458
Views
0
CrossRef citations to date
0
Altmetric
Review Article

An Overview of Biosensors for the Detection of Patulin Focusing on Aptamer-Based Strategies

, ORCID Icon & ORCID Icon

References

  • Ngolong Ngea, G. L.; Yang, Q.; Castoria, R.; Zhang, X.; Routledge, M. N.; Zhang, H. Recent Trends in Detecting, Controlling, and Detoxifying of Patulin Mycotoxin Using Biotechnology Methods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2447–2472. 10.1111/1541-4337.12599
  • Wu, S.; Duan, N.; Zhang, W.; Zhao, S.; Wang, Z. Screening and Development of DNA Aptamers as Capture Probes for Colorimetric Detection of Patulin. Anal. Biochem. 2016, 508, 58–64. 10.1016/j.ab.2016.05.024
  • Saleh, I.; Goktepe, I. Health Risk Assessment of Patulin İntake through Apples and Apple-Based Foods Sold in Qatar. Heliyon 2019, 5, e02754. 10.1016/j.heliyon.2019.e02754
  • Pal, S.; Singh, N.; Ansari, K. M. Toxicological Effects of Patulin Mycotoxin on the Mammalian System: An Overview. Toxicol Res. 2017, 6, 764–771. 10.1039/c7tx00138j
  • Zhou, S.-m.; Jiang, L.-p.; Geng, C.-y.; Cao, J.; Zhong, L.-f. Patulin-İnduced Oxidative DNA Damage and p53 Modulation in HepG2 Cells. Toxicon 2010, 55, 390–395. 10.1016/j.toxicon.2009.08.019
  • Khan, R.; Ben Aissa, S.; Sherazi, T.; Catanante, G.; Hayat, A.; Marty, J. Development of an İmpedimetric Aptasensor for Label Free Detection of Patulin in Apple Juice. Molecules 2019, 24, 1017. DOI: 10.3390/molecules24061017
  • Beretta, B.; Gaiaschi, A.; Galli, C. L.; Restani, P. Patulin in Apple-Based Foods: Occurrence and Safety Evaluation. Food Addit. Contam. 2000, 17, 399–406. 10.1080/026520300404815
  • Diao, E.; Hou, H.; Hu, W.; Dong, H.; Li, X. Removing and Detoxifying Methods of Patulin: A Review. Trends Food Sci. Technol. 2018, 81, 139–145. DOI:10.1016/j.tifs.2018.09.016
  • Khan, R.; Sherazi, T. A.; Catanante, G.; Rasheed, S.; Marty, J. L.; Hayat, A. Switchable Fluorescence Sensor toward PAT via CA-MWCNTs Quenched Aptamer-Tagged Carboxyfluorescein. Food Chem. 2020, 312, 126048.
  • Zhong, L.; Carere, J.; Lu, Z.; Lu, F.; Zhou, T. Patulin in Apples and Apple-Based Food Products: The Burdens and the Mitigation Strategies. Toxins 2018, 10, 475. DOI:10.3390/toxins10110475
  • Ioi, J.; Zhou, T.; Tsao, R.; Marcone, M. F. Mitigation of Patulin in Fresh and Processed Foods and Beverages. Toxins 2017, 9, 157. DOI:10.3390/toxins9050157
  • Murillo-Arbizu, M.; Amézqueta, S.; González-Peñas, E.; de Cerain, A. L. Occurrence of Patulin and İts Dietary İntake through Apple Juice Consumption by the Spanish Population. Food Chem. 2009, 113, 420–423. DOI:10.1016/j.foodchem.2008.07.054
  • Barreira, M. J.; Alvito, P. C.; Almeida, C. M. Occurrence of Patulin in Apple-Based-Foods in Portugal. Food Chem. 2010, 121, 653–658. DOI:10.1016/j.foodchem.2009.12.085
  • Zhang, Q.; Yang, Y.; Zhang, C.; Zheng, Y.; Wu, Y.; Wang, X. Development of an Aptamer-Functionalized Capillary Monolithic Column for the Highly-Selective and Highly-Efficient Recognition of Patulin. Food Control 2021, 119, 107461. DOI:10.1016/j.foodcont.2020.107461
  • Li, X.; Li, H.; Ma, W.; Guo, Z.; Li, X.; Li, X.; Zhang, Q. Determination of Patulin in Apple Juice by Single-Drop Liquid-Liquid-Liquid Microextraction Coupled with Liquid Chromatography-Mass Spectrometry. Food Chem. 2018, 257, 1–6. 10.1016/j.foodchem.2018.02.077
  • Turner, A. P. F. Biosensors: Sense and Sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. 10.1039/c3cs35528d
  • Shrivastava, A.; Sharma, R. K. Biosensors for the Detection of Mycotoxins. Toxin Rev. 2022, 41, 618–638. DOI:10.1080/15569543.2021.1894175
  • Morales, M. A.; Halpern, J. M. Guide to Selecting a Biorecognition Element for Biosensors. Bioconjug. Chem. 2018, 29, 3231–3239. 10.1021/acs.bioconjchem.8b00592
  • Mishra, G. K.; Sharma, V.; Mishra, R. K. Electrochemical Aptasensors for Food and Environmental Safeguarding: A Review. Biosensors 2018, 8, 28. DOI:10.3390/bios8020028
  • Lam, S. Y.; Lau, H. L.; Kwok, C. K. Capture-SELEX: Selection Strategy, Aptamer Identification, and Biosensing Application. Biosensors 2022, 12, 1142. DOI:10.3390/bios12121142
  • Torsten, S.; et al. Aptamer-Based Lateral Flow Assays. AIMS Bioeng. 2018, 5, 78–102.
  • Ellington, A. D.; Szostak, J. W. In vitro Selection of RNA Molecules That Bind Specific Ligands. Nature 1990, 346, 818–822. 10.1038/346818a0
  • Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. 10.1126/science.2200121
  • Ning, Y.; Hu, J.; Lu, F. Aptamers Used for Biosensors and Targeted Therapy. Biomed. Pharmacother. 2020, 132, 110902. 10.1016/j.biopha.2020.110902
  • Şahin, S.; Caglayan, M. O.; Üstündağ, Z. Recent Advances in Aptamer-Based Sensors for Breast Cancer Diagnosis: Special Cases for Nanomaterial-Based VEGF, HER2, and MUC1 Aptasensors. Mikrochim. Acta. 2020, 187, 549. 10.1007/s00604-020-04526-x
  • Caglayan, M. O.; Şahin, S.; Üstündağ, Z. Detection Strategies of Zearalenone for Food Safety: A Review. Crit. Rev. Anal. Chem. 2022, 52, 294–313. DOI:10.1080/10408347.2020.1797468
  • Brause, A. R.; Trucksess, M. W.; Thomas, F. S.; Page, S. W.; Burke, J.; Tanner, A.; Hammack, S.; Woodward, B. B.; Post, S.; Simmons, D.; et al. Determination of Patulin in Apple Juice by Liquid Chromatography: Collaborative Study. J. AOAC Int. 1996, 79, 451–455. DOI:10.1093/jaoac/79.2.451
  • Rovira, R.; Ribera, F.; Sanchis, V.; Canela, R. Improvements in the Quantitation of Patulin in Apple Juice by High-Performance Liquid Chromatography. J. Agric. Food Chem. 1993, 41, 214–216. DOI:10.1021/jf00026a013
  • Llovera, M.; Viladrich, R.; Torres, M.; Canela, R. Analysis of Underivatizated Patulin by a GC-MS Technique. J. Food Prot. 1999, 62, 202–205. 10.4315/0362-028x-62.2.202
  • Notardonato, I.; Gianfagna, S.; Castoria, R.; Ianiri, G.; De Curtis, F.; Russo, M. V.; Avino, P. Critical Review of the Analytical Methods for Determining the Mycotoxin Patulin in Food Matrices. Rev. Anal. Chem. 2021, 40, 144–160. DOI:10.1515/revac-2021-0131
  • Hana, M. G. High Performance Liquid Chromatographic Determination of Patulin in Apple Juice: Investigation of İts Contamination Levels in Saudi Arabia. Sci. Res. Essays 2009, 4, 069–072.
  • Welke, J. E.; Hoeltz, M.; Dottori, H. A.; Noll, I. B. Effect of Processing Stages of Apple Juice Concentrate on Patulin Levels. Food Control 2009, 20, 48–52. DOI:10.1016/j.foodcont.2008.02.001
  • Morales, H.; Marín, S.; Ramos, A. J.; Sanchis, V. Influence of Post-Harvest Technologies Applied during Cold Storage of Apples in Penicillium Expansum Growth and Patulin Accumulation: A Review. Food Control 2010, 21, 953–962. DOI:10.1016/j.foodcont.2009.12.016
  • Jalali, A.; Khorasgani, Z. N.; Goudarzi, M.; Khoshlesan, N. HPLC Determination of Patulin in Apple Juice: A Single Center Study of Southwest Area of Iran. J. Pharmacol. Toxicol. 2010, 5, 208–214. DOI:10.3923/jpt.2010.208.214
  • Gaspar, E. M.; Lucena, A. F. Improved HPLC Methodology for Food Control–Furfurals and Patulin as Markers of Quality. Food Chem. 2009, 114, 1576–1582. DOI:10.1016/j.foodchem.2008.11.097
  • Wang, Y.; Wen, Y.; Ling, Y.-C. Graphene Oxide-Based Magnetic Solid Phase Extraction Combined with High Performance Liquid Chromatography for Determination of Patulin in Apple Juice. Food Anal. Methods 2017, 10, 210–218. DOI:10.1007/s12161-016-0570-y
  • Lucci, P.; Moret, S.; Bettin, S.; Conte, L. Selective Solid‐Phase Extraction Using a Molecularly İmprinted Polymer for the Analysis of Patulin in Apple‐Based Foods. J. Sep. Sci. 2017, 40, 458–465. 10.1002/jssc.201601009
  • Lhotská, I.; Holznerová, A.; Solich, P.; Šatínský, D. Critical Comparison of the On-line and Off-line Molecularly İmprinted Solid-Phase Extraction of Patulin Coupled with Liquid Chromatography. J. Sep. Sci. 2017, 40, 4599–4609. 10.1002/jssc.201700940
  • Giovannoli, C.; Spano, G.; Anfossi, L.; Baggiani, C.; Di Nardo, F. Screening of a Combinatorial Library of Organic Polymers for the Solid-Phase Extraction of Patulin from Apple Juice. Toxins 2017, 9, 174. DOI:10.3390/toxins9050174
  • Turner, N. W.; Bramhmbhatt, H.; Szabo-Vezse, M.; Poma, A.; Coker, R.; Piletsky, S. A. Analytical Methods for Determination of Mycotoxins: An Update (2009–2014). Anal. Chim. Acta. 2015, 901, 12–33. 10.1016/j.aca.2015.10.013
  • Riberi, W. I.; Zon, M. A.; Fernández, H.; Arévalo, F. J. Impedimetric immunosensor to Determine Patulin in Apple Juices Using a Glassy Carbon Electrode Modified with Graphene Oxide. Microchem. J. 2020, 158, 105192. DOI:10.1016/j.microc.2020.105192
  • Pennacchio, A.; Varriale, A.; Esposito, M. G.; Staiano, M.; D'Auria, S. A Near-İnfrared Fluorescence Assay Method to Detect Patulin in Food. Anal. Biochem. 2015, 481, 55–59. 10.1016/j.ab.2015.04.027
  • Song, X.; Wang, D.; Kim, M. Development of an İmmuno-Electrochemical Glass Carbon Electrode Sensor Based on Graphene Oxide/Gold Nanocomposite and Antibody for the Detection of Patulin. Food Chem. 2021, 342, 128257. DOI:10.1016/j.foodchem.2020.128257
  • Sharma, S.; Byrne, H.; O'Kennedy, R. J. Antibodies and Antibody-Derived Analytical Biosensors. Essays Biochem. 2016, 60, 9–18. 10.1042/EBC20150002
  • Tsugimura, K.; Ohnuki, H.; Wu, H.; Endo, H.; Tsuya, D.; Izumi, M. Oriented Antibody İmmobilization on Self-Assembled Monolayers Applied as İmpedance Biosensors. J. Phys: Conf. Ser. 2017, 924, 012015. DOI:10.1088/1742-6596/924/1/012015
  • Saerens, D.; Huang, L.; Bonroy, K.; Muyldermans, S. Antibody Fragments as Probe in Biosensor Development. Sensors (Basel), 2008, 8, 4669–4686. DOI:10.3390/s8084669
  • Arshavsky-Graham, S.; Heuer, C.; Jiang, X.; Segal, E. Aptasensors versus İmmunosensors—Which Will Prevail? Eng. Life Sci. 2022, 22, 319–333.
  • Tomita, Y.; Morita, Y.; Suga, H.; Fujiwara, D. DNA Module Platform for Developing Colorimetric Aptamer Sensors. Biotechniques. 2016, 60, 285–292. 10.2144/000114425
  • Ma, L.; Guo, T.; Pan, S.; Zhang, Y. A Fluorometric Aptasensor for Patulin Based on the Use of Magnetized Graphene Oxide and DNase I-Assisted Target Recycling Amplification. Mikrochim. Acta. 2018, 185, 487. 10.1007/s00604-018-3023-z
  • Wu, Z.; Xu, E.; Jin, Z.; Irudayaraj, J. An Ultrasensitive Aptasensor Based on Fluorescent Resonant Energy Transfer and Exonuclease-Assisted Target Recycling for Patulin Detection. Food Chem. 2018, 249, 136–142. 10.1016/j.foodchem.2018.01.025
  • Ahmadi, A.; Danesh, N. M.; Ramezani, M.; Alibolandi, M.; Lavaee, P.; Emrani, A. S.; Abnous, K.; Taghdisi, S. M. A Rapid and Simple Ratiometric Fluorescent Sensor for Patulin Detection Based on a Stabilized DNA Duplex Probe Containing Less Amount of Aptamer-İnvolved Base Pairs. Talanta 2019, 204, 641–646. 10.1016/j.talanta.2019.06.057
  • Mandal, S.; Das, P. Ultrasensitive visual Detection of Mycotoxin Citrinin with Yellow-Light Emitting Carbon Dot and Congo Red. Food Chem. 2020, 312, 126076.
  • Xu, J.; Qiao, X.; Wang, Y.; Sheng, Q.; Yue, T.; Zheng, J.; Zhou, M. Electrostatic Assembly of Gold Nanoparticles on Black Phosphorus Nanosheets for Electrochemical Aptasensing of Patulin. Mikrochim. Acta. 2019, 186, 238. 10.1007/s00604-019-3339-3
  • He, B.; Dong, X. Aptamer Based Voltammetric Patulin Assay Based on the Use of ZnO Nanorods. Mikrochim. Acta. 2018, 185, 462. 10.1007/s00604-018-3006-0
  • He, B.; Dong, X. Hierarchically Porous Zr-MOFs Labelled Methylene Blue as Signal Tags for Electrochemical Patulin Aptasensor Based on ZnO Nano Flower. Sens. Actuators B. Chem. 2019, 294, 192–198. DOI:10.1016/j.snb.2019.05.045
  • He, B.; Lu, X. An Electrochemical Aptasensor Based on Tetrahedral DNA Nanostructures as a Signal Probe Carrier Platform for Sensitive Detection of Patulin. Anal. Chim. Acta. 2020, 1138, 123–131. 10.1016/j.aca.2020.09.025
  • He, B.; Dong, X. Nb.BbvCI Powered DNA Walking Machine-Based Zr-MOFs-Labeled Electrochemical Aptasensor Using Pt@AuNRs/Fe-MOFs/PEI-rGO as Electrode Modification Material for Patulin Detection. Chem. Eng. J. 2021, 405, 126642. DOI:10.1016/j.cej.2020.126642
  • BelBruno, J. J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119, 94–119. 10.1021/acs.chemrev.8b00171
  • Zhang, W.; Han, Y.; Chen, X.; Luo, X.; Wang, J.; Yue, T.; Li, Z. Surface Molecularly İmprinted Polymer Capped Mn-Doped ZnS Quantum Dots as a Phosphorescent Nanosensor for Detecting Patulin in Apple Juice. Food Chem. 2017, 232, 145–154. 10.1016/j.foodchem.2017.03.156
  • Hatamluyi, B.; et al. Ultra-Sensitive Molecularly İmprinted Electrochemical Sensor for Patulin Detection Based on a Novel Assembling Strategy Using Au@Cu-MOF/N-GQDs. Sens. Actuators B. Chem. 2020, 318, 128219. https://doi.org/10.1016/j.snb.2020.128219.
  • Huang, Q.; Zhao, Z.; Nie, D.; Jiang, K.; Guo, W.; Fan, K.; Zhang, Z.; Meng, J.; Wu, Y.; Han, Z.; et al. Molecularly Imprinted Poly(Thionine)-Based Electrochemical Sensing Platform for Fast and Selective Ultratrace Determination of Patulin. Anal. Chem. 2019, 91, 4116–4123. 10.1021/acs.analchem.8b05791
  • Ding, Y.; Li, J.; Yan, K.; Zhang, J. A Miniature Self-Powered Electrochemical Sensor for the Determination of Patulin Based on an İntegrated Photocatalytic Fuel Cell. Sens. Actuators B 2022, 369, 132259. DOI:10.1016/j.snb.2022.132259
  • Yan, X.; Du, G.; Chen, H.; Zhao, Q.; Guo, Q.; Wang, J.; Wang, Z.; Song, W.; Sheng, Q.; Luo, Y.; et al. Label-Free Fluorescence Aptasensor for the Detection of Patulin Using Target-İnduced DNA Gates and TCPP/BDC-NH2 Mixed Ligands Functionalized Zr-MOF Systems. Biosens. Bioelectron. 2022, 217, 114723. DOI:10.1016/j.bios.2022.114723
  • Zhang, M.; Wang, Y.; Sun, X.; Bai, J.; Peng, Y.; Ning, B.; Gao, Z.; Liu, B. Ultrasensitive Competitive Detection of Patulin Toxin by Using Strand Displacement Amplification and DNA G-Quadruplex with Aggregation-İnduced Emission. Anal. Chim. Acta. 2020, 1106, 161–167. 10.1016/j.aca.2020.01.064
  • Song, X.; Wang, D.; Kim, M. Immunoliposome-Based Fluorometric Patulin Assay by Using İmmunomagnetic Nanoparticles. Microchim. Acta 2019, 186:834. DOI: 10.1007/s00604-019-3973-9.
  • Yang, Y.; Li, Q.; Fang, G.; Wang, S. Preparation and Evaluation of Novel Surface Molecularly İmprinted Polymers by Sol–Gel Process for Online Solid-Phase Extraction Coupled with High Performance Liquid Chromatography to Detect Trace Patulin in Fruit Derived Products. RSC Adv. 2016, 6, 54510–54517. DOI: 10.1039/C6RA08736A
  • Yu, Y.; Fan, Z. Determination of Patulin in Apple Juice Using Magnetic Solid-Phase Extraction Coupled with High-Performance Liquid Chromatography. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2017, 34, 273–281. 10.1080/19440049.2016.1266394
  • Fang, G.; Wang, H.; Yang, Y.; Liu, G.; Wang, S. Development and Application of a Quartz Crystal Microbalance Sensor Based on Molecularly İmprinted Sol-Gel Polymer for Rapid Detection of Patulin in Foods. Sens. Actuators, B 2016, 237, 239–246. DOI:10.1016/j.snb.2016.06.099
  • Wu, L.; Yan, H.; Li, G.; Xu, X.; Zhu, L.; Chen, X.; Wang, J. Surface-Imprinted Gold Nanoparticle-Based Surface-Enhanced Raman Scattering for Sensitive and Specific Detection of Patulin in Food Samples. Food Anal. Methods 2019, 12, 1648–1657. DOI:10.1007/s12161-019-01498-4
  • Zhu, Y.; Wu, L.; Yan, H.; Lu, Z.; Yin, W.; Han, H. Enzyme Induced Molecularly İmprinted Polymer on SERS Substrate for Ultrasensitive Detection of Patulin. Anal. Chim. Acta. 2020, 1101, 111–119. 10.1016/j.aca.2019.12.030
  • Kang, Y.; Gu, H. X.; Zhang, X. A Self-Referenced Method for Determination of Patulin by Surface-Enhanced Raman Scattering Using Gold Nanobipyramids as the Substrate. Anal. Methods 2019, 11, 5142–5149. DOI:10.1039/C9AY01366K
  • Buglak, A. A.; Samokhvalov, A. V.; Zherdev, A. V.; Dzantiev, B. B. Methods and Applications of in Silico Aptamer Design and Modeling. IJMS. 2020, 21, 8420. DOI:10.3390/ijms21228420
  • Chen, Y.; Yang, Y.; Wang, Y.; Peng, Y.; Nie, J.; Gao, G.; Zhi, J. Development of an Escherichia coli-Based Electrochemical Biosensor for Mycotoxin Toxicity Detection. Bioelectrochemistry 2020, 133, 107453. DOI:10.1016/j.bioelechem.2019.107453
  • Wu, W.; Zhu, Z.; Li, B.; Liu, Z.; Jia, L.; Zuo, L.; Chen, L.; Zhu, Z.; Shan, G.; Luo, S.-Z.; et al. A direct Determination of AFBs in Vinegar by Aptamer-Based Surface Plasmon Resonance Biosensor. Toxicon 2018, 146, 24–30. 10.1016/j.toxicon.2018.03.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.