J. A Rapid Point-of-Care Assay Accurately Measures Vitamin D. J. Endocrinol. Invest. 2021, 44, 2485–2492. DOI: 10.1007/s40618-021-01575-8.
  • Vitamin D Rapid Self-Test. https://kiweno.com/en/shop/vitamin-d-test/. (accessed 2022-07-15).
  • Test4D Complete Kit – Test your vitamin D Levels. https://dentamedica.us/product/test4d-complete-kit-test-your-vitamin-d-levels/.
  • Wadhwa, S.; John, A. T.; Nagabooshanam, S.; Mathur, A.; Narang, J. Graphene Quantum Dot-Gold Hybrid Nanoparticles Integrated Aptasensor for Ultra-Sensitive Detection of Vitamin D3 towards Point-of-Care Application. Appl Surf Sci 2020, 521, 146427. DOI: 10.1016/j.apsusc.2020.146427.
  • Spark D, Vitamin D Detection Medical Device. https://sparkdiagnostics.com/spark-d/. (accessed 2022-12-12).
  • SOFIA Quantitative analysis of vitamin D. https://sparkdiagnostics.com/ (accessed. 2022-12-12).
  • Peter, H.; Bistolas, N.; Schumacher, S.; Laurisch, C.; Guest, P. C.; Höller, U.; Bier, F. F. Lab-on-a-Chip Device for Rapid Measurement of Vitamin D Levels; 2018; pp. 477–486. DOI: 10.1007/978-1-4939-7614-0_35.
  • Waller, A.W.; Toc, M.; Rigsby, D.J.; Gaytán-Martínez, M.; Andrade, J.E. Development of a Paper-Based Sensor Compatible with a Mobile Phone for the Detection of Common Iron Formulas Used in Fortified Foods within Resource-Limited Settings. Nutrients. 2019, 11, 1673. doi:10.3390/nu11071673.
  • Garg, M.; Christensen, M.; Iles, A.; Sharma, A.; Singh, S.; Pamme, N. Microfluidic-Based Electrochemical Immunosensing of Ferritin. Biosensors (Basel) 2020, 10, 91. DOI: 10.3390/bios10080091.
  • FerroSens GmbH. https://ferrosens.de/. accessed 2022-12-12.
  • Boonkaew, S.; Teengam, P.; Jampasa, S.; Rengpipat, S.; Siangproh, W.; Chailapakul, O. Cost-Effective Paper-Based Electrochemical Immunosensor Using a Label-Free Assay for Sensitive Detection of Ferritin. Analyst 2020, 145, 5019–5026. DOI: 10.1039/D0AN00564A.
  • Your daily vitamin tracker. https://www.vitastiq.com/. (accessed 2022-12-12).
  • Calamur, J. This device claims to accurately measure your vitamin and mineral levels. https://www.dnaindia.com/technology/report-this-device-claims-to-accurately-measure-your-vitamin-and-mineral-levels-2251237.
  • Sempionatto, J. R.; Khorshed, A. A.; Ahmed, A.; De Loyola, E.; Silva, A. N.; Barfidokht, A.; Yin, L.; Goud, K. Y.; Mohamed, M. A.; Bailey, E.; et al. Epidermal Enzymatic Biosensors for Sweat Vitamin C: Toward Personalized Nutrition. ACS Sens. 2020, 5, 1804–1813. DOI: 10.1021/acssensors.0c00604.
  • Sempionatto, J. R.; Nakagawa, T.; Pavinatto, A.; Mensah, S. T.; Imani, S.; Mercier, P.; Wang, J. Eyeglasses Based Wireless Electrolyte and Metabolite Sensor Platform. Lab. Chip. 2017, 17, 1834–1842. DOI: 10.1039/c7lc00192d.
  • Kruusma, J.; Banks, C. E.; Nei, L.; Compton, R. G. Electroanalytical Detection of Zinc in Whole Blood Electroanalytical Detection of Zinc in Whole Blood. 2004. DOI: 10.1016/j.aca.2003.12.059.
  • Drucis, K.; Ekman, M.; Urbanowicz, M.; Jasin, A.; Bochen, M.; Szarmach, A. Simultaneous Determination of Na +, K +, Ca 2 +, Mg 2 + and Cl À in Unstimulated and Stimulated Human Saliva Using All Solid State Multisensor Platform. 2017, 29(10) 1–8. DOI: 10.1002/elan.201700149.
  • Chekin, F.; Teodorescu, F.; Coffinien, Y.; Pan, G.-H.; Barras, A. Rabah Boukherroub, S. S. MoS2/Reduced Graphene Oxide as Active Hybrid Material for the Electrochemical Detection of Folic Acid in Human Serum. Biosensors (Basel) 2016, 85, 807–813. DOI: 10.1016/j.bios.2016.05.095.
  • Breslauer, D.N.; Maamari, R.N.; Switz, N.A.; Lam, W.A.; Fletcher, D.A. Mobile phone based clinical microscopy for global health applications. PLoS One. 2009, 4, e6320. doi:10.1371/journal.pone.0006320.
  • Barreiros dos Santos, M.; Azevedo, S.; Agusil, J. P.; Prieto-Simón, B.; Sporer, C.; Torrents, E.; Juárez, A.; Teixeira, V.; Samitier, J. Label-Free ITO-Based Immunosensor for the Detection of Very Low Concentrations of Pathogenic Bacteria. Bioelectrochemistry 2015, 101, 146–152. DOI: 10.1016/j.bioelechem.2014.09.002.
  • Kim, J.; de Araujo, W. R.; Samek, I. A.; Bandodkar, A. J.; Jia, W.; Brunetti, B.; Paixão, T. R. L. C.; Wang, J. Wearable Temporary Tattoo Sensor for Real-Time Trace Metal Monitoring in Human Sweat. Electrochem. Commun. 2015, 51, 41–45. DOI: 10.1016/j.elecom.2014.11.024.
  • Muhammad-Aree, S.; Teepoo, S. On-Site Detection of Heavy Metals in Wastewater Using a Single Paper Strip Integrated with a Smartphone. Anal. Bioanal. Chem. 2020, 412, 1395–1405. DOI: 10.1007/s00216-019-02369-x.
  • Wu, F.; Wang, M. A Portable Smartphone-Based Sensing System Using a 3D-Printed Chip for on-Site Biochemical Assays. Sensors 2018, 18, 4002. DOI: 10.3390/s18114002.
  • Berg, B.; Cortazar, B.; Tseng, D.; Ozkan, H.; Feng, S.; Wei, Q.; Chan, R. Y.-L.; Burbano, J.; Farooqui, Q.; Lewinski, M.; et al. A. Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays. ACS Nano. 2015, 9, 7857–7866. DOI: 10.1021/acsnano.5b03203.
  • Kim, H.; Chung, D.-R.; Kanga, M. A New Point-of-Care Test for Diagnosis of Infectious Diseases Based on Multiplex Lateral Flow Immunoassay. Analyst 2019, 5, 1–9. DOI: 10.1039/C8AN02295J.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.