207
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Single Organic Ligands Act as a Bifunctional Sensor for Subsequent Detection of Metal and Cyanide Ions, a Statistical Approach toward Coordination and Sensitivity

ORCID Icon, , , , , , , , & ORCID Icon show all

Reference

  • Aitken, R.; Finnie, J.; Muscio, L.; Whiting, S.; Connaughton, H.; Kuczera, L.; Rothkirch, T.; De Iuliis, G. Potential Importance of Transition Metals in the Induction of DNA Damage by Sperm Preparation Media. Human Reprod. 2014, 29, 2136.
  • Fones, H.; Preston, G. M. The Impact of Transition Metals on Bacterial Plant Disease. FEMS Microbiol. Rev. 2013, 37, 495.
  • Khan, E.; Gul, Z.; Shahzad, A.; Jan, M. S.; Ullah, F.; Tahir, M.; Noor, A. Coordination Compounds of 4, 5, 6, 7-Tetrahydro-1 H-Indazole with Cu (II), Co (II) and Ag (I): Structural, Antimicrobial, Antioxidant and Enzyme Inhibition Studies. J. Coord. Chem. 2017, 70, 4054.
  • Chhowalla, M.; Liu, Z.; Zhang, H. Two-Dimensional Transition Metal Dichalcogenide (TMD) Nanosheets. Chem. Soc. Rev. 2015, 44, 2584.
  • Maduraiveeran, G.; Sasidharan, M.; Jin, W. Earth-Abundant Transition Metal and Metal Oxide Nanomaterials: Synthesis and Electrochemical Applications. Prog. Mater. Sci. 2019, 106, 100574.
  • Gul, Z.; Khan, S.; Khan, E. Organic Molecules Containing N, S and O Heteroatoms as Sensors for the Detection of Hg (II) Ion; Coordination and Efficiency toward Detection. Crit. Rev. Anal. Chem. 2022, 1.
  • Shahzad, A.; Gul, Z.; Khan, E.; Umar, M. N.; Shah, M. R.; Noor, A.; Khan, S. W. Facile Synthesis, Characterization and DFT Calculations of 2-Acetyl Pyridine Derivatives. Química Nova 2017, 40, 902.
  • Gul, Z.; Din, N. U.; Khan, E.; Ullah, F.; Tahir, M. N. Synthesis, Molecular Structure, anti-Microbial, anti-Oxidant and Enzyme Inhibition Activities of 2-Amino-6-Methylbenzothiazole and Its Cu (II) and Ag (I) complexes. J. Mol. Struct. 2020, 1199, 126956.
  • Khan, E.; Ahmad, T.; Gul, Z.; Ullah, F.; Tahir, M. N.; Noor, A. Methyl-Substituted 2-Aminothiazole–Based Cobalt (II) and Silver (I) complexes: Synthesis, X-Ray Structures, and Biological Activities. Turk. J. Chem. 2019, 43, 857.
  • Khan, E.; Khan, S.; Gul, Z.; Muhammad, M. Medicinal Importance, Coordination Chemistry with Selected Metals (cu, Ag, au) and Chemosensing of Thiourea Derivatives. A Review. Crit. Rev. Anal. Chem. 2021, 51, 812.
  • Gul, Z.; Khan, S.; Ullah, S.; Ullah, H.; Khan, M. U.; Ullah, M.; Altaf, A. A. Recent Development in Coordination Compounds as a Sensor for Cyanide Ions in Biological and Environmental Segments. Crit. Rev. Anal. Chem. 2022, 1.
  • Muhammad, M.; Khan, S.; Shehzadi, S. A.; Gul, Z.; Al-Saidi, H. M.; Kamran, A. W.; Alhumaydhi, F. A. Recent Advances in Colorimetric and Fluorescent Chemosensors Based on Thiourea Derivatives for Metallic Cations: A Review. Dyes Pigm. 2022, 205, 110477.
  • Gul, Z.; Ullah, S.; Khan, S.; Ullah, H.; Khan, M. U.; Ullah, M.; Ali, S.; Altaf, A. A. Recent Progress in Nanoparticles Based Sensors for the Detection of Mercury (II) Ions in Environmental and Biological Samples. Crit. Rev. Anal. Chem. 2022, 1.
  • Cullen, D.; Brown, R.; Lowe, C. Detection of Immuno-Complex Formation via Surface Plasmon Resonance on Gold-Coated Diffraction Gratings. Biosensors 1987, 3, 211.
  • Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J. A New Trend in Rhodamine-Based Chemosensors: application of Spirolactam Ring-Opening to Sensing Ions. Chem. Soc. Rev. 2008, 37, 1465.
  • Quang, D. T.; Kim, J. S. Fluoro-and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens. Chem. Rev. 2010, 110, 6280.
  • Manahan, S. E. Industrial Ecology: environmental Chemistry and Hazardous Waste; Routledge, 2017.
  • Safavi, A.; Maleki, N.; Shahbaazi, H. Indirect Determination of Cyanide Ion and Hydrogen Cyanide by Adsorptive Stripping Voltammetry at a Mercury Electrode. Anal. Chim. Acta. 2004, 503, 213.
  • Boening, D. W.; Chew, C. M. A Critical Review: General Toxicity and Environmental Fate of Three Aqueous Cyanide Ions and Associated Ligands. Water Air Soil Pollut. 1999, 109, 67.
  • Karmakar, A.; Joarder, B.; Mallick, A.; Samanta, P.; Desai, A. V.; Basu, S.; Ghosh, S. K. Aqueous Phase Sensing of Cyanide Ions Using a Hydrolytically Stable Metal–Organic Framework. Chem. Commun. 2017, 53, 1253.
  • Zhang, Y.; Li, D.; Li, Y.; Yu, J. Solvatochromic AIE Luminogens as Supersensitive Water Detectors in Organic Solvents and Highly Efficient Cyanide Chemosensors in Water. Chem. Sci. 2014, 5, 2710.
  • Li, J.; Yuan, S.; Qin, J. S.; Pang, J.; Zhang, P.; Zhang, Y.; Huang, Y.; Drake, H. F.; Liu, W. R.; Zhou, H. C. Stepwise Assembly of Turn‐on Fluorescence Sensors in Multicomponent Metal–Organic Frameworks for in Vitro Cyanide Detection. Angew. Chem. 2020, 132, 9405.
  • Kim, J. S.; Lee, S. Y.; Yoon, J.; Vicens, J. Hyperbranched Calixarenes: synthesis and Applications as Fluorescent Probes. Chem. Commun. 2009, 32, 4791.
  • Zhang, R.; Yu, X.; Yin, Y.; Ye, Z.; Wang, G.; Yuan, J. Development of a Heterobimetallic Ru (II)–Cu (II) Complex for Highly Selective and Sensitive Luminescence Sensing of Sulfide Anions. Anal. Chim. Acta. 2011, 691, 83–88.
  • Meng, Q.; Shi, Y.; Wang, C.; Jia, H.; Gao, X.; Zhang, R.; Wang, Y.; Zhang, Z. NBD-Based Fluorescent Chemosensor for the Selective Quantification of Copper and Sulfide in an Aqueous Solution and Living Cells. Org. Biomolec. Chem. 2015, 13, 2918.
  • Meng, Q.; Jia, H.; Succar, P.; Zhao, L.; Zhang, R.; Duan, C.; Zhang, Z. A Highly Selective and Sensitive on–off–on Fluorescence Chemosensor for Cysteine Detection in Endoplasmic Reticulum. Biosens. Bioelectron. 2015, 74, 461.
  • Song, X.; Ma, Y.; Ge, X.; Zhou, H.; Wang, G.; Zhang, H.; Tang, X.; Zhang, Y. Europium-Based Infinite Coordination Polymer Nanospheres as an Effective Fluorescence Probe for Phosphate Sensing. RSC Adv. 2017, 7, 8661.
  • Shahid, M.; Razi, S. S.; Srivastava, P.; Ali, R.; Maiti, B.; Misra, A. A Useful Scaffold Based on Acenaphthene Exhibiting Cu2+ Induced Excimer Fluorescence and Sensing Cyanide via Cu2+ Displacement Approach. Tetrahedron 2012, 68, 9076.
  • Maurya, N.; Bhardwaj, S.; Singh, A. K. Selective Colorimetric and Fluorescence ‘Turn-On’sensor for Ag + and in-Situ Sensing of CN−(off–on-off) via Displacement Approach. Mater. Sci. Eng. C 2017, 74, 55.
  • Ebadinia, L.; Darabi, H. R.; Ramazani, A. Optical Detection of Cyanide by Palladium (II)-Dithiazolopyridine Probe at the Parts per Billion Level. Phosphorus, Sulfur, and Silicon and the Related Elements 2020, 195, 620.
  • Kaushik, R.; Sakla, R.; Ghosh, A.; Selvan, G. T.; Selvakumar, P. M.; Jose, D. A. Selective Detection of H2S by Copper Complex Embedded in Vesicles through Metal Indicator Displacement Approach. ACS Sens. 2018, 3, 1142.
  • Köse, M.; Ceyhan, G.; Tümer, M.; Demirtaş, İ.; Gönül, İ.; McKee, V. Monodentate Schiff Base Ligands: Their Structural Characterization, Photoluminescence, Anticancer, Electrochemical and Sensor Properties. Spectrochim. Acta, Part A 2015, 137, 477.
  • Dutta, P.; Chapman, P. J.; Datskos, P. G.; Sepaniak, M. J. Characterization of Ligand-Functionalized Microcantilevers for Metal Ion Sensing. Anal. Chem. 2005, 77, 6601–6608.
  • Li, Z.; a.; Lou, X.; Yu, H.; Li, Z.; Qin, J. An Imidazole-Functionalized Polyfluorene Derivative as Sensitive Fluorescent Probe for Metal Ions and Cyanide. Macromolecules 2008, 41, 7433.
  • Lozano-Torres, B.; Marcos, M. D.; Pardo, T.; Sancenón, F.; Martínez-Máñez, R.; Rurack, K. Anilinopyridine–Metal Complexes for the Selective Chromogenic Sensing of Cyanide Anion. J. Coord. Chem. 2018, 71, 786.
  • Cui, C.; Wang, Q.; Xin, C.; Liu, Q.; Deng, X.; Liu, T.; Xu, X.; Zhang, X. Covalent Organic Framework with Bidentate Ligand Sites as Reliable Fluorescent Sensor for Cu2+. Microporous Mesoporous Mater. 2020, 299, 110122.
  • Avirah, R. R.; Jyothish, K.; Ramaiah, D. Dual-Mode Semisquaraine-Based Sensor for Selective Detection of Hg2+ in a Micellar Medium. Org. Lett. 2007, 9, 121.
  • Tavallali, H.; Deilamy-Rad, G.; Parhami, A.; Mousavi, S. Z. A Novel Development of Dithizone as a Dual-Analyte Colorimetric Chemosensor: detection and Determination of Cyanide and Cobalt (II) Ions in Dimethyl Sulfoxide/Water Media with Biological Applications. J. Photochem. Photobiol, B 2013, 125, 121.
  • Xie, Y.; Ding, Y.; Li, X.; Wang, C.; Hill, J. P.; Ariga, K.; Zhang, W.; Zhu, W. Selective, Sensitive and Reversible “Turn-on” Fluorescent Cyanide Probes Based on 2, 2′-Dipyridylaminoanthracene–Cu 2+ Ensembles. Chem. Commun. 2012, 48, 11513.
  • Zeng, Q.; Cai, P.; Li, Z.; Qin, J.; Tang, B. Z. An Imidazole-Functionalized Polyacetylene: convenient Synthesis and Selective Chemosensor for Metal Ions and Cyanide. Chem. Commun. 2008, 9, 1094.
  • Khoshsoroor, S.; Mohammadi, A.; Khalili, B.; Mohammadi, S. A Novel Uracil-Based Chemosensor for Sequential Detection of Copper (II) and Cyanide Ions and Its Application in Real Samples. J. Photochem. Photobiol. A 2020, 388, 112208.
  • You, G. R.; Park, G. J.; Lee, J. J.; Kim, C. A Colorimetric Sensor for the Sequential Detection of Cu 2+ and CN − in Fully Aqueous Media: practical Performance of Cu 2+. Dalton Trans. 2015, 44, 9120.
  • Bhardwaj, S.; Maurya, N.; Singh, A. K. Chromone Based Fluorescent Organic Nanoparticles for High-Precision in-Situ Sensing of Cu2+ and CN− Ions in 100% Aqueous Solutions. Sens. Actuat. B 2018, 260, 753.
  • Zhang, Y.-M.; Su, J.-X.; Li, Q.; Qu, W.-J.; Zhu, X.; Leng, Y.-L.; Xin, S.-F.; Yao, H.; Lin, Q.; Wei, T.-B. Novel Fluorescent Cyanide-Selective Chemosensor Based on a Functionalised Pillar. [5] Arene Copper (II) Complex. Supramol. Chem. 2017, 29, 411.
  • Gupta, R. C.; Razi, S. S.; Ali, R.; Dwivedi, S. K.; Srivastava, P.; Singh, P.; Koch, B.; Mishra, H.; Misra, A. An Efficient Hg2+ Ensemble Based on a Triazole Bridged Anthracene and Quinoline System for Selective Detection of Cyanide through Fluorescence Turn-off–on Response in Solution and Live Cell. Sens. Actuat. B 2017, 251, 729.
  • Mahata, S.; Dey, S.; Mandal, B. B.; Manivannan, V. 3-(2-Hydroxyphenyl) Imidazo [5, 1-a] Isoquinoline as Cu (II) Sensor, Its Cu (II) Complex for Selective Detection of CN − Ion and Biological Compatibility. J. Photochem. Photobiol. A 2022, 427, 113795.
  • Dong, S.; Ou, D.; Qin, J.; Li, Z. New Imidazole‐Functionalized Polyfluorene Derivatives: convenient Postfunctional Syntheses, Sensitive Probes for Metal Ions and Cyanide, and Adjustable Output Signals with Diversified Fluorescence Color. J. Polym. Sci. A, Polym. Chem. 2011, 49, 3314.
  • Gupta, V. K.; Jain, A.; Agarwal, S.; Maheshwari, G. An Iron (III) Ion-Selective Sensor Based on a μ-Bis (Tridentate) Ligand. Talanta 2007, 71, 1964.
  • Zheng, K.; Ding, L.-W.; Zeng, C.-H. Highly Luminescent Lanthanide Complexes Constructed by Bis-Tridentate Ligand and as Sensor for Et2O. Inorg. Chem. Commun. 2018, 95, 95.
  • Hu, Z.-Q.; Du, M.; Zhang, L.-F.; Guo, F.-Y.; Liu, M.-D.; Li, M. A Novel Colorimetric and Fluorescent Chemosensor for Cyanide Ion in Aqueous Media Based on a Rhodamine Derivative in the Presence of Fe3+ Ion. Sens. Actuat. B 2014, 192, 439.
  • Lou, X.; Zhang, Y.; Li, S.; Ou, D.; Wan, Z.; Qin, J.; Li, Z. A New Polyfluorene Bearing Pyridine Moieties: A Sensitive Fluorescent Chemosensor for Metal Ions and Cyanide. Polym. Chem. 2012, 3, 1446.
  • Park, G. J.; Hwang, I. H.; Song, E. J.; Kim, H.; Kim, C. A Colorimetric and Fluorescent Sensor for Sequential Detection of Copper Ion and Cyanide. Tetrahedron 2014, 70, 2822.
  • Tang, L.; Cai, M. A Highly Selective and Sensitive Fluorescent Sensor for Cu2+ and Its Complex for Successive Sensing of Cyanide via Cu2+ Displacement Approach. Sens. Actuat. B 2012, 173, 862.
  • Mohammadi, A.; Ghasemi, Z. A Simple Pyrimidine Based Colorimetric and Fluorescent Chemosensor for Sequential Detection of Copper (II) and Cyanide Ions and Its Application in Real Samples. Spectrochim. Acta, Part A 2020, 228, 117730.
  • Mukherjee, S.; Talukder, S. A Coumarin-Based Luminescent Chemosensor for Recognition of Cu 2+ and Its in-Situ Complex for CN − Sensing via Cu 2+ Displacement Approach. J. Fluoresc. 2017, 27, 1567.
  • Wu, C.; Wang, J.; Shen, J.; Zhang, C.; Wu, Z.; Zhou, H. A Colorimetric Quinoline-Based Chemosensor for Sequential Detection of Copper Ion and Cyanide Anions. Tetrahedron 2017, 73, 5715.
  • Sahu, M.; Manna, A. K.; Chowdhury, S.; Patra, G. K. A Novel Dihydro Phenylquinazolinone-Based Two-in-One Colourimetric Chemosensor for Nickel (ii), Copper (ii) and Its Copper Complex for the Fluorescent Colourimetric Nanomolar Detection of the Cyanide Anion. RSC Adv. 2020, 10, 44860.
  • Jang, H. J.; Kang, J. H.; Lee, M.; Lim, M. H.; Kim, C. Fluorescent Sensor for Sequentially Monitoring Zinc (II) and Cyanide Anion in near-Perfect Aqueous Media. Ind. Eng. Chem. Res. 2018, 57, 54.
  • Sharma, P.; Singh, P. A Perylene Diimide-Based near-IR Ratiometric Sensor for Detection of Cu 2+ Ions: ensemble for Discrimination of CN − and S 2− Ions. Anal. Methods 2020, 12, 758.
  • Kumar, A.; Ahmed, N. Indirect Approach for CN–Detection: Development of “Naked-Eye” Hg2+-Induced Turn-Off Fluorescence and Turn-On Cyanide Sensing by the Hg2+ Displacement Approach. Ind. Eng. Chem. Res. 2017, 56, 6358.
  • Isaad, J.; El Achari, A. Colorimetric and Fluorescent Probe Based on Coumarin for Sequential Sensing of Mercury (II) and Cyanide Ions in Aqueous Solutions. J. Lumin. 2022, 243, 118668.
  • Wang, K.; Zhao, C.; Guo, S.; Lu, Y.; Shen, Y.; Wang, C. A Coumarin-Based near-Infrared Fluorescent Probe with a Large Stokes Shift for the Sequential Recognition of Ni2+ and CN−: Performance Research and Quantum Calculation. J. Photochem. Photobiol. A 2019, 382, 111943.
  • ReddyPrasad, P.; Imae, T. Selective Detection of Copper Ion in Water by Tetradentate Ligand Sensor. J. Taiwan Inst. Chem. Eng. 2017, 72, 194.
  • Sanatkar, T. H.; Khorshidi, A.; Sohouli, E.; Janczak, J. Synthesis, Crystal Structure, and Characterization of Two Cu (II) and Ni (II) Complexes of a Tetradentate N2O2 Schiff Base Ligand and Their Application in Fabrication of a Hydrazine Electrochemical Sensor. Inorg. Chim. Acta 2020, 506, 119537.
  • Chakraborty, C.; Singh, P.; Maji, S. K.; Malik, S. Conjugated Polyfluorene-Based Reversible Fluorescent Sensor for Cu (II) and Cyanide Ions in Aqueous Medium. Chem. Lett. 2013, 42, 1355.
  • Singh, P.; Mittal, L. S.; Kumar, S.; Bhargava, G.; Kumar, S. Perylene Diimide Appended with 8-Hydroxyquinoline for Ratiometric Detection of Cu2+ Ions and Metal Displacement Driven “Turn on” Cyanide Sensing. Journal of Fluorescence 2014, 24, 909.
  • Xu, Z.; Pan, J.; Spring, D. R.; Cui, J.; Yoon, J. Ratiometric Fluorescent and Colorimetric Sensors for Cu2+ Based on 4, 5-Disubstituted-1, 8-Naphthalimide and Sensing Cyanide via Cu2+ Displacement Approach. Tetrahedron 2010, 66, 1678.
  • Park, G. J.; You, G. R.; Choi, Y. W.; Kim, C. A Naked-Eye Chemosensor for Simultaneous Detection of Iron and Copper Ions and Its Copper Complex for Colorimetric/Fluorescent Sensing of Cyanide. Sens. Actuat. B 2016, 229, 257.
  • Chandra, R.; Ghorai, A.; Patra, G. K. A Simple Benzildihydrazone Derived Colorimetric and Fluorescent ‘on–off-On’sensor for Sequential Detection of Copper (II) and Cyanide Ions in Aqueous Solution. Sens. Actuat. B 2018, 255, 701.
  • Jung, K. H.; Lee, K.-H. Efficient Ensemble System Based on the Copper Binding Motif for Highly Sensitive and Selective Detection of Cyanide Ions in 100% Aqueous Solutions by Fluorescent and Colorimetric Changes. Anal. Chem. 2015, 87, 9308.
  • Shahid, M.; Chawla, H. M.; Bhatia, P. A Calix [4] Arene Based Turn off/Turn on Molecular Receptor for Cu2+ and CN− Ions in Aqueous Medium. Sens. Actuators, B 2016, 237, 470.
  • Wang, L.; Wei, Z.-L.; Chen, Z.-Z.; Liu, C.; Dong, W.-K.; Ding, Y.-J. A Chemical Probe Capable for Fluorescent and Colorimetric Detection to Cu2+ and CN − Based on Coordination and Nucleophilic Addition Mechanism. Microchem. J. 2020, 155, 104801.
  • Isaad, J.; Malek, F.; El Achari, A. Colorimetric and Fluorescent Probe Based on Coumarin/Thiophene Derivative for Sequential Detection of Mercury (II) and Cyanide Ions in an Aqueous Medium. J. Mol. Struct. 2022, 1270, 133838.
  • Wang, P.; Xue, S.; Zhou, D.; Guo, Z.; Wang, Q.; Guo, B.; Yang, X.; Wu, J. Peptide-Based Colorimetric and Fluorescent Dual-Functional Probe for Sequential Detection of Copper (II) and Cyanide Ions and Its Application in Real Water Samples, Test Strips and Living Cells. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2022, 276, 121222.
  • Isaad, J.; El Achari, A. Sequential Colorimetric Sensor for Copper (II) and Cyanide Ions via the Complexation − Decomplexation Mechanism Based on Sugar Pyrazolidine-3, 5‑Dione. J. Mol. Struct. 2022, 1252, 132151.
  • Ganjali, M. R.; Rezapour, M.; Norouzi, P.; Salavati‐Niasari, M. A New Pentadentate S‐N Schiffs’ Base as a Novel Ionophore in Construction of a Novel Gd (III) Membrane Sensor. Electroanalysis 2005, 17, 2032.
  • Golbedaghi, R.; Justino, L. L.; Bahrampour, M.; Fausto, R. A Novel Fluorescent Chemosensor for Cu2+ Ion Based on a New Hexadentate Ligand Receptor: X-Ray Single Crystal of the Perchlorate Salt of the Ligand, Ion Selectivity Assays and TD-DFT Study. Inorg. Chim. Acta 2021, 515, 120061.
  • Wang, M.; Xu, J.; Liu, X.; Wang, H. A Highly Selective Pyrene Based “off–on” Fluorescent Chemosensor for Cyanide. New J. Chem. 2013, 37, 3869.
  • Tang, Y.-H.; Qu, Y.; Song, Z.; He, X.-P.; Xie, J.; Hua, J.; Chen, G.-R. Discovery of a Sensitive Cu (II)-Cyanide “off–on” Sensor Based on New C-Glycosyl Triazolyl Bis-Amino Acid Scaffold. Org. Biomol. Chem. 2012, 10, 555.
  • Isaad, J.; El Achari, A. Water-Soluble Coumarin Based Sequential Colorimetric and Fluorescence on-off Chemosensor for Copper (II) and Cyanide Ions in Water. Opt. Mater. 2022, 127, 112275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.