207
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Analytical Methods Based on Liquid Chromatography and Capillary Electrophoresis to Determine Neonicotinoid Residues in Complex Matrices. A Comprehensive Review

, &

References

  • Jeschke, P.; Nauen, R.; Schindler, M.; Elbert, A. Overview of the Status and Global Strategy for Neonicotinoids. J. Agric. Food Chem. 2011, 59, 2897–2908. DOI: 10.1021/jf101303g.
  • Matsuda, K.; Buckingham, S. D.; Kleier, D.; Rauh, J. J.; Grauso, M.; Sattelle, D. B. Neonicotinoids: Insecticides Acting on Insect Nicotinic Acetylcholine Receptors. Trends Pharmacol. Sci. 2001, 22, 573–580. DOI: 10.1016/s0165-6147(00)01820-4.
  • Tomizawa, M.; Casida, J. E. Selective Toxicity of Neonicotinoids Attributable to Specificity of Insect and Mammalian Nicotinic Receptors. Annu. Rev. Entomol. 2003, 48, 339–364. DOI: 10.1146/annurev.ento.48.091801.112731.
  • Jeschke, P.; Nauen, R. Neonicotinoides - From Zero to Hero in Insecticide Chemistry. Pest Manag. Sci. 2008, 64, 1084–1098. DOI: 10.1002/ps.1631.
  • Ford, K. A.; Casida, J. E. Comparative Metabolism and Pharmacokinetics of Seven Neonicotinoid Insecticides in Spinach. J. Agric. Food Chem. 2008, 56, 10168–10175. DOI: 10.1021/jf8020909.
  • Kundoo, A. A.; Dar, S. A.; Mushtaq, M.; Bashir, Z.; Dar, M. S.; Gul, S.; Ali, M. T.; Gulzar, S. Role of Neonicotinoids in Insect Pest Management: A Review. J. Entomol. Zool. Stud. 2018, 6, 333–339.
  • Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L. P.; Bonmatin, J. M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D. W.; Giorio, C.; Girolami, V.; et al. Systemic Insecticides (Neonicotinoids and Fipronil): Trends, Uses, Mode of Action and Metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. DOI: 10.1007/s11356-014-3470-y.
  • Elbert, A.; Haas, M.; Springer, B.; Thielert, W.; Nauen, R. Applied Aspects of Neonicotinoid Uses in Crop Protection. Pest Manag. Sci. 2008, 64, 1099–1105. DOI: 10.1002/ps.1616.
  • Jeschke, P.; Nauen, R.; 5.3-Neonicotinoid Insecticide. In Comprehensive Molecular Insect Science. Gilbert, L.I. editor. Elsevier: Oxford, 2005; pp 53-105. https://doi.org/10.1016/B0-44-451924-6/00069-7.
  • Sánchez-Bayo, F. The Trouble with Neonicotinoids. Science 2014, 346, 806–807. DOI: 10.1126/science.1259159.
  • van der Sluijs, J. P.; Amaral-Rogers, V.; Belzunces, L. P.; Bijleveld van Lexmond, M. F. I. J.; Bonmatin, J.-M.; Chagnon, M.; Downs, C. A.; Furlan, L.; Gibbons, D. W.; Giorio, C.; et al. Conclusions of the Worldwide Integrated Assessment (WIA) on the Risks of Neonicotinoids and Fipronil to Biodiversity and Ecosystem Functioning. Environ. Sci. Pollut. Res. Int. 2015, 22, 148–154. DOI: 10.1007/s11356-014-3229-5.
  • Furlan, L.; Pozzebon, A.; Duso, C.; Simon-Delso, N.; Sánchez-Bayo, F.; Marchand, P. A.; Codato, F.; Bijleveld van Lexmond, M.; Bonmatin, J.-M. An Update of the Worldwide Integrated Assessment (WIA) on Systemic Insecticides. Part 3: Alternatives to Systemic Insecticides. Environ. Sci. Pollut. Res. Int. 2021, 28, 11798–11820. DOI: 10.1007/s11356-017-1052-5.
  • EPA. United States Environmental Protection Agency. https://www.epa.gov/pollinator-protection/epa-actions-protect-pollinators#Proposed-Interim-Decisions (accessed August 1, 2021).
  • Hladik, M. L.; Main, A. R.; Goulson, D. Environmental Risks and Challenges Associated with Neonicotinoid Insecticides. Environ. Sci. Technol. 2018, 52, 3329–3335. DOI: 10.1021/acs.est.7b06388.
  • Van der Sluijs, J. P.; Simon-Delso, N.; Goulson, D.; Maxim, L.; Bonmatin, J. M.; Belzunces, L. P. Neonicotinoids, Bee Disorders and the Sustainability of Pollinator Services. Curr. Opin. Environ. Sustain. 2013, 5, 293–305. DOI: 10.1016/j.cosust.2013.05.007.
  • Fairbrother, A.; Purdy, J.; Anderson, T.; Fell, R. Risks of Neonicotinoid Insecticides to Honeybees. Environ. Toxicol. Chem. 2014, 33, 719–731. DOI: 10.1002/etc.2527.
  • Commission Implementing Regulation (EU) No 485/2013 of 24 May 2013. Amending Implementing Regulation (EU) No 540/2011, as Regards the Conditions of Approval of the Active Substances Clothianidin, Thiamethoxam and Imidacloprid, and Prohibiting the Use and Sale of Seeds Treated with Plant Protection Products Containing Those Active Substances. Off. J. EU 2011, L139, 12–26.
  • Food Safety- European Commission. 2019. https://ec.europa.eu/food/plant/pesticides/approval_active_substances/approval_renewal/neonicotinoids_en (accessed June 20, 2021).
  • Pesticides: Commision bans a neonicotinoid from EU market- European Commission. https://ec.europa.eu/cyprus/news/20200113_3_en (accessed July 31, 2021).
  • EU Pesticides Database-European Commission. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/mrls/ (accessed June 25, 2021).
  • U.S. Environmental Protection Agency Evaluation the Carcinogenic Potential of Thiacloprid. 2003. https://archive.epa.gov/pesticides/chemicalsearch/chemical/foia/web/pdf/014019/014019-2003-03-26a.pdf (accessed July 9, 2018).
  • Sekeroglu, V.; Sekeroglu, Z. A.; Demirhan, E. Effects of Commercial Formulations of Deltamethrin and/or Thiacloprid on Thyroid Hormone Levels in Rat Serum. Toxicol. Ind. Health. 2014, 30, 40–46. DOI: 10.1177/0748233712448114.
  • Han, W.; Tian, Y.; Shen, X. Human Exposure to Neonicotinoid Insecticides and the Evaluation of Their Potential Toxicity: An Overview. Chemosphere 2018, 192, 59–65. DOI: 10.1016/j.chemosphere.2017.10.149.
  • Zhang, Q.; Lu, Z.; Chang, J. L.; Yu, C.; Wang, X.; Lu, C. Dietary Risk of Neonicotinoid Insecticides through Fruit and Vegetable Consumption in School-Age Children. Environ. Int. 2019, 126, 672–681. DOI: 10.1016/j.envint.2019.02.051.
  • Zhang, Q.; Li, Z.; Chang, C. H.; Lou, J. L.; Zhao, M. R.; Lu, C. Potential Human Exposures to Neonicotinoid Insecticides: A Review. Environ. Pollut. 2018, 236, 71–81. DOI: 10.1016/j.envpol.2017.12.101.
  • Jiménez-López, J.; Llorent-Martínez, E. J.; Ortega-Barrales, P.; Ruiz-Medina, A. Analysis of Neonicotinoid Pesticides in the Agri-Food Sector: A Critical Assessment of the State of the Art. Appl. Spectrosc. Rev. 2020, 55, 613–646. DOI: 10.1080/05704928.2019.1608111.
  • Buszewski, B.; Bukowska, M.; Ligor, M.; Staneczko-Baranowska, I. A Holistic Study of Neonicotinoids Neuroactive Insecticides—Properties, Applications, Occurrence, and Analysis. Environ. Sci. Pollut. Res. Int. 2019, 26, 34723–34740. DOI: 10.1007/s11356-019-06114-w.
  • Tu, X.; Chen, W. Overview of Analytical Methods for the Determination of Neonicotinoid Pesticides in Honeybee Products and Honeybee. Crit. Rev. Anal. Chem. 2021, 51, 329–338. DOI: 10.1080/10408347.2020.1728516.
  • Watanabe, E. Review on Current Analytical Methods with Chromatographic and Nonchromatographic Techniques for New Generation Insecticide Neonicotinoids. In Advances in Integrated Pest Management; Perveen, F. Ed.; InTech: London, 2012.
  • Giroud, B.; Bruckner, S.; Straub, L.; Neumann, P.; Williams, G. R.; Vulliet, E. Trace-Level Determination of Two Neonicotinoid Insecticide Residues in Honey Bee Royal Jelly Using Ultra-Sound Assisted Salting-Out Liquid Liquid Extraction Followed by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Microchem. J. 2019, 151, 104249. DOI: 10.1016/j.microc.2019.104249.
  • Valverde, S.; Bernal, J. L.; Martin, M. T.; Nozal, M. J.; Bernal, J. Fast Determination of Neonicotinoid Insecticides in Bee Pollen Using QuEChERS and Ultra-High Performance Liquid Chromatography Coupled to Quadrupole Time-of-Flight Mass Spectrometry. Electrophoresis 2016, 37, 2470–2477. DOI: 10.1002/elps.201600146.
  • Kammoun, S.; Mulhauser, B.; Aebi, A.; Mitchell, E. A. D.; Glauser, G. Ultra-Trace Level Determination of Neonicotinoids in Honey as a Tool for Assessing Environmental Contamination. Environ. Pollut. 2019, 247, 964–972. DOI: 10.1016/j.envpol.2019.02.004.
  • Moreno-González, D.; Alcántara-Durán, J.; Gilbert-López, B.; Beneito-Cambra, M.; Cutillas, V. M.; Rajski, Ł.; Molina-Díaz, A.; García-Reyes, J. F. Sensitive Detection of Neonicotinoid Insecticides and Other Selected Pesticides in Pollen and Nectar Using Nanoflow Liquid Chromatography Orbitrap Tandem Mass Spectrometry. J. AOAC Int. 2018, 101, 367–373. DOI: 10.5740/jaoacint.17-0412.
  • Carbonell-Rozas, L.; Lara, F. J.; del Olmo Iruela, M.; García-Campaña, A. M. A Novel Approach Based on Capillary Liquid Chromatography for the Simultaneos Determination of Neonicotinoid Residues in Cereal Samples. Michrochem. J. 2021, 161, 105756. DOI: 10.1016/j.microc.2020.105756.
  • Carbonell-Rozas, L.; Lara, F. J.; del Olmo Iruela, M.; García-Campaña, A. M. Capillary Liquid Chromatography as an Effective Method for the Determination of Seven Neonicotinoid Residues in Honey Samples. J. Sep. Sci. 2020, 43, 3847–3855. DOI: 10.1002/jssc.202000611.
  • Kamel, A. Refined Methodology for the Determination of Neonicotinoid Pesticides and Their Metabolites in Honey Bees and Bee Products by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). J. Agric. Food Chem. 2010, 58, 5926–5931. DOI: 10.1021/jf904120n.
  • Sánchez-Hernández, L.; Higes, M.; Martín, M. T.; Nozal, M. J.; Bernal, J. L. Simultaneous Determination of Neonicotinoid Insecticides in Sunflower-Treated Seeds (Hull and Kernel) by LC-MS/MS. Food Addit. Contam. A Chem. Anal. Control. Expo. Risk Assess. 2016, 33, 442–451. DOI: 10.1080/19440049.2015.1128565.
  • Li, S.; Chen, D.; Lv, B.; Li, J.; Zhao, Y.; Wu, Y. Enhanced Sensitivity and Effective Cleanup Strategy for Analysis of Neonicotinoids in Complex Dietary Samples and the Application in the Total Diet Study. J. Agric. Food Chem. 2019, 67, 2732–2740. DOI: 10.1021/acs.jafc.9b00113.
  • Campillo, N.; Viñas, P.; Férez-Melgarejo, G.; Hernández-Córdoba, M. Liquid Chromatography with Diode Array Detection and Tandem Mass Spectrometry for the Determination of Neonicotinoid Insecticides in Honey Samples Using Dispersive Liquid-Liquid Microextraction. J. Agric. Food Chem. 2013, 61, 4799–4805. DOI: 10.1021/jf400669b.
  • Commission Decision 2021/808 of 22 March 2021 on the Performance of Analytical Methods for Residues of Pharmacologically Active Substances Used in Food-Producing Animals and on the Interpretation of Results as Well as on the Methods to Be Used for Sampling and Repealing Decisions 2002/657/EC and 98/179/EC. Off. J. Eur. Comm. 2021, 180, 84–109.
  • Yanez, K. P.; Bernal, J. L.; Nozal, M. J.; Martin, M. T.; Bernal, J. Determination of Seven Neonicotinoid Insecticides in Beeswax by Liquid Chromatography Coupled to Electrospray-Mass Spectrometry Using a Fused-Core Column. J. Chromatogr. A 2013, 1285, 110–117. DOI: 10.1016/j.chroma.2013.02.032.
  • Valverde, S.; Ares, A.; Arribas, M.; Bernal, J. L.; Nozal, M. J.; Bernal, J. Development and Validation of UHPLC–MS/MS Methods for Determination of Neonicotinoid Insecticides in Royal Jelly-Based Products. J. Food Compos. Anal. 2018, 70, 105–113. DOI: 10.1016/j.jfca.2018.05.002.
  • Hao, C.; Morse, D.; Zhao, X.; Sui, L. Liquid Chromatography/Tandem Mass Spectrometry Analysis of Neonicotinoids in Environmental Water. Rapid Commun. Mass Spectrom. 2015, 29, 2225–2232. DOI: 10.1002/rcm.7381.
  • Giroud, B.; Vauchez, A.; Vulliet, E.; Wiest, L.; Buleté, A. Trace Level Determination of Pyrethroid and Neonicotinoid Insecticides in Beebread Using Acetonitrile-Based Extraction Followed by Analysis with Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2013, 1316, 53–61. DOI: 10.1016/j.chroma.2013.09.088.
  • Moyakao, K.; Santaladchaiyakit, Y.; Srijaranai, S.; Vichapong, J. Preconcentration of Trace Neonicotinoid Insecticide Residues Using Vortex-Assisted Dispersive Micro Solid-Phase Extraction with Montmorillonite as an Efficient Sorbent. Molecules 2018, 23, 883. DOI: 10.3390/molecules23040883.
  • Wang, P.; Yang, X.; Wang, J.; Cui, J.; Dong, A. J.; Zhao, H. T.; Zhang, L. W.; Wang, Z. Y.; Xu, R. B.; Li, W. J.; et al. Multi-Residue Method for Determination of Seven Neonicotinoid Insecticides in Grains Using Dispersive Solid-Phase Extraction and Dispersive Liquid–Liquid Micro-Extraction by High Performance Liquid Chromatography. Food Chem. 2012, 134, 1691–1698. DOI: 10.1016/j.foodchem.2012.03.103.
  • Vichapong, J.; Burakham, R.; Srijaranai, S. Vortex-Assisted Surfactant-Enhanced-Emulsification Liquid-Liquid Microextraction with Solidification of Floating Organic Droplet Combined with HPLC for the Determination of Neonicotinoid Pesticides. Talanta 2013, 117, 221–228. DOI: 10.1016/j.talanta.2013.08.034.
  • Farajzadeh, M. A.; Bamorowat, M.; Mogaddam, M. R. A. Ringer Tablet-Based Ionic Liquid Phase Microextraction: Application in Extraction and Preconcentration of Neonicotinoid Insecticides from Fruit Juice and Vegetable Samples. Talanta 2016, 160, 211–216. DOI: 10.1016/j.talanta.2016.03.097.
  • Abdel-Ghany, M. F.; Hussein, L. A.; El Azab, N. F. Multiresidue Analysis of Five Neonicotinoid Insecticides and Their Primary Metabolite in Cucumbers and Soil Using High-Performance Liquid Chromatography with Diode-Array Detection. J. AOAC Int. 2017, 100, 176–188. DOI: 10.5740/jaoacint.16-0162.
  • Chen, W.; Wu, S.; Zhang, J.; Yu, F.; Hou, J.; Miao, X.; Tu, X. Matrix-Induced Sugaring-out: A Simple and Rapid Sample Preparation Method for the Determination of Neonicotinoid Pesticides in Honey. Molecules 2019, 24, 2761. DOI: 10.3390/molecules24152761.
  • Mahdavi, V.; Garshasbi, Z.; Farimani, M. M.; Farhadpour, M.; Aboul-Enein, H. Y. Health Risk Assessment of Neonicotinoid Insecticide Residues in Pistachio Using a QuEChERS-Based Method in Combination with HPLC-UV. Biomed. Chromatogr. 2020, 34, e4747. DOI: 10.1002/bmc.4747.
  • Mogaddam, M. R. A.; Farajzadeh, M. A.; Khodadadeian, F.; Nemati, M.; Mohebbi, A. Development of Simultaneously Salt and Ultrasonic-Assisted Liquid Phase Microextraction for the Extraction of Neonicotinoid Insecticides from Fresh Fruit Juices and Fruit Juices. Int. J. Environ. Anal. Chem. 2022, 102, 1697–1708. DOI: 10.1080/03067319.2020.1742892.
  • Kavvalakis, M. P.; Tzatzarakis, M. N.; Theodoropoulou, E. P.; Barbounis, E. G.; Tsakalof, A. K.; Tsatsakis, A. M. Development and Application of LC–APCI–MS Method for Biomonitoring of Animal and Human Exposure to Imidacloprid. Chemosphere 2013, 93, 2612–2620. DOI: 10.1016/j.chemosphere.2013.09.087.
  • Taira, K.; Fujioka, K.; Aoyama, Y. Qualitative Profiling and Quantification of Neonicotinoid Metabolites in Human Urine by Liquid Chromatography Coupled with Mass Spectrometry. PLoS One. 2013, 8, e80332. DOI: 10.1371/journal.pone.0080332.
  • Montiel-León, J. M.; Duy, S. V.; Munoz, G.; Amyot, M.; Sauvé, S. Evaluation of On-Line Concentration Coupled to Liquid Chromatography Tandem Mass Spectrometry for the Quantification of Neonicotinoids and Fipronil in Surface Water and Tap Water. Anal. Bioanal. Chem. 2018, 410, 2765–2779. DOI: 10.1007/s00216-018-0957-2.
  • Li, X.; Chen, J.; He, X.; Wang, Z.; Wu, D.; Zheng, X.; Zheng, L.; Wang, B. Simultaneous Determination of Neonicotinoids and Fipronil and Its Metabolites in Environmental Water from Coastal Bay Using Disk-Based Solid-Phase Extraction and High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Chemosphere 2019, 234, 224–231. DOI: 10.1016/j.chemosphere.2019.05.243.
  • Wang, Z.; Chen, J.; Zhan, T.; He, X.; Wang, B. Simultaneous Determination of Eight Neonicotinoid Insecticides, Fipronil and Its Three Transformation Products in Sediments by Continuous Solvent Extraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry. Ecotoxicol. Environ. Saf. 2020, 189, 110002. DOI: 10.1016/j.ecoenv.2019.110002.
  • Hao, C.; Noestheden, M. R.; Xiaoming Zhao, X.; David Morse, D. Liquid Chromatography–Tandem Mass Spectrometry Analysis of Neonicotinoid Pesticides and 6-Chloronicotinic Acid in Environmental Water with Direct Aqueous Injection. Anal. Chim. Acta. 2016, 925, 43–50. DOI: 10.1016/j.aca.2016.04.024.
  • Gbylik-Sikorska, M.; Sniegocki, T.; Posyniak, A. Determination of Neonicotinoid Insecticides and Their Metabolites in Honey Bee and Honey by Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 990, 132–140. DOI: 10.1016/j.jchromb.2015.03.016.
  • Hou, R.; Jiao, W.; Xiao, Y.; Guo, J.; Lv, Y.; Tan, H.; Hu, J.; Wan, X. Novel Use of PVPP in a Modified QuEChERS Extraction for UPLC–MS/MS Analysis of Neonicotinoid Insecticides in Tea. Anal. Methods 2015, 7, 5521–5529. DOI: 10.1039/C5AY00957J.
  • Wang, X.; Anadón, A.; Wu, Q.; Qiao, F.; Ares, I.; Martínez-Larrañaga, M.-R.; Yuan, Z.; Martínez, M.-A. Mechanism of Neonicotinoid Toxicity: Impact on Oxidative Stress and Metabolism. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 471–507. DOI: 10.1146/annurev-pharmtox-010617-052429.
  • Abdel-Ghany, M. F.; Hussein, L. A.; El Azab, N. F.; El-Khatib, A. H.; Linscheid, M. W. Simultaneous Determination of Eight Neonicotinoid Insecticide Residues and Two Primary Metabolites in Cucumbers and Soil by Liquid Chromatography–Tandem Mass Spectrometry Coupled with QuEChERS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1031, 15–28. DOI: 10.1016/j.jchromb.2016.06.020.
  • Hou, J.; Xie, W.; Hong, D.; Zhang, W.; Li, F.; Qian, Y.; Han, C. Simultaneous Determination of Ten Neonicotinoid Insecticides and Two Metabolites in Honey and Royal-Jelly by Solid − Phase Extraction and Liquid Chromatography − Tandem Mass Spectrometry. Food Chem. 2019, 270, 204–213. DOI: 10.1016/j.foodchem.2018.07.068.
  • Huang, M.; Qin, X.; Luo, X.; Yu, W.; Yang, G.; Zhang, K.; Hu, D. A Liquid Chromatography with Tandem Mass Spectrometry Method to Simultaneously Determinate Chlorpyrifos, Imidacloprid and Imidacloprid Metabolites in Wheat. J. Sep. Sci. 2019, 42, 1210–1221. DOI: 10.1002/jssc.201801163.
  • Ueyama, J.; Aoi, A.; Ueda, Y.; Oya, N.; Sugiura, Y.; Ito, Y.; Ebara, T.; Kamijima, M. Biomonitoring Method for Neonicotinoid Insecticides in Urine of Non-Toilet-Trained Children Using LC-MS/MS. Food Addit. Contam. A Chem. Anal. Control. Expo. Risk Assess. 2020, 37, 304–315. DOI: 10.1080/19440049.2019.1696020.
  • López-García, M.; Romero-González, R.; Lacasaña, M.; Garrido-Frenich, A. Semiautomated Determination of Neonicotinoids and Characteristic Metabolite in Urine Samples Using TurboFlow™ Coupled to Ultra High Performance Liquid Chromatography Coupled to Orbitrap Analyzer. J. Pharm. Biomed. Anal. 2017, 146, 378–386. DOI: 10.1016/j.jpba.2017.08.026.
  • Ichikawa, G.; Kuribayashi, R.; Ikenaka, Y.; Ichise, T.; Nakayama, S. M. M.; Ishizuka, M.; Taira, K.; Fujioka, K.; Sairenchi, T.; Kobashi, G.; et al. LC-ESI/MS/MS Analysis of Neonicotinoids in Urine of Very Low Birth Weight Infants at Birth. PLoS One 2019, 14, e0219208. DOI: 10.1371/journal.pone.0219208.
  • Zhang, N.; Wang, B.; Zhang, Z.; Chen, X.; Huang, Y.; Liu, Q.; Zhang, H. Occurrence of Neonicotinoid Insecticides and Their Metabolites in Tooth Samples Collected from South China: Associations with Periodontitis. Chemosphere 2021, 264, 128498. DOI: 10.1016/j.chemosphere.2020.128498.
  • Laubscher, B.; Diezi, M.; Renella, R.; Mitchell, E. A. D.; Aebi, A.; Mulot, M.; Glauser, G. Multiple Neonicotinoids in Children’s Cerebro-Spinal Fluid, Plasma, and Urine. Environ. Health 2022, 21, 10. DOI: 10.1186/s12940-021-00821-z.
  • Liu, P.; Wu, F.; Li, H.; You, J. The Neonicotinoid Alternative Sulfoxaflor Causes Chronic Toxicity and Impairs Mitochondrial Energy Production in Chironomus Kiinensis. Aquat. Toxicol. 2021, 235, 105822. DOI: 10.1016/j.aquatox.2021.105822.
  • Nauen, R.; Jeschke, P.; Velten, R.; Beck, M. E.; Ebbinghaus-Kintscher, U.; Thielert, W.; Wölfel, K.; Haas, M.; Kunz, K.; Raupach, G. Flupyradifurone: A Brief Profile of a New Butenolide Insecticide. Pest Manag. Sci. 2015, 71, 850–862. DOI: 10.1002/ps.3932.
  • Wang, A.; Wan, Y.; Zhou, L.; Xia, W.; Guo, Y.; Mahai, G.; Yang, Z.; Xu, S.; Zhang, R. Neonicotinoid Insecticide Metabolites in Seminal Plasma: Associations with Semen Quality. Sci. Total Environ. 2022, 811, 151407. DOI: 10.1016/j.scitotenv.2021.151407.
  • Lachat, L.; Glauser, G. Development and Validation of an Ultra-Sensitive UHPLC–MS/MS Method for Neonicotinoid Analysis in Milk. J. Agric. Food Chem. 2018, 66, 8639–8646. DOI: 10.1021/acs.jafc.8b03005.
  • Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-Phase Extraction of Organic Compounds: A Critical Review. Part II. Trends Anal. Chem. 2016, 80, 655–667. DOI: 10.1016/j.trac.2015.08.014.
  • Sánchez-Hernández, L.; Hernández-Domínguez, D.; Martín, M. T.; Nozal, M. J.; Higes, M.; Bernal Yagüe, J. L. Residues of Neonicotinoids and Their Metabolites in Honey and Pollen from Sunflower and Maize Seed Dressing Crops. J. Chromatogr. A 2016, 1428, 220–227. DOI: 10.1016/j.chroma.2015.10.066.
  • Tomšič, R.; Heath, D.; Heath, E.; Markelj, J.; Kandolf Borovšak, A.; Prosen, H. Determination of Neonicotinoid Pesticides in Propolis with Liquid Chromatography Coupled to Tandem Mass Spectrometry. Molecules 2020, 25, 5870. DOI: 10.3390/molecules25245870.
  • Li, X.; Ma, W.; Li, H.; Zhang, Q.; Ma, Z. Determination of Residual Fipronil and Its Metabolites in Food Samples: A Review. Trends Food Sci. Technol. 2020, 97, 185–195. DOI: 10.1016/j.tifs.2020.01.018.
  • Zaluski, R.; Kadri, S. M.; Alonso, D. P.; Martins Ribolla, P. E.; de Oliveira Orsi, R. Fipronil Promotes Motor and Behavioral Changes in Honey Bees (Apis mellifera) and Affects the Development of Colonies Exposed to Sublethal Doses. Environ. Toxicol. Chem. 2015, 34, 1062–1069. DOI: 10.1002/etc.2889.
  • Charreton, M.; Decourtye, A.; Henry, M.; Rodet, G.; Sandoz, J.-C.; Charnet, P.; Collet, C. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera. PLoS One. 2015, 10, e0144879. DOI: 10.1371/journal.pone.0144879.
  • Commission Implementing Regulation (EU) 2016/2035 of 21 November 2016 Amending Implementing Regulation (EU) No 540/2011 as Regards the Approval Periods of the Active Substances Fipronil and Maneb. Off. J. EU 2016, L314, 7–8.
  • Pan, X.; Wang, Z.; Chen, C.; Li, H.; Li, X.; Zhang, Q.; Wang, X.; Zhang, Y. Research on the Distribution of Neonicotinoid and Fipronil Pollution in the Yangtze River by High-Performance Liquid Chromatography. Anal. Methods 2020, 12, 5581–5590. DOI: 10.1039/d0ay01558j.
  • Rodríguez-Cabo, T.; Casado, J.; Rodríguez, I.; Ramil, M.; Cela, R. Selective Extraction and Determination of Neonicotinoid Insecticides in Wine by Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2016, 1460, 9–15. DOI: 10.1016/j.chroma.2016.07.004.
  • Xie, W.; Han, C.; Qian, Y.; Ding, H.; Chen, X.; Xi, J. Determination of Neonicotinoid Pesticides Residues in Agricultural Samples by Solid-Phase Extraction Combined with Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2011, 1218, 4426–4433. DOI: 10.1016/j.chroma.2011.05.026.
  • Martel, A. C.; Lair, C. Validation of a Highly Sensitive Method for the Determination of Neonicotinoid Insecticides Residues in Honeybees by Liquid Chromatography with Electrospray Tandem Mass Spectrometry. Int. J. Environ. Anal. Chem. 2011, 91, 978–988. DOI: 10.1080/03067310903524822.
  • López-Fernandez, O.; Rial-Otero, R.; Simal, G. J. High-Throughput HPLC-MS/MS Determination of the Persistence of Neonicotinoid Insecticide Residues of Regulatory Interest in Dietary Bee Pollen. Anal. Bioanal. Chem. 2015, 407, 7101–7110. DOI: 10.1007/s00216-015-8870-4.
  • Xiao, Z.; Li, X.; Wang, X.; Shen, J.; Ding, S. Determination of Neonicotinoid Insecticides Residues in Bovine Tissues by Pressurized Solvent Extraction and Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 117–122. DOI: 10.1016/j.jchromb.2010.11.008.
  • Šrámková, I. H.; Horstkotte, B.; Carbonell-Rozas, L.; Erben, J.; Chvojka, J.; Lara, F. J.; García-Campaña, A. M.; Šatínský, D. Nanofibrous Online Solid Phase Extraction Coupled with Liquid Chromatography for the Determination of Neonicotinoid Pesticides in River Waters. Membranes 2022, 12, 648. DOI: 10.3390/membranes12070648.
  • Ueyama, J.; Nomura, H.; Kondo, T.; Saito, I.; Ito, Y.; Osaka, A.; Kamijima, M. Biological Monitoring Method for Urinary Neonicotinoid Insecticides Using LC-MS/MS and Its Application to Japanese Adults. J. Occup. Health. 2014, 56, 461–468. DOI: 10.1539/joh.14-0077-oa.
  • Song, S.; Zhang, C.; Chen, Z.; He, F.; Wei, J.; Tan, H.; Li, X. Simultaneous Determination of Neonicotinoid Insecticides and Insect Growth Regulators Residues in Honey Using LC–MS/MS with Anion Exchanger-Disposable Pipette Extraction. J. Chromatogr. A 2018, 1557, 51–61. DOI: 10.1016/j.chroma.2018.05.003.
  • Tu, X.; Chen, X. Miniaturized Salting-Out Assisted Liquid-Liquid Extraction Combined with Disposable Pipette Extraction for Fast Sample Preparation of Neonicotinoid Pesticides in Bee Pollen. Molecules 2020, 25, 5703. DOI: 10.3390/molecules25235703.
  • Sajid, M.; Alhooshani, K. Dispersive Liquid-Liquid Microextraction Based Binary Extraction Techniques Prior to Chromatographic Analysis: A Review. Trends Anal. Chem. 2018, 108, 167–182. DOI: 10.1016/j.trac.2018.08.016.
  • Zgoła-Grześkowiak, A.; Grześkowiak, T. Dispersive Liquid-Liquid Microextraction. Trends Anal. Chem. 2011, 30, 1382–1399. DOI: 10.1016/j.trac.2011.04.014.
  • Jovanov, P.; Guzsvány, V.; Franko, M.; Lazić, S.; Sakač, M.; Šarić, B.; Banjac, V. Multi-Residue Method for Determination of Selected Neonicotinoid Insecticides in Honey Using Optimized Dispersive Liquid–Liquid Microextraction Combined with Liquid Chromatography-Tandem Mass Spectrometry. Talanta 2013, 111, 125–133. DOI: 10.1016/j.talanta.2013.02.059.
  • Jovanov, P.; Guzsvány, V.; Franko, M.; Lazić, S.; Sakač, M.; Milovanović, I.; Nedeljković, N. Development of Multiresidue DLLME and QuEChERS Based LC-MS/MS Methods for Determination of Selected Neonicotinoid Insecticides in Honey Liqueur. Food Res. Int. 2014, 55, 11–19. DOI: 10.1016/j.foodres.2013.10.031.
  • Jovanov, P.; Guzsvány, V.; Lazić, S.; Franko, M.; Sakač, M.; Šarić, L.; Kos, J. Development of HPLC-DAD Method for Determination of Neonicotinoids in Honey. J. Food Compos. Anal. 2015, 40, 106–113. DOI: 10.1016/j.jfca.2014.12.021.
  • Pastor-Belda, M.; Garrido, I.; Campillo, N.; Viñas, P.; Hellín, P.; Flores, P.; Fenoll, J. Determination of Spirocyclic Tetronic/Tetramic Acid Derivatives and Neonicotinoid Insecticides in Fruits and Vegetables by Liquid Chromatography and Mass Spectrometry after Dispersive Liquid–Liquid Microextraction. Food Chem. 2016, 202, 389–395. DOI: 10.1016/j.foodchem.2016.01.143.
  • Kachangoon, R.; Vichapong, J.; Burakham, R.; Santaladchaiyakit, Y.; Srijaranai, S. Ultrasonically Modified Amended-Cloud Point Extraction for Simultaneous Pre-Concentration of Neonicotinoid Insecticide Residues. Molecules 2018, 23, 1165. DOI: 10.3390/molecules23051165..
  • Vichapong, J.; Burakham, R.; Santaladchaiyakit, Y.; Srijaranai, S. A Preconcentration Method for Analysis of Neonicotinoids in Honey Samples by Ionic Liquid-Based Cold-Induced Aggregation Microextraction. Talanta 2016, 155, 216–221. DOI: 10.1016/j.talanta.2016.04.045.
  • Xue, J.; Zhang, D.; Wu, X.; Pan, D.; Shi, T.; Hua, R. Simultaneous Determination of Neonicotinoid Insecticides and Metabolites in Rice by Dispersive Solid-Liquid Microextraction Based on an In Situ Acid-Base Effervescent Reaction and Solidification of a Floating Organic Droplet. Anal. Bioanal. Chem. 2019, 411, 315–327. DOI: 10.1007/s00216-018-1482-z.
  • Musarurwa, H.; Tavengwa, N. T. Deep Eutectic Solvent-Based Dispersive Liquid-Liquid Micro-Extraction of Pesticides in Food Samples. Food Chem. 2021, 342, 127943. DOI: 10.1016/j.foodchem.2020.127943.
  • Carbonell-Rozas, L.; Canales, R.; Lara, F. J.; García-Campaña, A. M.; Silva, M. F. A Natural Deep Eutectic Solvent as a Novel Dispersive Solvent in Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Droplet for the Determination of Pesticide Residues. Anal. Bioanal. Chem. 2021, 413, 6413–6424. DOI: 10.1007/s00216-021-03605-z.
  • Musarurwa, H.; Chimuka, L.; Pakade, V. E.; Tavengwa, N. T. Recent Developments and Applications of QuEChERS Based Techniques on Food Samples during Pesticide Analysis. J. Food Compost. Anal. 2019, 84, 103314. DOI: 10.1016/j.jfca.2019.103314.
  • Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J. A. M.; Silva, C.; Medina, S.; Câmara, J. S. QuEChERS - Fundamentals, Relevant Improvements, Applications and Future Trends. Anal. Chim. Acta. 2019, 1070, 1–28. DOI: 10.1016/j.aca.2019.02.036.
  • Anastassiades, M.; Lehotay, S. J.; Stajnbaher, D.; Schenck, F. J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. DOI: 10.1093/jaoac/86.2.412.
  • Suganthi, A.; Bhuvaneswari, K.; Ramya, M. Determination of Neonicotinoid Insecticide Residues in Sugarcane Juice Using LCMSMS. Food Chem. 2018, 241, 275–280. DOI: 10.1016/j.foodchem.2017.08.098.
  • Zhang, F.; Li, Y.; Yu, C.; Pan, C. Determination of Six Neonicotinoid Insecticides Residues in Spinach, Cucumber, Apple and Pomelo by QuEChERS Method and LC–MS/MS. Bull. Environ. Contam. Toxicol. 2012, 88, 885–890. DOI: 10.1007/s00128-012-0579-x.
  • Karthikeyan, S.; Suganthi, A.; Bhuvaneswari, K.; Kennedy, J. S. Validation and Quantification of Neonicotinoid Insecticide Residues in Rice Whole Grain and Rice Straw Using LC-MS/MS. Food Addit. Contam. A Chem. Anal. Control. Expo. Risk Assess. 2019, 36, 270–277. DOI: 10.1080/19440049.2018.1562229.
  • Badawy, M.; Ismail, A.; Ibrahim, A. Quantitative Analysis of Acetamiprid and Imidacloprid Residues in Tomato Fruits under Greenhouse Conditions. J. Environ. Sci. Health. B 2019, 54, 898–905. DOI: 10.1080/03601234.2019.1641389.
  • Jiao, W.; Xiao, Y.; Qian, X.; Tong, M.; Hu, Y.; Hou, R.; Hua, R. Optimized Combination of Dilution and Fefined QuEChERS to Overcome Matrix Effects of Six Types of Tea for Determination Eight Neonicotinoid Insecticides by Ultra Performance Liquid Chromatography-Electrospray Tandem Mass Spectrometry. Food Chem. 2016, 210, 26–34. DOI: 10.1016/j.foodchem.2016.04.097.
  • Hou, R. Y.; Jiao, W. T.; Qian, X. S.; Wang, X. H.; Xiao, Y.; Wan, X. C. Effective Extraction Method for Determination of Neonicotinoid Residues in Tea. J. Agric. Food Chem. 2013, 61, 12565–12571. DOI: 10.1021/jf404100x.
  • Zhang, Y.; Zhang, Q.; Li, S.; Zhao, Y.; Chen, D.; Wu, Y. Simultaneous Determination of Neonicotinoids and Fipronils in Tea Using a Modified QuEChERS Method and Liquid Chromatography-High Resolution Mass Spectrometry. Food Chem. 2020, 329, 127159. DOI: 10.1016/j.foodchem.2020.127159.
  • Paradis, D.; Berail, G.; Bonmatin, J.-M.; Belzunces, L. P. Sensitive Analytical Methods for 22 Relevant Insecticides of 3 Chemical Families in Honey by GC-MS/MS and LC-MS/MS. Anal. Bioanal. Chem. 2014, 406, 621–633. DOI: 10.1007/s00216-013-7483-z.
  • European Norm EN 15662:2008. Foods of Plant origin - Determination of Pesticide Residues Using GC-MS and/or LC-MS/MS following Acetonitrile Extraction/Partitioning and Clean-up by Dispersive SPE-QuEChERS-Method.
  • AOAC-Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Tandem Mass Spectrometry. AOAC Official Method, 2007.
  • Kasiotis, K. M.; Anagnostopoulos, C.; Anastasiadou, P.; Machera, K. Pesticide Residues in Honeybees, Honey and Bee Pollen by LC–MS/MS Screening: Reported Death Incidents in Honeybees. Sci. Total Environ. 2014, 485–486, 633–642. DOI: 10.1016/j.scitotenv.2014.03.042.
  • David, A.; Botías, C.; Abdul-Sada, A.; Goulson, D.; Hill, E. M. Sensitive Determination of Mixtures of Neonicotinoid and Fungicide Residues in Pollen and Single Bumblebees Using a Scaled down QuEChERS Method for Exposure Assessment. Anal. Bioanal. Chem. 2015, 407, 8151–8162. DOI: 10.1007/s00216-015-8986-6.
  • Tsvetkov, N.; Samson-Robert, O.; Sood, K.; Patel, H. S.; Malena, D. A.; Gajiwala, P. H.; Maciukiewicz, P.; Fournier, V.; Zayed, A. Chronic Exposure to Neonicotinoids Reduces Honey Bee Health near Corn Crops. Science 2017, 356, 1395–1397. DOI: 10.1126/science.aam7470.
  • Castilhos, D.; Dombroski, J. L. D.; Bergamo, G. C.; Gramacho, K. P.; Gonçalves, L. S. Neonicotinoids and Fipronil Concentrations in Honeybees Associated with Pesticide Use in Brazilian Agricultural Areas. Apidologie 2019, 50, 657–668. DOI: 10.1007/s13592-019-00676-x.
  • Hernández-Mesa, M.; Moreno-González, D.; Lara, F. J.; Ana, M. García-Campaña. Electrophoresis | Capillary Electrophoresis: Food Chemistry Applications. In Encyclopedia of Analytical Science, 3rd ed.; Reedijk, J., Ed.; Elsevier: Amsterdam, 2019; pp 358–366.
  • Lara, F. J.; Moreno-González, D.; Hernández-Mesa, M.; García-Campaña, A. M. Food Safety Applications of Capillary Electromigration Methods. In Capillary Electromigration Separation Methods; Poole, C. F., Ed.; Elsevier: Amsterdam, 2018; pp 511–545.
  • Chang, P. L.; Hsieh, M. M.; Chiu, T. C. Recent Advances in the Determination of Pesticides in Environmental Samples by Capillary Electrophoresis. Int. J. Environ. Res. Public Health. 2016, 13, 409. DOI: 10.3390/ijerph13040409.
  • Ravelo-Pérez, L. M.; Hernández-Borges, J.; Rodríguez-Delgado, M. A. Pesticides Analysis by Liquid Chromatography and Capillary Electrophoresis. J. Sep. Sci. 2006, 29, 2557–2577. DOI: 10.1002/jssc.200600201.
  • Voeten, R. L. C.; Ventouri, I. K.; Haselberg, R.; Somsen, G. W. Capillary Electrophoresis: Trends and Recent Advances. Anal. Chem. 2018, 90, 1464–1481. DOI: 10.1021/acs.analchem.8b00015.
  • Breadmore, M. C.; Grochocki, W.; Kalsoom, U.; Alves, M. N.; Phung, S. C.; Rokh, M. T.; Cabot, J. M.; Ghiasvand, A.; Li, F.; Shallan, A. I.; et al. Recent Advances in Enhancing the Sensitivity of Electrophoresis and Electrochromatography in Capillaries and Microchips (2016–2018). Electrophoresis 2019, 40, 17–39. DOI: 10.1002/elps.201800384.
  • Kubalczyk, P.; Bald, E. Methods of Analyte Concentration in a Capillary. In Electromigration Techniques. Springer Series in Chemical Physics; Buszewski, B., Dziubakiewicz, E., Szumski M., Eds.; Springer: Berlin, Heidelberg, 2013; Vol. 105. DOI: 10.1007/978-3-642-35043-6_12.
  • Zhang, S.; Yang, X.; Yin, X.; Wang, C.; Wang, Z. Dispersive Liquid–Liquid Microextraction Combined with Sweeping Micellar Electrokinetic Chromatography for the Determination of Some Neonicotinoid Insecticides in Cucumber Samples. Food Chem. 2012, 133, 544–550. DOI: 10.1016/j.foodchem.2012.01.028.
  • Carbonell-Rozas, L.; Lara, F. J.; del Olmo Iruela, M.; García-Campaña, A. M. Micellar Electrokinetic Chromatography as Efficient Alternative for the Multiresidue Determination of Seven Neonicotinoids and 6-Chloronicotinic Acid in Environmental Samples. Anal. Bioanal. Chem. 2020, 412, 6231–6240. DOI: 10.1007/s00216-019-02233-y.
  • Ettiene, G.; Bauza, R.; Plata, M. R.; Contento, A. M.; Ríos, A. Determination of Neonicotinoid Insecticides in Environmental Samples by Micellar Electrokinetic Chromatography Using Solid-Phase Treatments. Electrophoresis 2012, 33, 2969–2977. DOI: 10.1002/elps.201200241.
  • Amelin, V. G.; Bol’shakov, D. S.; Tret’yakov, A. V. Dispersive Liquid-Liquid Microextraction and Solid-Phase Extraction of Polar Pesticides from Natural Water and Their Determination by Micellar Electrokinetic Chromatography. J. Anal. Chem. 2013, 68, 386–397. DOI: 10.1134/S1061934813050031.
  • Bol’shakov, D. S.; Amelin, V. G.; Tret’yakov, A. V. Determination of Polar Pesticides in Soil by Micellar Electrokinetic Chromatography Using QuEChERS Sample Preparation. J. Anal. Chem. 2014, 69, 89–97. DOI: 10.1134/S1061934814010055.
  • Chen, G. H.; Sun, J.; Dai, Y. J.; Dong, M. Determination of Nicotinyl Pesticide Residues in Vegetables by Micellar Electrokinetic Capillary Chromatography with Quantum Dot Indirect Laser-Induced Fluorescence. Electrophoresis 2012, 33, 2192–2196. DOI: 10.1002/elps.201200043.
  • Stolz, A.; Jooß, K.; Höcker, O.; Römer, J.; Schlecht, J.; Neusüß, C. Recent Advances in Capillary Electrophoresis-Mass Spectrometry: Instrumentation, Methodology and Applications. Electrophoresis 2019, 40, 79–112. DOI: 10.1002/elps.201800331.
  • Sánchez-Hernández, L.; Hernández-Domínguez, D.; Bernal, J.; Neusüß, C.; Martín, M. T.; Bernal, J. L. Capillary Electrophoresis–Mass Spectrometry as a New Approach to Analyze Neonicotinoid Insecticides. J. Chromatogr. A 2014, 1359, 317–324. DOI: 10.1016/j.chroma.2014.07.028.
  • Carbonell-Rozas, L.; Horstkotte, B.; Lara, F. J.; García-Campaña, A. Sweeping-Micellar Electrokinetic Chromatography with Tandem Mass Spectrometry as a Novel Methodology to Determine Neonicotinoid and Boscalid Residues in Pollen and Honeybee Samples. J. Chromatogr. A 2022, 1672, 463023. DOI: 10.1016/j.chroma.2022.463023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.