1,113
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent progress in aptamer and CRISPR-Cas12a based systems for non-nucleic target detection

, , , &

References

  • KIm, S.; Ji, S.; Koh, H. CRISPR as a Diagnostic Tool. Biomolecules 2021, 11, 1162. DOI: 10.3390/biom11081162.
  • Van der Oost, J.; Westra, E.; Jackson, R.; Wiedenheft, B. Unravelling the Structural and Mechanistic Basis of CRISPR-Cas Systems. Nat. Rev. Microbiol. 2014, 12, 479–492. DOI: 10.1038/nrmicro3279.
  • Makarova, K.; Koonin, E. Annotation and Classification of CRISPR-Cas Systems. Methods Mol. Biol. 2015, 1311, 47–75. DOI: 10.1007/978-1-4939-2687-9_4.
  • Makarova, K. S.; Haft, D. H.; Barrangou, R.; Brouns, S. J. J.; Charpentier, E.; Horvath, P.; Moineau, S.; Mojica, F. J. M.; Wolf, Y. I.; Yakunin, A. F.; et al. Evolution and Classification of the CRISPR–Cas Systems. Nat. Rev. Microbiol. 2011, 9, 467–477. DOI: 10.1038/nrmicro2577.
  • WAng, J.; Hoel, C.; Al-Shayeb, B.; Banfield, J.; Brohawn, S.; Doudna, J. Structural Coordination between Active Sites of a CRISPR Reverse Transcriptase-Integrase Complex. Nat. Commun. 2021, 12, 2571. DOI: 10.1038/s41467-021-22900-y.
  • Koonin, E.; Makarova, K. Origins and Evolution of CRISPR-Cas Systems. Philos. Trans. R Soc. Lond. B Biol. Sci. 2019, 374, 20180087. DOI: 10.1098/rstb.2018.0087.
  • Gong, C.; Huang, S.; Song, R.; Qi, W. Comparative Study between the CRISPR/Cpf1 (Cas12a) and CRISPR/Cas9 Systems for Multiplex Gene Editing in Maize. Agriculture-Basel 2021, 11, 429. DOI: 10.3390/agriculture11050429.
  • Bao, A.; Tran, L.; Cao, D. CRISPR/Cas9-Based Gene Editing in Soybean; Humana: New York, NY, 2020.
  • Reem, N.; Van Eck, J. Application of CRISPR/Cas9-Mediated Gene Editing in Tomato; Humana: New York, NY, 2019.
  • Negi, C.; Vasistha, N.; Singh, D.; Vyas, P.; Dhaliwal, H. Application of CRISPR-Mediated Gene Editing for Crop Improvement. Mol. Biotechnol. 2022, 64, 1198–1217. DOI: 10.1007/s12033-022-00507-y.
  • Wang, S.; Gao, C.; Zheng, Y.; Yi, L.; Lu, J.; Huang, X.; Cai, J.; Zhang, P.; Cui, Y.; Ke, A. Current Applications and Future Perspective of CRISPR/Cas9 Gene Editing in Cancer. Mol. Cancer 2022, 21, 27. DOI: 10.1186/s12943-022-01518-8.
  • Das, S.; Bano, S.; Kapse, P.; Kundu, G. CRISPR Based Therapeutics: A New Paradigm in Cancer Precision Medicine. Mol. Cancer 2022, 21, 14. DOI: 10.1186/s12943-022-01552-6.
  • Ahmad, G.; Amiji, M. Use of CRISPR/Cas9 Gene-Editing Tools for Developing Models in Drug Discovery. Drug Discov. Today 2018, 23, 519–533. DOI: 10.1016/j.drudis.2018.01.014.
  • Kaminski, M.; Abudayyeh, O.; Gootenberg, J.; Zhang, F.; Collins, J. CRISPR-Based Diagnostics. Nat. Biomed. Eng. 2021, 5, 643–656. DOI: 10.1038/s41551-021-00760-7.
  • Sohail, M.; Xie, S.; Zhang, X.; Li, B. Methodologies in Visualizing the Activation of CRISPR/Cas: The Last Mile in Developing CRISPR-Based Diagnostics and Biosensing - A Review. Anal. Chim. Acta 2022, 1205, 339541. DOI: 10.1016/j.aca.2022.339541.
  • Li, Y.; Zeng, R.; Wang, W.; Xu, J.; Gong, H.; Li, L.; Li, M.; Tang, D. Size-Controlled Engineering Photoelectrochemical Biosensor for Human Papillomavirus-16 Based on CRISPR-Cas12a-Induced Disassembly of Z-Scheme Heterojunctions. ACS Sens. 2022, 7, 1593–1601. DOI: 10.1021/acssensors.2c00691.
  • Broughton, J. P.; Deng, X.; Yu, G.; Fasching, C. L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J. A.; Granados, A.; Sotomayor-Gonzalez, A.; et al. CRISPR-Cas12-Based Detection of SARS-CoV-2. Nat. Biotechnol. 2020, 38, 870–874. DOI: 10.1038/s41587-020-0513-4.
  • Zeng, R.; Wang, W.; Chen, M.; Wan, Q.; Wang, C.; Knopp, D.; Tang, D. CRISPR-Cas12a-Driven MXene-PEDOT:PSS Piezoresistive Wireless Biosensor. Nano Energy 2021, 82, 105711. DOI: 10.1016/j.nanoen.2020.105711.
  • Zeng, R.; Gong, H.; Li, Y.; Li, Y.; Lin, W.; Tang, D.; Knopp, D. CRISPR-Cas12a-Derived Photoelectrochemical Biosensor for Point-of-Care Diagnosis of Nucleic Acid. Anal. Chem. 2022, 94, 7442–7448. DOI: 10.1021/acs.analchem.2c01373.
  • Cheng, X.; Li, Y.; Kou, J.; Liao, D.; Zhang, W.; Yin, L.; Man, S.; Ma, L. Novel Non-Nucleic Acid Targets Detection Strategies Based on CRISPR/Cas Toolboxes: A Review. Biosens. Bioelectron. 2022, 215, 114559. DOI: 10.1016/j.bios.2022.114559.
  • Xiong, Y.; Zhang, J.; Yang, Z.; Mou, Q.; Ma, Y.; Xiong, Y.; Lu, Y. Functional DNA Regulated CRISPR-Cas12a Sensors for Point-of-Care Diagnostics of Non-Nucleic-Acid Targets. J. Am. Chem. Soc. 2020, 142, 207–213. DOI: 10.1021/jacs.9b09211.
  • Chen, J. S.; Ma, E. B.; Harrington, L. B.; Da Costa, M.; Tian, X. R.; Palefsky, J. M.; Doudna, J. A. CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded DNase Activity. Science 2018, 360, 436–439. DOI: 10.1126/science.aar6245.
  • Gootenberg, J.; Abudayyeh, O.; Lee, J.; Essletzbichler, P.; Dy, A.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.; Freije, C.; et al. Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. DOI: 10.1126/science.aam9321.
  • Li, S.; Cheng, Q.; Liu, J.; Nie, X.; Zhao, G.; Wang, J. CRISPR-Cas12a Has Both Cis- and Trans-Cleavage Activities on Single-Stranded DNA. Cell Res. 2018, 28, 491–493. DOI: 10.1038/s41422-018-0022-x.
  • Li, D.; Ling, S.; Wu, H.; Yang, Z.; Lv, B. CRISPR/Cas12a-Based Biosensors for Ultrasensitive Tobramycin Detection with Single- and Double-Stranded DNA Activators. Sens. Actuators B-Chem. 2022, 355, 131329. DOI: 10.1016/j.snb.2021.131329.
  • Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. DOI: 10.2307/2874490.
  • Ellington, A.; Szostak, J. In Vitro Selection of RNA Molecules That Bind Specific Ligands. Nature 1990, 346, 818–822. DOI: 10.1038/346818a0.
  • Liu, H.; Lu, A.; Fu, H.; Li, B.; Yang, M.; Wang, J.; Luan, Y. Affinity Capture of Aflatoxin B1 and B2 by Aptamer-Functionalized Magnetic Agarose Microspheres Prior to Their Determination by HPLC. Mikrochim. Acta 2018, 185, 326. DOI: 10.1007/s00604-018-2849-8.
  • Cai, S.; Yan, J.; Xiong, H.; Liu, Y.; Peng, D.; Liu, Z. Investigations on the Interface of Nucleic Acid Aptamers and Binding Targets. Analyst 2018, 143, 5317–5338. DOI: 10.1039/c8an01467a.
  • Lei, Z.; Lei, P.; Guo, J.; Wang, Z. Recent Advances in Nanomaterials-Based Optical and Electrochemical Aptasensors for Detection of Cyanotoxins. Talanta 2022, 248, 123607. DOI: 10.1016/j.talanta.2022.123607.
  • Cai, G.; Yu, Z.; Ren, R.; Tang, D. Exciton-Plasmon Interaction between AuNPs/Graphene Nanohybrids and CdS Quantum Dots/TiO(2) for Photoelectrochemical Aptasensing of Prostate-Specific Antigen. ACS Sens. 2018, 3, 632–639. DOI: 10.1021/acssensors.7b00899.
  • Qiu, Z.; Shu, J.; Liu, J.; Tang, D. Dual-Channel Photoelectrochemical Ratiometric Aptasensor with up-Converting Nanocrystals Using Spatial-Resolved Technique on Homemade 3D Printed Device. Anal. Chem. 2018, 91, 1260–1268. DOI: 10.1021/acs.analchem.8b05455.
  • Qiu, Z.; Shu, J.; Tang, D. Near-Infrared-to-Ultraviolet Light-Mediated Photoelectrochemical Aptasensing Platform for Cancer Biomarker Based on Core–Shell NaYF4:Yb,Tm@TiO2 Upconversion Microrods. Anal. Chem. 2017, 90, 1021–1028. DOI: 10.1021/acs.analchem.7b04479.
  • He, D.; Wu, Z.; Cui, B.; Xu, E. Aptamer and Gold Nanorod-Based Fumonisin B1 Assay Using Both Fluorometry and SERS. Mikrochim. Acta 2020, 187, 215. DOI: 10.1007/s00604-020-4192-0.
  • Qian, J.; Ren, C.; Wang, C.; An, K.; Cui, H.; Hao, N.; Wang, K. Gold Nanoparticles Mediated Designing of Versatile Aptasensor for Colorimetric/Electrochemical Dual-Channel Detection of Aflatoxin B1. Biosens. Bioelectron. 2020, 166, 112443. DOI: 10.1016/j.bios.2020.112443.
  • Wang, K.; Wang, Y.; Li, Q.; Liu, Z.; Liu, S. A Fluorescence and Localized Surface Plasmon Resonance Dual-Readout Sensing Strategy for Detection of Acetamiprid and Organophosphorus Pesticides. Sens. Actuators B-Chem. 2022, 351, 130977. DOI: 10.1016/j.snb.2021.130977.
  • Tungsirisurp, S.; O'Reilly, R.; Napier, R. Nucleic Acid Aptamers as Aptasensors for Plant Biology. Trends Plant Sci. 2022, 28, 359–371. DOI: 10.1016/j.tplants.2022.10.002.
  • Atapour, A.; Khajehzadeh, H.; Shafie, M.; Abbasi, M.; Mosleh-Shirazi, S.; Kasaee, S.; Amani, A. Gold Nanoparticle-Based Aptasensors: A Promising Perspective for Early-Stage Detection of Cancer Biomarkers. Mater. Today Commun. 2022, 30, 103181. DOI: 10.1016/j.mtcomm.2022.103181.
  • Yue, H.; Huang, M.; Tian, T.; Xiong, E.; Zhou, X. Advances in Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR)-Based Diagnostic Assays Assisted by Micro/Nanotechnologies. ACS Nano 2021, 15, 7848–7859. DOI: 10.1021/acsnano.1c02372.
  • Gong, H.; Wu, Y.; Zeng, R.; Zeng, Y.; Liu, X.; Tang, D. CRISPR/Cas12a-Mediated Liposome-Amplified Strategy for the Photoelectrochemical Detection of Nucleic Acid. Chem. Commun. 2021, 57, 8977–8980. DOI: 10.1039/d1cc03743a.
  • Zeng, R.; Xu, J.; Lu, L.; Lin, Q.; Huang, X.; Huang, L.; Li, M.; Tang, D. Photoelectrochemical Bioanalysis of microRNA on Yolk-in-Shell Au@CdS Based on the Catalytic Hairpin Assembly-Mediated CRISPR-Cas12a System. Chem. Commun. 2022, 58, 7562–7565. DOI: 10.1039/d2cc02821b.
  • Gong, H.; Hu, X.; Zeng, R.; Li, Y.; Xu, J.; Li, M.; Tang, D. CRISPR/Cas12a-Based Photoelectrochemical Sensing of microRNA on Reduced Graphene Oxide-Anchored Bi2WO6 Coupling with Catalytic Hairpin Assembly. Sens. Actuators, B 2022, 369, 132307. DOI: 10.1016/j132307.snb.2022.
  • Zetsche, B.; Gootenberg, J. S.; Abudayyeh, O. O.; Slaymaker, I. M.; Makarova, K. S.; Essletzbichler, P.; Volz, S. E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 is a single-RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Transgen. Res. 2015, 163, 759–771. DOI: 10.1016/j.cell.2015.09.038.
  • Li, S.; Zhao, G.; Wang, J. C-Brick: A New Standard for Assembly of Biological Parts Using Cpf1. ACS Synth. Biol. 2016, 5, 1383–1388. DOI: 10.1021/acssynbio.6b00114.
  • Naqvi, M.; Lee, L.; Torres Montaguth, O. E.; Szczelkun, M. D. A Gate and Clamp Regulate Sequential DNA Strand Cleavage by CRISPR-Cas12a. bioRxiv 2021. DOI: 10.1101/2021.06.18.448962.
  • Zhou, Q.; Tang, D. Recent Advances in Photoelectrochemical Biosensors for Analysis of Mycotoxins in Food. TrAC, Trends Anal. Chem. 2020, 124, 115814. DOI: 10.1016/j.trac.2020.115814.
  • Lin, Y.; Zhou, Q.; Tang, D. Dopamine-Loaded Liposomes for in-Situ Amplified Photoelectrochemical Immunoassay of AFB(1) to Enhance Photocurrent of Mn(2+)-Doped Zn(3)(OH)(2)V(2)O(7) Nanobelts. Anal. Chem. 2017, 89, 11803–11810. DOI: 10.1021/acs.analchem.7b03451.
  • Lin, Y.; Zhou, Q.; Tang, D.; Niessner, R.; Knopp, D. Signal-On Photoelectrochemical Immunoassay for Aflatoxin B(1) Based on Enzymatic Product-Etching MnO(2) Nanosheets for Dissociation of Carbon Dots. Anal. Chem. 2017, 89, 5637–5645. DOI: 10.1021/acs.analchem.7b00942.
  • Lin, Y.; Zhou, Q.; Tang, D.; Niessner, R.; Yang, H.; Knopp, D. Silver Nanolabels-Assisted Ion-Exchange Reaction with CdTe Quantum Dots Mediated Exciton Trapping for Signal-On Photoelectrochemical Immunoassay of Mycotoxins. Anal. Chem. 2016, 88, 7858–7866. DOI: 10.1021/acs.analchem.6b02124.
  • Mao, Z.; Wang, X.; Chen, R.; Zhou, Z.; Ren, S.; Liang, J.; Gao, Z. Upconversion-Mediated CRISPR-Cas12a Biosensing for Sensitive Detection of Ochratoxin A. Talanta 2022, 242, 123232. DOI: 10.1016/j.talanta.2022.123232.
  • Lin, X.; Li, C.; Meng, X.; Yu, W.; Duan, N.; Wang, Z.; Wu, S. CRISPR-Cas12a-Mediated Luminescence Resonance Energy Transfer Aptasensing Platform for Deoxynivalenol Using Gold Nanoparticle-Decorated Ti3C2Tx MXene as the Enhanced Quencher. J. Hazard Mater. 2022, 433, 128750. DOI: 10.1016/j.jhazmat.2022.128750.
  • Yao, X.; Yang, Q.; Wang, Y.; Bi, C.; Du, H.; Wu, W. Dual-Enzyme-Based Signal-Amplified Aptasensor for Zearalenone Detection by Using CRISPR-Cas12a and Nt.AlwI. Foods 2022, 11, 487. DOI: 10.3390/foods11030487.
  • Gao, Z.; Qiu, Z.; Lu, M.; Shu, J.; Tang, D. Hybridization Chain Reaction-Based Colorimetric Aptasensor of Adenosine 5'-Triphosphate on Unmodified Gold Nanoparticles and Two Label-Free Hairpin Probes. Biosens. Bioelectron. 2017, 89, 1006–1012. DOI: 10.1016/j.bios.2016.10.043.
  • Ren, R.; Cai, G.; Yu, Z.; Tang, D. Glucose-Loaded Liposomes for Amplified Colorimetric Immunoassay of Streptomycin Based on Enzyme-Induced Iron(II) Chelation Reaction with Phenanthroline. Sens. Actuators, B 2018, 265, 174–181. DOI: 10.1016/j.snb.2018.03.049.
  • Ren, R.; Cai, G.; Yu, Z.; Zeng, Y.; Tang, D. Metal-Polydopamine Framework: An Innovative Signal-Generation Tag for Colorimetric Immunoassay. Anal. Chem. 2018, 90, 11099–11105. DOI: 10.1021/acs.analchem.8b03538.
  • Yu, Z.; Gong, H.; Li, M.; Tang, D. Hollow Prussian Blue Nanozyme-Richened Liposome for Artificial Neural Network-Assisted Multimodal Colorimetric-Photothermal Immunoassay on Smartphone. Biosens. Bioelectron. 2022, 218, 114751. DOI: 10.1016/j.bios.2022.114751.
  • Abnous, K.; Danesh, N.; Ramezani, M.; Alibolandi, M.; Nameghi, M.; Zavvar, T.; Taghdisi, S. A Novel Colorimetric Aptasensor for Ultrasensitive Detection of Aflatoxin M1 Based on the Combination of CRISPR-Cas12a, Rolling Circle Amplification and Catalytic Activity of Gold Nanoparticles. Anal. Chim. Acta 2021, 1165, 338549. DOI: 10.1016/j.aca.2021.338549.
  • Liu, Y.; Deng, Y.; Li, S.; Wang-Ngai Chow, F.; Liu, M.; He, N. Monitoring and Detection of Antibiotic Residues in Animal Derived Foods: Solutions Using Aptamers. Trends Food Sci. Technol. 2022, 125, 200–235. DOI: 10.1016/j.tifs.2022.04.008.
  • Liu, C.; Li, B.; Liu, M.; Mao, S. Demand, Status, and Prospect of Antibiotics Detection in the Environment. Sens. Actuators, B 2022, 369, 132383. DOI: 10.1016/j.snb.2022.132383.
  • Hu, J.; Song, H.; Zhou, J.; Liu, R.; Lv, Y. Metal-Tagged CRISPR/Cas12a Bioassay Enables Ultrasensitive and Highly Selective Evaluation of Kanamycin Bioaccumulation in Fish Samples. Anal. Chem. 2021, 93, 14214–14222. DOI: 10.1021/acs.analchem.1c03094.
  • Niu, C.; Wang, C.; Li, F.; Zheng, X.; Xing, X.; Zhang, C. Aptamer Assisted CRISPR-Cas12a Strategy for Small Molecule Diagnostics. Biosens. Bioelectron. 2021, 183, 113196. DOI: 10.1016/j.bios.2021.113196.
  • Peng, L.; Zhou, J.; Liu, G.; Yin, L.; Ren, S.; Man, S.; Ma, L. CRISPR-Cas12a Based Aptasensor for Sensitive and Selective ATP Detection. Sens. Actuators B-Chem. 2020, 320, 128164. DOI: 10.1016/j.snb.2020.128164.
  • Li, C.; Zheng, B.; Li, J.; Gao, J.; Liu, Y.; Pang, D.; Tang, H. Holographic Optical Tweezers and Boosting Upconversion Luminescent Resonance Energy Transfer Combined Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas12a Biosensors. ACS Nano 2021, 15, 8142–8154. DOI: 10.1021/acsnano.0c09986.
  • Mafra, G.; Birk, L.; Scheid, C.; Eller, S.; Brognoli, R.; de Oliveira, T.; Carasek, E.; Merib, J. A Straightforward and Semiautomated Membrane-Based Method as Efficient Tool for the Determination of Cocaine and Its Metabolites in Urine Samples Using Liquid Chromatography Coupled to Quadrupole Time-of-Flight-Mass Spectrometry. J. Chromatogr. A 2020, 1621, 461088. DOI: 10.1016/j.chroma.2020.461088.
  • Zhao, X.; Li, S.; Liu, G.; Wang, Z.; Yang, Z.; Zhang, Q.; Liang, M.; Liu, J.; Li, Z.; Tong, Y.; et al. A Versatile Biosensing Platform Coupling CRISPR–Cas12a and Aptamers for Detection of Diverse Analytes. Sci. Bull. (Beijing) 2021, 66, 69–77. DOI: 10.1016/j.scib.2020.09.004.
  • Abnous, K.; Abdolabadi, A.; Ramezani, M.; Alibolandi, M.; Nameghi, M.; Zavvar, T.; Khoshbin, Z.; Lavaee, P.; Taghdisi, S.; Danesh, N. A Highly Sensitive Electrochemical Aptasensor for Cocaine Detection Based on CRISPR-Cas12a and Terminal Deoxynucleotidyl Transferase as Signal Amplifiers. Talanta 2022, 241, 123276. DOI: 10.1016/j.talanta.2022.123276.
  • Qiao, B.; Xu, J.; Yin, W.; Xin, W.; Ma, L.; Qiao, J.; Liu, Y. “Aptamer-Locker?” DNA Coupling with CRISPR/Cas12a-Guided Biosensing for High-Efficiency Melamine Analysis. Biosens. Bioelectron. 2021, 183, 113233. DOI: 10.1016/j.bios.2021.113233.
  • Li, Q.; Li, X.; Zhou, P.; Chen, R.; Xiao, R.; Pang, Y. Split Aptamer Regulated CRISPR/Cas12a Biosensor for 17β-Estradiol through a Gap-Enhanced Raman Tags Based Lateral flow Strategy. Biosens. Bioelectron. 2022, 215, 114548. DOI: 10.1016/j.bios.2022.114548.
  • Yu, Z.; Gong, H.; Xu, J.; Li, Y.; Zeng, Y.; Liu, X.; Tang, D. Exploiting Photoelectric Activities and Piezoelectric Properties of NaNbO3 Semiconductors for Point-of-Care Immunoassay. Anal. Chem. 2022, 94, 3418–3426. DOI: 10.1021/acs.analchem.2c00066.
  • Gao, Y.; Zeng, Y.; Liu, X.; Tang, D. Liposome-Mediated In Situ Formation of Type-I Heterojunction for Amplified Photoelectrochemical Immunoassay. Anal. Chem. 2022, 94, 4859–4865. DOI: 10.1021/acs.analchem.2c00283.
  • Yu, Z.; Gong, H.; Xu, J.; Li, Y.; Xue, F.; Zeng, Y.; Liu, X.; Tang, D. Liposome-Embedded Cu2–xAgxS Nanoparticle-Mediated Photothermal Immunoassay for Daily Monitoring of cTnI Protein Using a Portable Thermal Imager. Anal. Chem. 2022, 94, 7408–7416. DOI: 10.1021/acs.analchem.2c01133.
  • Huang, L.; Chen, J.; Yu, Z.; Tang, D. Self-Powered Temperature Sensor with Seebeck Effect Transduction for Photothermal-Thermoelectric Coupled Immunoassay. Anal. Chem. 2020, 92, 2809–2814. DOI: 10.1021/acs.analchem.9b05218.
  • Luo, Z.; Zhang, L.; Zeng, R.; Su, L.; Tang, D. Near-Infrared Light-Excited Core-Core-Shell UCNP@Au@CdS Upconversion Nanospheres for Ultrasensitive Photoelectrochemical Enzyme Immunoassay. Anal. Chem. 2018, 90, 9568–9575. DOI: 10.1021/acs.analchem.8b02421.
  • Yu, Z.; Cai, G.; Liu, X.; Tang, D. Pressure-Based Biosensor Integrated with a Flexible Pressure Sensor and an Electrochromic Device for Visual Detection. Anal. Chem. 2021, 93, 2916–2925. DOI: 10.1021/acs.analchem.0c04501.
  • Zeng, R.; Li, Y.; Li, Y.; Wan, Q.; Huang, Z.; Qiu, Z.; Tang, D. Smartphone-Based Photoelectrochemical Immunoassay with Co(9)S(8)@ZnIn(2)S(4) for Point-of-Care Diagnosis of Breast Cancer Biomarker. Research (Wash D C) 2022, 2022, 9831521. DOI: 10.34133/2022/9831521.
  • Zhao, X.; Zhang, W.; Qiu, X.; Mei, Q.; Luo, Y.; Fu, W. Rapid and Sensitive Exosome Detection with CRISPR/Cas12a. Anal. Bioanal. Chem. 2020, 412, 601–609. DOI: 10.1007/s00216-019-02211-4.
  • Farmakis, D.; Mueller, C.; Apple, F. S. High-Sensitivity Cardiac Troponin Assays for Cardiovascular Risk Stratification in the General Population. Eur. Heart J. 2020, 41, 4050–4056. DOI: 10.1093/eurheartj/ehaa083.
  • Chen, H.; Li, Z.; Chen, J.; Yu, H.; Zhou, W.; Shen, F.; Chen, Q.; Wu, L. CRISPR/Cas12a-Based Electrochemical Biosensor for Highly Sensitive Detection of cTnI. Bioelectrochemistry 2022, 146, 108167. DOI: 10.1016/j.bioelechem.2022.108167.
  • Lu, L.; Li, C.; Guo, H.; Liu, D.; Tang, H.; Zheng, B.; Li, C. Monitoring of Viral Myocarditis Injury Using an Energy-Confined Upconversion Nanoparticle and Nature-Inspired Biochip Combined CRISPR/Cas12a-Powered Biosensor. Anal. Chim. Acta 2022, 1195, 339455. DOI: 10.1016/j.aca.2022.339455.
  • Deng, F.; Li, Y.; Qiao, L.; Goldys, E. A CRISPR/Cas12a-Assisted on-Fibre Immunosensor for Ultrasensitive Small Protein Detection in Complex Biological Samples. Anal. Chim. Acta 2022, 1192, 339351. DOI: 10.1016/j.aca.2021.339351.
  • Li, H.; Xing, S.; Xu, J.; He, Y.; Lai, Y.; Wang, Y.; Zhang, G.; Guo, S.; Deng, M.; Zeng, M.; Liu, W.; et al. Aptamer-Based CRISPR/Cas12a Assay for the Ultrasensitive Detection of Extracellular Vesicle Proteins. Talanta 2021, 221, 121670. DOI: 10.1016/j.talanta.2020.121670.
  • Qing, M.; Sun, Z.; Wang, L.; Du, S.; Zhou, J.; Tang, Q.; Luo, H.; Li, N. CRISPR/Cas12a-Regulated Homogeneous Electrochemical Aptasensor for Amplified Detection of Protein. Sens. Actuators B-Chem. 2021, 348, 130713. DOI: 10.1016/j.snb.2021.130713.
  • Yuan, G.; Xia, X.; Zhang, J.; Huang, J.; Xie, F.; Li, X.; Chen, D.; Peng, C. A Novel "Signal on-off-Super on" Sandwich-Type Aptamer Sensor of CRISPR-Cas12a Coupled Voltage Enrichment Assay for VEGF Detection. Biosens. Bioelectron. 2022, 221, 114424. DOI: 10.1016/j.bios.2022.114424.
  • Wang, C.; Horby, P.; Hayden, F.; Gao, G. A Novel Coronavirus Outbreak of Global Health Concern. Lancet 2020, 395, 470–473. DOI: 10.1016/s0140-6736(20)30185-9.
  • V'Kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus Biology and Replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021, 19, 155–170. DOI: 10.1038/s41579-020-00468-6.
  • Xue, J.; Li, Y.; Liu, J.; Zhang, Z.; Yu, R.; Huang, Y.; Li, C.; Chen, A.; Qiu, J. Highly Sensitive Electrochemical Aptasensor for SARS-CoV-2 Antigen Detection Based on Aptamer-Binding Induced Multiple Hairpin Assembly Signal Amplification. Talanta 2022, 248, 123605. DOI: 10.1016/j.talanta.2022.123605.
  • Cao, G.; Huo, D.; Chen, X.; Wang, X.; Zhou, S.; Zhao, S.; Luo, X.; Hou, C. Automated, Portable, and High-Throughput Fluorescence Analyzer (APHF-Analyzer) and Lateral Flow Strip Based on CRISPR/Cas13a for Sensitive and Visual Detection of SARS-CoV-2. Talanta 2022, 248, 123594. DOI: 10.1016/j.talanta.2022.123594.
  • Boum, Y.; Fai, K. N.; Nikolay, B.; Mboringong, A. B.; Bebell, L. M.; Ndifon, M.; Abbah, A.; Essaka, R.; Eteki, L.; Luquero, F.; et al. Performance and Operational Feasibility of Antigen and Antibody Rapid Diagnostic Tests for COVID-19 in Symptomatic and Asymptomatic Patients in Cameroon: A Clinical, Prospective, Diagnostic Accuracy Study. Lancet Infect. Dis. 2021, 21, 1089–1096. DOI: 10.1016/S1473-3099(21)00132-8.
  • Han, C.; Li, W.; Li, Q.; Xing, W.; Luo, H.; Ji, H.; Fang, X.; Luo, Z.; Zhang, L. CRISPR/Cas12a-Derived Electrochemical Aptasensor for Ultrasensitive Detection of COVID-19 Nucleocapsid Protein. Biosens. Bioelectron. 2022, 200, 113922. DOI: 10.1016/j.bios.2021.113922.
  • Liu, N.; Liu, R.; Zhang, J. CRISPR-Cas12a-Mediated Label-Free Electrochemical Aptamer-Based Sensor for SARS-CoV-2 Antigen Detection. Bioelectrochemistry 2022, 146, 108105. DOI: 10.1016/j.bioelechem.2022.108105.
  • Zhao, X.; Wang, Z.; Yang, B.; Li, Z.; Tong, Y.; Bi, Y.; Li, Z.; Xia, X.; Chen, X.; Zhang, L.; et al. Integrating PCR-Free Amplification and Synergistic Sensing for Ultrasensitive and Rapid CRISPR/Cas12a-Based SARS-CoV-2 Antigen Detection. Synth. Syst. Biotechnol. 2021, 6, 283–291. DOI: 10.1016/j.synbio.2021.09.007.
  • Zhang, T.; Zhou, W.; Lin, X.; Khan, M.; Deng, S.; Zhou, M.; He, G.; Wu, C.; Deng, R.; He, Q. Light-up RNA Aptamer signaling-CRISPR-Cas13a-Based Mix-and-Read Assays for Profiling Viable Pathogenic Bacteria. Biosens. Bioelectron. 2021, 176, 112906. DOI: 10.1016/j.bios.2020.112906.
  • Franz, C.; den Besten, H.; Böhnlein, C.; Gareis, M.; Zwietering, M.; Fusco, V. Microbial Food Safety in the 21st Century: Emerging Challenges and Foodborne Pathogenic Bacteria. Trends Food Sci. Technol. 2018, 81, 155–158. DOI: 10.1016/j.tifs.2018.09.019.
  • Pham, V.; Kim, J. Cultivation of Unculturable Soil Bacteria. Trends Biotechnol. 2012, 30, 475–484. DOI: 10.1016/j.tibtech.2012.05.007.
  • Sohrabi, H.; Majidi, M.; Fakhraei, M.; Jahanban-Esfahlan, A.; Hejazi, M.; Oroojalian, F.; Baradaran, B.; Tohidast, M.; de la Guardia, M.; Mokhtarzadeh, A. Lateral Flow Assays (LFA) for Detection of Pathogenic Bacteria: A Small Point-of-Care Platform for Diagnosis of Human Infectious Diseases. Talanta 2022, 243, 123330. DOI: 10.1016/j.talanta.2022.123330.
  • Dou, L.; Bai, Y.; Liu, M.; Shao, S.; Yang, H.; Yu, X.; Wen, K.; Wang, Z.; Shen, J.; Yu, W. Three-To-One’ Multi-Functional Nanocomposite-Based Lateral Flow Immunoassay for Label-Free and Dual-Readout Detection of Pathogenic Bacteria. Biosens. Bioelectron. 2022, 204, 114093. DOI: 10.1016/j.bios.2022.114093.
  • Maurischat, S.; Baumann, B.; Martin, A.; Malorny, B. Rapid Detection and Specific Differentiation of Salmonella enterica Subsp. enterica Enteritidis, Typhimurium and Its Monophasic Variant 4,[5],12:i:− by Real-Time Multiplex PCR. Int. J. Food Microbiol. 2015, 193, 8–14. DOI: 10.1016/j.ijfoodmicro.2014.10.004.
  • Feng, X.; Meng, X.; Xiao, F.; Aguilar, Z.; Xu, H. Vancomycin-Dendrimer Based Multivalent Magnetic Separation Nanoplatforms Combined with Multiplex Quantitative PCR Assay for Detecting Pathogenic Bacteria in Human Blood. Talanta 2021, 225, 121953. DOI: 10.1016/j.talanta.2020.121953.
  • Wei, Y.; Tao, Z.; Wan, L.; Zong, C.; Wu, J.; Tan, X.; Wang, B.; Guo, Z.; Zhang, L.; Yuan, H.; et al. Aptamer-Based Cas14a1 Biosensor for Amplification-Free Live Pathogenic Detection. Biosens. Bioelectron. 2022, 211, 114282. DOI: 10.1016/j.bios.2022.114282.
  • Liu, X.; Bu, S.; Feng, J.; Wei, H.; Wang, Z.; Li, X.; Zhou, H.; He, X.; Wan, J. Electrochemical Biosensor for Detecting Pathogenic Bacteria Based on a Hybridization Chain Reaction and CRISPR-Cas12a. Anal. Bioanal. Chem. 2022, 414, 1073–1080. DOI: 10.1007/s00216-021-03733-6.
  • Li, J.; Yang, S.; Zuo, C.; Dai, L.; Guo, Y.; Xie, G. Applying CRISPR-Cas12a as a Signal Amplifier to Construct Biosensors for Non-DNA Targets in Ultralow Concentrations. ACS Sens. 2020, 5, 970–977. DOI: 10.1021/acssensors.9b02305.
  • Bu, S.; Liu, X.; Wang, Z.; Wei, H.; Yu, S.; Li, Z.; Hao, Z.; Liu, W.; Wan, J. Ultrasensitive Detection of Pathogenic Bacteria by CRISPR/Cas12a Coupling with a Primer Exchange Reaction. Sens. Actuators, B 2021, 347, 130630. DOI: 10.1016/j.snb.2021.130630.
  • Zetsche, B.; Gootenberg, J. S.; Abudayyeh, O. O.; Slaymaker, I. M.; Makarova, K. S.; Essletzbichler, P.; Volz, S. E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 2015, 163, 759–771. DOI: 10.1016/j.cell.2015.09.038.
  • Fuchs, R.; Curcuru, J.; Mabuchi, M.; Yourik, P.; Robb, G. Cas12a Trans-Cleavage Can Be Modulated in Vitro and is Active on ssDNA, dsDNA, and RNA. bioRxiv 2019, 600890. DOI: 10.1101/600890.
  • Swarts, D.; van der Oost, J.; Jinek, M. Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a. Mol. Cell 2017, 66, 221–233.e4. e224. DOI: 10.1016/j.molcel.2017.03.016.
  • Li, H.; Cui, X.; Sun, L.; Deng, X.; Liu, S.; Zou, X.; Li, B.; Wang, C.; Wang, Y.; Liu, Y.; et al. High Concentration of Cas12a Effector Tolerates More Mismatches on ssDNA. FASEB J. 2021, 35, e21153. DOI: 10.1096/fj.202001475R.
  • Dai, Y.; Somoza, R.; Wang, L.; Welter, J.; Li, Y.; Caplan, A.; Liu, C. Exploring the Trans-Cleavage Activity of CRISPR-Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor. Angew. Chem. Int. Ed. Engl. 2019, 58, 17399–17405. DOI: 10.1002/anie.201910772.
  • Fonfara, I.; Richter, H.; Bratovic, M.; Le Rhun, A.; Charpentier, E. The CRISPR-Associated DNA-Cleaving Enzyme Cpf1 Also Processes Precursor CRISPR RNA. Nature 2016, 532, 517–521. DOI: 10.1038/nature17945.
  • Singh, D.; Mallon, J.; Poddar, A.; Wang, Y.; Tippana, R.; Yang, O.; Bailey, S.; Ha, T. Real-Time Observation of DNA Target Interrogation and Product Release by the RNA-Guided Endonuclease CRISPR Cpf1 (Cas12a). Proc. Natl. Acad. Sci. USA 2018, 115, 5444–5449. DOI: 10.1073/pnas.1718686115.
  • Nguyen, L.; Smith, B.; Jain, P. Enhancement of Trans-Cleavage Activity of Cas12a with Engineered crRNA Enables Amplified Nucleic Acid Detection. Nat. Commun. 2020, 11, 4906. DOI: 10.1038/s41467-020-18615-1.
  • Qian, C.; Wang, R.; Wu, H.; Zhang, F.; Wu, J.; Wang, L. Uracil-Mediated New Photospacer-Adjacent Motif of Cas12a to Realize Visualized DNA Detection at the Single-Copy Level Free from Contamination. Anal. Chem. 2019, 91, 11362–11366. DOI: 10.1021/acs.analchem.9b02554.
  • Cheng, X.; Yan, Y.; Chen, X.; Duan, J.; Zhang, D.; Yang, T.; Gou, X.; Zhao, M.; Ding, S.; Cheng, W. CRISPR/Cas12a-Modulated Fluorescence Resonance Energy Transfer with Nanomaterials for Nucleic Acid Sensing. Sens. Actuators B-Chem. 2021, 331, 129458. DOI: 10.1016/j.snb.2021.129458.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.