396
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Application of Recently used Green Solvents in Sample Preparation Techniques: A Comprehensive Review of Existing Trends, Challenges, and Future Opportunities

, &

References

  • Ullah, N.; Tuzen, M. A Comprehensive Review on Recent Developments and Future Perspectives of Switchable Solvents and Their Applications in Sample Preparation Techniques. Green Chem. 2023, 25, 1729–1748. DOI: 10.1039/D3GC00020F.
  • Picó, Y.; Fernández, M.; Ruiz, M. J.; Font, G. Current Trends in Solid-Phase-Based Extraction Techniques for the Determination of Pesticides in Food and Environment. J. Biochem. Biophys. Methods. 2007, 70, 117–131. DOI: 10.1016/j.jbbm.2006.10.010.
  • Wierucka, M.; Biziuk, M. Application of Magnetic Nanoparticles for Magnetic Solid-Phase Extraction in Preparing Biological, Environmental and Food Samples. TrAC Trends Anal. Chem. 2014, 59, 50–58. DOI: 10.1016/j.trac.2014.04.007.
  • Wang, Z.; Feng, L.; Xiao, D.; Li, N.; Li, Y.; Cao, D.; Shi, Z.; Cui, Z.; Lu, N. A Silver Nanoislands on Silica Spheres Platform: Enriching Trace Amounts of Analytes for Ultrasensitive and Reproducible SERS Detection. Nanoscale 2017, 9, 16749–16754. DOI: 10.1039/c7nr06987a.
  • Zhao, R. S.; Wang, X.; Li, F. W.; Wang, S. S.; Zhang, L. L.; Cheng, C. G. Ionic Liquid/Ionic Liquid Dispersive Liquid–Liquid Microextraction. J. Sep. Sci. 2011, 34, 830–836. DOI: 10.1002/jssc.201000802.
  • Shen, Y.; Chen, B.; van Beek, T. A. Alternative Solvents Can Make Preparative Liquid Chromatography Greener. Green Chem. 2015, 17, 4073–4081. DOI: 10.1039/C5GC00887E.
  • Clark, J. H. Green Chemistry: challenges and Opportunities. Green Chem. 1999, 1, 1–8. DOI: 10.1039/a807961g.
  • Kurowska-Susdorf, A.; Zwierżdżyński, M.; Bevanda, A. M.; Talić, S.; Ivanković, A.; Płotka-Wasylka, J. Green Analytical Chemistry: Social Dimension and Teaching. TrAC Trends Anal. Chem. 2019, 111, 185–196. DOI: 10.1016/j.trac.2018.10.022.
  • Byrne, F. P.; Jin, S.; Paggiola, G.; Petchey, T. H. M.; Clark, J. H.; Farmer, T. J.; Hunt, A. J.; Robert McElroy, C.; Sherwood, J. Tools and Techniques for Solvent Selection: green Solvent Selection Guides. Sustain. Chem. Process. 2016, 4, 1–24. DOI: 10.1186/s40508-016-0051-z.
  • Clarke, C. J.; Tu, W. C.; Levers, O.; Brohl, A.; Hallett, J. P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747–800. DOI: 10.1021/acs.chemrev.7b00571.
  • Winterton, N. The Green Solvent: A Critical Perspective. Clean Technol. Environ. Policy. 2021, 23, 2499–2522. DOI: 10.1007/s10098-021-02188-8.
  • Sánchez, C.; Dessì, P.; Duffy, M.; Lens, P. N. OpenTCC: An Open Source Low-Cost Temperature-Control Chamber. HardwareX 2020, 7, e00099. DOI: 10.1016/j.ohx.2020.e00099.
  • Abdel-Rehim, M.; Pedersen-Bjergaard, S.; Abdel-Rehim, A.; Lucena, R.; Moein, M. M.; Cárdenas, S.; Miró, M. Microextraction Approaches for Bioanalytical Applications: An Overview. J. Chromatogr. A 2020, 1616, 460790. DOI: 10.1016/j.chroma.2019.460790.
  • Ullah, N.; Tuzen, M. A New Trend and Future Perspectives of the Miniaturization of Conventional Extraction Methods for Elemental Analysis in Different Real Samples: A Review. Crit. Rev. Anal. Chem. 2022. DOI: 10.1080/10408347.2022.2128635.
  • Pan, M.; Wang, C. Recent Advances in CO2 Capture by Functionalized Ionic Liquids. Adv. CO2 Capture Sequestr. Convers. 2015, 1194, 341–369.
  • Khataei, M. M.; Epi, S. B. H.; Lood, R.; Spégel, P.; Yamini, Y.; Turner, C. A Review of Green Solvent Extraction Techniques and Their Use in Antibiotic Residue Analysis. J. Pharm. Biomed. Anal. 2022, 209, 114487. DOI: 10.1016/j.jpba.2021.114487.
  • Mercer, S. M.; Jessop, P. G. “Switchable Water”: Aqueous Solutions of Switchable Ionic Strength. ChemSusChem: Chem. Sustain. Energy Mater. 2010, 3, 467–470. DOI: 10.1002/cssc.201000001.
  • Alexovič, M.; Horstkotte, B.; Solich, P.; Sabo, J. Automation of Static and Dynamic Non-Dispersive Liquid Phase Microextraction. Part 1: Approaches Based on Extractant Drop-, Plug-, Film-and Microflow-Formation. Anal. Chim. Acta. 2016, 906, 22–40. DOI: 10.1016/j.aca.2015.11.038.
  • Habila, M. A.; ALOthman, Z. A.; Yilmaz, E.; Alabdullkarem, E. A.; Soylak, M. A new amine based microextraction of lead (II) in real water samples using flame atomic absorption spectrometry,Microchem. J. 2019, 148, 214–219. DOI: 10.1016/j.microc.2019.04.078.
  • Su, X.; Cunningham, M. F.; Jessop, P. G. Switchable Viscosity Triggered by CO2 Using Smart Worm-like Micelles. Chem. Commun. (Camb.) 2013, 49, 2655–2657. DOI: 10.1039/c3cc37816k.
  • Darabi, A.; Jessop, P. G.; Cunningham, M. F. CO2-Responsive Polymeric Materials: synthesis, Self-Assembly, and Functional Applications. Chem. Soc. Rev. 2016, 45, 4391–4436. DOI: 10.1039/c5cs00873e.
  • Choi, Y. H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I. W. C. E.; Witkamp, G.-J.; Verpoorte, R. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiol. 2011, 156, 1701–1705. DOI: 10.1104/pp.111.178426.
  • van Osch, D. J.; Zubeir, L. F.; van den Bruinhorst, A.; Rocha, M. A.; Kroon, M. C. Hydrophobic Deep Eutectic Solvents as Water-Immiscible Extractants. Green Chem. 2015, 17, 4518–4521. DOI: 10.1039/C5GC01451D.
  • Ribeiro, B. D.; Florindo, C.; Iff, L. C.; Coelho, M. A.; Marrucho, I. M. Menthol-Based Eutectic Mixtures: Hydrophobic Low Viscosity Solvents. ACS Sustain. Chem. Eng. 2015, 3, 2469–2477. DOI: 10.1021/acssuschemeng.5b00532.
  • Tang, B.; Row, K. H. Recent Developments in Deep Eutectic Solvents in Chemical Sciences. Monatsh. Chem. 2013, 144, 1427–1454. DOI: 10.1007/s00706-013-1050-3.
  • Abbott, A. P.; Harris, R. C.; Ryder, K. S.; D'Agostino, C.; Gladden, L. F.; Mantle, M. D. Glycerol Eutectics as Sustainable Solvent Systems. Green Chem. 2011, 13, 82–90. DOI: 10.1039/C0GC00395F.
  • Teles, A. R. R.; Capela, E. V.; Carmo, R. S.; Coutinho, J. A.; Silvestre, A. J.; Freire, M. G. Solvatochromic Parameters of Deep Eutectic Solvents Formed by Ammonium-Based Salts and Carboxylic Acids. Fluid Phase Equilib. 2017, 448, 15–21. DOI: 10.1016/j.fluid.2017.04.020.
  • Ho, T. D.; Zhang, C.; Hantao, L. W.; Anderson, J. L. Ionic Liquids in Analytical Chemistry: fundamentals, Advances, and Perspectives. Anal. Chem. 2014, 86, 262–285. DOI: 10.1021/ac4035554.
  • An, J.; Rahn, K. L.; Anderson, J. L. Headspace Single Drop Microextraction versus Dispersive Liquid-Liquid Microextraction Using Magnetic Ionic Liquid Extraction Solvents. Talanta 2017, 167, 268–278. DOI: 10.1016/j.talanta.2017.01.079.
  • Duchet, L.; Legeay, J. C.; Carrie, D.; Paquin, L.; Eynde, J. J. V.; Bazureau, J. P. Synthesis of 3, 5-Disubstituted 1, 2, 4-Oxadiazoles Using Ionic Liquid-Phase Organic Synthesis (IoLiPOS) Methodology. Tetrahedron 2010, 66, 986–994. DOI: 10.1016/j.tet.2009.11.079.
  • Ragonese, C.; Tranchida, P. Q.; Sciarrone, D.; Mondello, L. Conventional and Fast Gas Chromatography Analysis of Biodiesel Blends Using an Ionic Liquid Stationary Phase. J. Chromatogr. A 2009, 1216, 8992–8997. DOI: 10.1016/j.chroma.2009.10.066.
  • Hua, J. C.; Polyakova, Y.; Row, K. H. Effect of Concentration of Ionic Liquids on Resolution of Nucleotides in Reversed-Phase Liquid Chromatography. Bull. Korean Chem. Soc. 2007, 28, 601–606.
  • Polyakova, Y.; Jin, Y.; Zheng, J.; Ho Row, K. Effect of Concentration of Ionic Liquid 1‐Butyl‐3‐Methylimidazolium, Tetrafuoroborate, for Retention and Separation of Some Amino and Nucleic Acids. J. Liquid Chromatogr. Related Technol. 2006, 29, 1687–1701. DOI: 10.1080/10826070600716769.
  • Polyakova, Y.; Row, K. H. Retention Behaviour of N-CBZ-D-Phenylalanine and D-Tryptophan: effect of Ionic Liquid as Mobile-Phase Modifier. Acta Chromatogr. 2006, 17, 210.
  • Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation. Green Chem. 2001, 3, 156–164. DOI: 10.1039/b103275p.
  • de Veij, M.; Vandenabeele, P.; Hall, K. A.; Fernandez, F. M.; Green, M. D.; White, N. J.; Dondorp, A. M.; Newton, P. N.; Moens, L. Fast Detection and Identification of Counterfeit Antimalarial Tablets by Raman Spectroscopy. J. Raman Spectrosc. 2007, 38, 181–187. DOI: 10.1002/jrs.1621.
  • Kim, M.; Chung, H.; Woo, Y.; Kemper, M. S. A New Non-Invasive, Quantitative Raman Technique for the Determination of an Active Ingredient in Pharmaceutical Liquids by Direct Measurement through a Plastic Bottle. Anal. Chim. Acta. 2007, 587, 200–207. DOI: 10.1016/j.aca.2007.01.062.
  • Keith, L. H.; Gron, L. U.; Young, J. L. Green Analytical Methodologies. Chem. Rev. 2007, 107, 2695–2708. DOI: 10.1021/cr068359e.
  • Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 Principles of Green Analytical Chemistry and the SIGNIFICANCE Mnemonic of Green Analytical Practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. DOI: 10.1016/j.trac.2013.04.010.
  • Gu, Y.; Jerome, F. Bio-Based Solvents: An Emerging Generation of Fluids for the Design of Eco-Efficient Processes in Catalysis and Organic Chemistry. Chem. Soc. Rev. 2013, 42, 9550–9570. DOI: 10.1039/c3cs60241a.
  • Calvo-Flores, F. G.; Monteagudo-Arrebola, M. J.; Dobado, J. A.; Isac-García, J. Green and Bio-Based Solvents. Top. Curr. Chem. (Cham.) 2018, 376, 18. DOI: 10.1007/s41061-018-0191-6.
  • Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003. DOI: 10.1039/b210714g.
  • Harris, R. C. Physical properties of alcohol based deep eutectic solvents. Doctoral Dissertation, University of Leicester, 2009.
  • Tang, B.; Bi, W.; Zhang, H.; Row, K. H. Deep Eutectic Solvent-Based HS-SME Coupled with GC for the Analysis of Bioactive Terpenoids in Chamaecyparis Obtusa Leaves. Chromatographia 2014, 77, 373–377. DOI: 10.1007/s10337-013-2607-3.
  • Seyedi, N.; Khabazzadeh, H.; Saeednia, S. ZnCl2/Urea as a Deep Eutectic Solvent for the Preparation of Bis (Indolyl) Methanes under Ultrasonic Conditions. Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 2015, 45, 1501–1505. DOI: 10.1080/15533174.2013.862828.
  • Gano, Z. S.; Mjalli, F. S.; Al-Wahaibi, T.; Al-Wahaibi, Y.; AlNashef, I. M. Extractive Desulfurization of Liquid Fuel with FeCl3-Based Deep Eutectic Solvents: experimental Design and Optimization by Central-Composite Design. Chem. Eng. Process 2015, 93, 10–20. DOI: 10.1016/j.cep.2015.04.001.
  • Li, N.; Wang, Y.; Xu, K.; Huang, Y.; Wen, Q.; Ding, X. Development of Green Betaine-Based Deep Eutectic Solvent Aqueous Two-Phase System for the Extraction of Protein. Talanta 2016, 152, 23–32. DOI: 10.1016/j.talanta.2016.01.042.
  • Cui, Q.; Peng, X.; Yao, X.-H.; Wei, Z.-F.; Luo, M.; Wang, W.; Zhao, C.-J.; Fu, Y.-J.; Zu, Y.-G. Deep Eutectic Solvent-Based Microwave-Assisted Extraction of Genistin, Genistein and Apigenin from Pigeon Pea Roots. Sep. Purif. Technol. 2015, 150, 63–72. DOI: 10.1016/j.seppur.2015.06.026.
  • Qi, X. L.; Peng, X.; Huang, Y. Y.; Li, L.; Wei, Z. F.; Zu, Y. G.; Fu, Y. J. Green and Efficient Extraction of Bioactive Flavonoids from Equisetum Palustre L. by Deep Eutectic Solvents-Based Negative Pressure Cavitation Method Combined with Macroporous Resin Enrichment. Ind. Crops Prod. 2015, 70, 142–148. DOI: 10.1016/j.indcrop.2015.03.026.
  • Wei, Z.; Qi, X.; Li, T.; Luo, M.; Wang, W.; Zu, Y.; Fu, Y. Application of Natural Deep Eutectic Solvents for Extraction and Determination of Phenolics in Cajanus cajan Leaves by Ultra Performance Liquid Chromatography. Sep. Purif. Technol. 2015, 149, 237–244. DOI: 10.1016/j.seppur.2015.05.015.
  • Gutiérrez, M. C.; Ferrer, M. L.; Mateo, C. R.; del Monte, F. Freeze-Drying of Aqueous Solutions of Deep Eutectic Solvents: A Suitable Approach to Deep Eutectic Suspensions of Self-Assembled Structures. Langmuir 2009, 25, 5509–5515. DOI: 10.1021/la900552b.
  • Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V. Preparation of Novel, Moisture-Stable, Lewis-Acidic Ionic Liquids Containing Quaternary Ammonium Salts with Functional Side chainsElectronic Supplementary Information (ESI) Available: plot of Conductivity vs. temperature for the Ionic Liquid Formed from Zinc Chloride and Choline Chloride (2 :  1). See. Chem. Commun. 2001, 2010–2011. http://www. rsc. org/suppdata/cc/b1/b106357j. DOI: 10.1039/b106357j.
  • Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. DOI: 10.1021/ja048266j.
  • Rodriguez Rodriguez, N.; van den Bruinhorst, A.; Kollau, L. J.; Kroon, M. C.; Binnemans, K. Degradation of Deep-Eutectic Solvents Based on Choline Chloride and Carboxylic Acids. ACS Sustainable Chem. Eng. 2019, 7, 11521–11528. DOI: 10.1021/acssuschemeng.9b01378.
  • Florindo, C.; Oliveira, F. S.; Rebelo, L. P. N.; Fernandes, A. M.; Marrucho, I. M. Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustainable Chem. Eng. 2014, 2, 2416–2425. DOI: 10.1021/sc500439w.
  • Dai, Y.; van Spronsen, J.; Witkamp, G. J.; Verpoorte, R.; Choi, Y. H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta. 2013, 766, 61–68. DOI: 10.1016/j.aca.2012.12.019.
  • Gomez, F. J.; Espino, M.; Fernández, M. A.; Silva, M. F. A Greener Approach to Prepare Natural Deep Eutectic Solvents. ChemistrySelect 2018, 3, 6122–6125. DOI: 10.1002/slct.201800713.
  • Santana, A. P.; Mora-Vargas, J. A.; Guimaraes, T. G.; Amaral, C. D.; Oliveira, A.; Gonzalez, M. H. Sustainable Synthesis of Natural Deep Eutectic Solvents (NADES) by Different Methods. J. Mol. Liq. 2019, 293, 111452. DOI: 10.1016/j.molliq.2019.111452.
  • Lv, B.; Shi, Y.; Sun, C.; Liu, N.; Li, W.; Li, S. CO2 Capture by a Highly-Efficient Aqueous Blend of Monoethanolamine and a Hydrophilic Amino Acid Ionic Liquid [C2OHmim][Gly]. Chem. Eng. J. 2015, 270, 372–377. DOI: 10.1016/j.cej.2015.02.010.
  • Bulgurcuoğlu, A. E.; Durak, B. Y.; Chormey, D. S.; Bakırdere, S. Development of a Switchable Solvent Liquid Phase Extraction Method for the Determination of Chlorthiamid, Ethyl Parathion, Penconazole and Fludioxonil Pesticides in Well, Tap and Lake Water Samples by Gas Chromatography Mass Spectrometry. Microchem. J. 2021, 168, 106381. DOI: 10.1016/j.microc.2021.106381.
  • Musarurwa, H.; Tavengwa, N. T. Switchable Solvent-Based Micro-Extraction of Pesticides in Food and Environmental Samples. Talanta 2021, 224, 121807. DOI: 10.1016/j.talanta.2020.121807.
  • Bazel, Y.; Rečlo, M.; Chubirka, Y. Switchable Hydrophilicity Solvents in Analytical Chemistry. Five Years of Achievements. Microchem. J. 2020, 157, 105115. DOI: 10.1016/j.microc.2020.105115.
  • Pollet, P.; Eckert, C. A.; Liotta, C. L. Switchable Solvents. Chem. Sci. 2011, 2, 609–614. DOI: 10.1039/c0sc00568a.
  • Bozyiğit, G. D.; Ayyıldız, M. F.; Chormey, D. S.; Engin, G. O.; Bakırdere, S. Development of a Sensitive and Accurate Method for the Simultaneous Determination of Selected Insecticides and Herbicide in Tap Water and Wastewater Samples Using Vortex-Assisted Switchable Solvent-Based Liquid-Phase Microextraction Prior to Determination by Gas Chromatography-Mass Spectrometry. Environ. Monit. Assess. 2020, 192, 1–8. DOI: 10.1007/s10661-020-08266-6.
  • Calvo-Flores, F. G.; Monteagudo-Arrebola, M. J.; Dobado, J. A.; & Isac-García, J. Green and bio-based solvents.Top. Curr. Chem. 2018, 376, 1–40.
  • Chum, H. L.; Koch, V. R.; Miller, L. L.; Osteryoung, R. A. Electrochemical Scrutiny of Organometallic Iron Complexes and Hexamethylbenzene in a Room Temperature Molten Salt. J. Am. Chem. Soc. 1975, 97, 3264–3265. DOI: 10.1021/ja00844a081.
  • Wilkes, J. S. A Short History of Ionic Liquids—From Molten Salts to Neoteric Solvents. Green Chem. 2002, 4, 73–80. DOI: 10.1039/b110838g.
  • Hurley, F. H.; Wier, T. P. Electrodeposition of Metals from Fused Quaternary Ammonium Salts. J. Electrochem. Soc. 1951, 98, 203. DOI: 10.1149/1.2778132.
  • Robinson, J.; Osteryoung, R. A. An Electrochemical and Spectroscopic Study of Some Aromatic Hydrocarbons in the Room Temperature Molten Salt System Aluminum Chloride-n-Butylpyridinium Chloride. J. Am. Chem. Soc. 1979, 101, 323–327. DOI: 10.1021/ja00496a008.
  • Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Dialkylimidazolium Chloroaluminate Melts: A New Class of Room-Temperature Ionic Liquids for Electrochemistry, Spectroscopy and Synthesis. Inorg. Chem. 1982, 21, 1263–1264. DOI: 10.1021/ic00133a078.
  • Clark, J. H.; Tavener, S. J. Alternative Solvents: Shades of Green. Org. Process Res. Dev. 2007, 11, 149–155. DOI: 10.1021/op060160g.
  • Kralisch, D.; Stark, A.; Körsten, S.; Kreisel, G.; Ondruschka, B. Energetic, Environmental and Economic Balances: Spice up Your Ionic Liquid Research Efficiency. Green Chem. 2005, 7, 301–309. DOI: 10.1039/b417167e.
  • Deetlefs, M.; Seddon, K. R. Improved Preparations of Ionic Liquids Using Microwave Irradiation. Green Chem. 2003, 5, 181–186. DOI: 10.1039/b300071k.
  • Namboodiri, V. V.; Varma, R. S. Solvent-Free Sonochemical Preparation of Ionic Liquids. Org. Lett. 2002, 4, 3161–3163. DOI: 10.1021/ol026608p.
  • Khadilkar, B. M.; Rebeiro, G. L. Microwave-Assisted Synthesis of Room-Temperature Ionic Liquid Precursor in Closed Vessel. Org. Process Res. Dev. 2002, 6, 826–828. DOI: 10.1021/op025551j.
  • Lévêque, J. M.; Luche, J. L.; Pétrier, C.; Roux, R.; Bonrath, W. An Improved Preparation of Ionic Liquids by Ultrasound. Green Chem. 2002, 4, 357–360. DOI: 10.1039/B203530H.
  • Xu, D. Q.; Liu, B. Y.; Luo, S. P.; Xu, Z. Y.; Shen, Y. C. A Novel and Eco-Friendly Method for the Preparation of Ionic Liquids. Synthesis 2003, 2003, 2626–2628. DOI: 10.1055/s-2003-42420.
  • Burrell, A. K.; Del Sesto, R. E.; Baker, S. N.; McCleskey, T. M.; Baker, G. A. The Large Scale Synthesis of Pure Imidazolium and Pyrrolidinium Ionic Liquids. Green Chem. 2007, 9, 449–454. DOI: 10.1039/b615950h.
  • Arain, M. B.; Kazi, T. G.; Jamali, M. K.; Jalbani, N.; Afridi, H. I.; Kandhro, G. A.; Ansari, R.; Sarfraz, R. A. Hazardous Impact of Toxic Metals on Tobacco Leaves Grown in Contaminated Soil by Ultrasonic Assisted Pseudo-Digestion: multivariate Study. J. Hazard. Mater. 2008, 155, 216–224. DOI: 10.1016/j.jhazmat.2007.11.049.
  • Laganà, A.; Bacaloni, A.; De Leva, I.; Faberi, A.; Fago, G.; Marino, A. Analytical Methodologies for Determining the Occurrence of Endocrine Disrupting Chemicals in Sewage Treatment Plants and Natural Waters. Anal. Chim. Acta 2004, 501, 79–88. DOI: 10.1016/j.aca.2003.09.020.
  • Žemberyová, M.; Barteková, J.; Závadská, M.; Šišoláková, M. Determination of Bioavailable Fractions of Zn, Cu, Ni, Pb and Cd in Soils and Sludges by Atomic Absorption Spectrometry. Talanta 2007, 71, 1661–1668. DOI: 10.1016/j.talanta.2006.07.055.
  • Miller, R. W.; Al-Khazraji, M. L.; Sisson, D. R.; Gardiner, D. T. Alfalfa Growth and Absorption of Cadmium and Zinc from Soils Amended with Sewage Sludge. Agri. Ecosyst. Environ. 1995, 53, 179–184. DOI: 10.1016/0167-8809(94)00559-W.
  • Manzoori, J. L.; Amjadi, M.; Abulhassani, J. Ultra-Trace Determination of Lead in Water and Food Samples by Using Ionic Liquid-Based Single Drop Microextraction-Electrothermal Atomic Absorption Spectrometry. Anal. Chim. Acta. 2009, 644, 48–52. DOI: 10.1016/j.aca.2009.04.029.
  • Carletto, J. S.; Luciano, R. M.; Bedendo, G. C.; Carasek, E. Simple Hollow Fiber Renewal Liquid Membrane Extraction Method for Pre-Concentration of Cd (II) in Environmental Samples and Detection by Flame Atomic Absorption Spectrometry. Anal. Chim. Acta. 2009, 638, 45–50. DOI: 10.1016/j.aca.2009.02.021.
  • Lemos, V. A.; da França, R. S.; Moreira, B. O. Cloud Point Extraction for Co and Ni Determination in Water Samples by Flame Atomic Absorption Spectrometry. Sep. Purif. Technol. 2007, 54, 349–354. DOI: 10.1016/j.seppur.2006.10.004.
  • Ratte, H. T. Bioaccumulation and toxicity of silver compounds: a review. Environ.Toxicol. Chem. 1999, 18, 89–108.
  • El-Shahawi, M. S.; Hamza, A.; Bashammakh, A. S.; Al-Saggaf, W. T. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants.Talanta 2010, 80, 1587–1597.
  • Nguyen, T. D.; Yu, J. E.; Lee, D. M.; Lee, G. H. A Multiresidue Method for the Determination of 107 Pesticides in Cabbage and Radish Using QuEChERS Sample Preparation Method and Gas Chromatography Mass Spectrometry. Food Chem. 2008, 110, 207–213. DOI: 10.1016/j.foodchem.2008.01.036.
  • Turkmen, M.; Turkmen, A.; Tepe, Y. Metal Contaminations in Five Fish Species from Black, Marmara, Aegean and Mediterranean Seas, Turkey. J. Chil. Chem. Soc. 2008, 53, 1424–1428. DOI: 10.4067/S0717-97072008000100021.
  • Li, Z.; Ma, Z.; van der Kuijp, T. J.; Yuan, Z.; Huang, L. A Review of Soil Heavy Metal Pollution from Mines in China: pollution and Health Risk Assessment. Sci. Total Environ. 2014, 468-469, 843–853. DOI: 10.1016/j.scitotenv.2013.08.090.
  • Tufail, M. A.; Iltaf, J.; Zaheer, T.; Tariq, L.; Amir, M. B.; Fatima, R.; Asbat, A.; Kabeer, T.; Fahad, M.; Naeem, H.; et al. Recent Advances in Bioremediation of Heavy Metals and Persistent Organic Pollutants: A Review. Sci. Total Environ. 2022, 850, 157961. DOI: 10.1016/j.scitotenv.2022.157961.
  • Vijayaraghavan, K.; Yun, Y. S. Competition of Reactive Red 4, Reactive Orange 16 and Basic Blue 3 during Biosorption of Reactive Blue 4 by Polysulfone-Immobilized Corynebacterium glutamicum. J. Hazard. Mater. 2008, 153, 478–486. DOI: 10.1016/j.jhazmat.2007.08.079.
  • Wang, C. C.; Li, J. R.; Lv, X. L.; Zhang, Y. Q.; Guo, G. Photocatalytic Organic Pollutants Degradation in Metal–Organic Frameworks. Energy Environ. Sci. 2014, 7, 2831–2867. DOI: 10.1039/C4EE01299B.
  • Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. DOI: 10.1016/j.jenvman.2010.11.011.
  • Hou, Z. L.; Huang, T.; Cai, C. Y.; Resheed, T.; Yu, C. Y.; Zhou, Y. F.; Yan, D. Y. Polymer Vesicle Sensor through the Self-Assembly of Hyperbranched Polymeric Ionic Liquids for the Detection of SO2 Derivatives. Chin. J. Polym. Sci. 2017, 35, 602–610. DOI: 10.1007/s10118-017-1921-x.
  • Chouhan, B.; Meena, P.; Poonar, N. Effect of heavy metal ions in water on human health. Int. J. Sci. Eng. Res, 2016, 4, 2015–2017.
  • Prüss-Üstün, A.; Bonjour, S.; Corvalán, C. The Impact of the Environment on Health by Country: A Meta-Synthesis. Environ. Health 2008, 7, 7. DOI: 10.1186/1476-069X-7-7.
  • Rasheed, T.; Nabeel, F.; Shafi, S. Chromogenic Vesicles for Aqueous Detection and Quantification of Hg2+/Cu2+ in Real Water Samples. J. Mol. Liq. 2019, 282, 489–498. DOI: 10.1016/j.molliq.2019.03.048.
  • Poornima, V.; Alexandar, V.; Iswariya, S.; Perumal, P. T.; Uma, T. S. Gold Nanoparticle-Based Nanosystems for the Colorimetric Detection of Hg 2+ Ion Contamination in the Environment. RSC Adv. 2016, 6, 46711–46722. DOI: 10.1039/C6RA04433F.
  • Nordberg, M.; Winblad, B.; Basun, H. Cadmium Concentration in Blood in an Elderly Urban Population. Biometals 2000, 13, 311–317. DOI: 10.1023/a:1009268123320.
  • Soylak, M.; Narin, I.; de Almeida Bezerra, M.; Ferreira, S. L. C. Factorial Design in the Optimization of Preconcentration Procedure for Lead Determination by FAAS. Talanta 2005, 65, 895–899. DOI: 10.1016/j.talanta.2004.08.011.
  • Khajeh, M.; Sanchooli, E. Silver Nanoparticles as a New Solid-Phase Adsorbent and Its Application to Preconcentration and Determination of Lead from Biological Samples. Biol. Trace Elem. Res. 2011, 143, 1856–1864. DOI: 10.1007/s12011-011-9013-1.
  • Tewari, P. K.; Singh, A. K. Preconcentration of Lead with Amberlite XAD-2 and Amberlite XAD-7 Based Chelating Resins for Its Determination by Flame Atomic Absorption Spectrometry. Talanta 2002, 56, 735–744. DOI: 10.1016/s0039-9140(01)00606-3.
  • Khan, M.; Soylak, M. Switchable Solvent Based Liquid Phase Microextraction of Mercury from Environmental Samples: A Green Aspect. RSC Adv. 2016, 6, 24968–24975. DOI: 10.1039/C5RA25384E.
  • Moghadam, A. G.; Rajabi, M.; Hemmati, M.; Asghari, A. Development of Effervescence-Assisted Liquid Phase Microextraction Based on Fatty Acid for Determination of Silver and Cobalt Ions Using Micro-Sampling Flame Atomic Absorption Spectrometry. J. Mol. Liq. 2017, 242, 1176–1183. DOI: 10.1016/j.molliq.2017.07.038.
  • Yilmaz, E.; Soylak, M. Switchable Polarity Solvent for Liquid Phase Microextraction of Cd (II) as Pyrrolidinedithiocarbamate Chelates from Environmental Samples. Anal. Chim. Acta. 2015, 886, 75–82. DOI: 10.1016/j.aca.2015.06.021.
  • Ullah, N.; Tuzen, M. A New Portable Switchable Hydrophilicity Microextraction Method for Determination of Vanadium in Microsampling Micropipette Tip Syringe System Couple with ETAAS. Talanta 2019, 194, 991–996. DOI: 10.1016/j.talanta.2018.10.052.
  • Yilmaz, E.; Soylak, M. Switchable Solvent-Based Liquid Phase Microextraction of Copper (II): Optimization and Application to Environmental Samples. J. Anal. At. Spectrom. 2015, 30, 1629–1635. DOI: 10.1039/C5JA00012B.
  • Soylak, M.; Khan, M.; Yilmaz, E. Switchable Solvent Based Liquid Phase Microextraction of Uranium in Environmental Samples: A Green Approach. Anal. Methods 2016, 8, 979–986. DOI: 10.1039/C5AY02631H.
  • Memon, Z. M.; Yilmaz, E.; Soylak, M. Switchable Solvent Based Green Liquid Phase Microextraction Method for Cobalt in Tobacco and Food Samples Prior to Flame Atomic Absorption Spectrometric Determination. J. Mol. Liq. 2017, 229, 459–464. DOI: 10.1016/j.molliq.2016.12.098.
  • Ezoddin, M.; Abdi, K.; Lamei, N. Development of Air Assisted Liquid Phase Microextraction Based on Switchable-Hydrophilicity Solvent for the Determination of Palladium in Environmental Samples. Talanta 2016, 153, 247–252. DOI: 10.1016/j.talanta.2016.03.018.
  • Naeemullah, N.; Shah, F.; Kazi, T. G.; Afridi, H. I.; Khan, A. R.; Arain, S. S.; Arain, M. S.; Panhwar, A. H. Switchable Dispersive Liquid–Liquid Microextraction for Lead Enrichment: A Green Alternative to Classical Extraction Techniques. Anal. Methods 2016, 8, 904–911. DOI: 10.1039/C5AY02882E.
  • Martinis, E. M.; Wuilloud, R. G. Cold Vapor Ionic Liquid-Assisted Headspace Single-Drop Microextraction: A Novel Preconcentration Technique for Mercury Species Determination in Complex Matrix Samples. J. Anal. At. Spectrom. 2010, 25, 1432–1439. DOI: 10.1039/c004678g.
  • Manzoori, J. L.; Amjadi, M.; Abulhassani, J. Ionic Liquid-Based Single Drop Microextraction Combined with Electrothermal Atomic Absorption Spectrometry for the Determination of Manganese in Water Samples. Talanta 2009, 77, 1539–1544. DOI: 10.1016/j.talanta.2008.09.045.
  • Martinis, E. M.; Bertón, P.; Altamirano, J. C.; Hakala, U.; Wuilloud, R. G. Tetradecyl (Trihexyl) Phosphonium Chloride Ionic Liquid Single-Drop Microextraction for Electrothermal Atomic Absorption Spectrometric Determination of Lead in Water Samples. Talanta 2010, 80, 2034–2040. DOI: 10.1016/j.talanta.2009.11.012.
  • Wen, X.; Deng, Q.; Guo, J. Ionic Liquid-Based Single Drop Microextraction of Ultra-Trace Copper in Food and Water Samples before Spectrophotometric Determination. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2011, 79, 1941–1945. DOI: 10.1016/j.saa.2011.05.095.
  • Wen, X.; Deng, Q.; Wang, J.; Yang, S.; Zhao, X. A New Coupling of Ionic Liquid Based-Single Drop Microextraction with Tungsten Coil Electrothermal Atomic Absorption Spectrometry. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2013, 105, 320–325. DOI: 10.1016/j.saa.2012.12.040.
  • Yousefi, S. R.; Ahmadi, S. J. Development a Robust Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction against High Concentration of Salt Combined with Flame Atomic Absorption Spectrometry Using Microsample Introduction System for Preconcentration and Determination of Cobalt in Water and Saline Samples. Microchim. Acta 2011, 172, 75–82. DOI: 10.1007/s00604-010-0406-1.
  • Abdolmohammad-Zadeh, H.; Sadeghi, G. H. Combination of Ionic Liquid-Based Dispersive Liquid–Liquid Micro-Extraction with Stopped-Flow Spectrofluorometry for the Pre-Concentration and Determination of Aluminum in Natural Waters, Fruit Juice and Food Samples. Talanta 2010, 81, 778–785. DOI: 10.1016/j.talanta.2010.01.012.
  • Khani, R.; Shemirani, F.; Majidi, B. Combination of Dispersive Liquid–Liquid Microextraction and Flame Atomic Absorption Spectrometry for Preconcentration and Determination of Copper in Water Samples. Desalination 2011, 266, 238–243. DOI: 10.1016/j.desal.2010.08.032.
  • Soylak, M.; Yilmaz, E. Ionic Liquid Dispersive Liquid–Liquid Microextraction of Lead as Pyrrolidinedithiocarbamate Chelate Prior to Its Flame Atomic Absorption Spectrometric Determination. Desalination 2011, 275, 297–301. DOI: 10.1016/j.desal.2011.03.008.
  • Ashkenani, H.; Taher, M. A. Use of Ionic Liquid in Simultaneous Microextraction Procedure for Determination of Gold and Silver by ETAAS. Microchem. J. 2012, 103, 185–190. DOI: 10.1016/j.microc.2012.03.005.
  • Berton, P.; Martinis, E. M.; Martinez, L. D.; Wuilloud, R. G. Room Temperature Ionic Liquid-Based Microextraction for Vanadium Species Separation and Determination in Water Samples by Electrothermal Atomic Absorption Spectrometry. Anal. Chim. Acta. 2009, 640, 40–46. DOI: 10.1016/j.aca.2009.03.028.
  • Berton, P.; Wuilloud, R. G. An Online Ionic Liquid-Based Microextraction System Coupled to Electrothermal Atomic Absorption Spectrometry for Cobalt Determination in Environmental Samples and Pharmaceutical Formulations. Anal. Methods 2011, 3, 664–672. DOI: 10.1039/c0ay00616e.
  • Ullah, N.; Tuzen, M.; Kazi, T. G.; Ali, J. Green and Deep Eutectic Solvent Microextraction Method for Faas Determination of Trace Level Cadmium in Water Samples Using Multivariate Strategic Approach. AtSpectrosc. 2016, 37, 244–251. DOI: 10.46770/AS.2016.06.005.
  • Karimi, M.; Shabani, A. M. H.; Dadfarnia, S. Deep Eutectic Solvent-Mediated Extraction for Ligand-Less Preconcentration of Lead and Cadmium from Environmental Samples Using Magnetic Nanoparticles. Microchim. Acta 2016, 183, 563–571. DOI: 10.1007/s00604-015-1671-9.
  • Arain, M. B.; Yilmaz, E.; Soylak, M. Deep Eutectic Solvent Based Ultrasonic Assisted Liquid Phase Microextraction for the FAAS Determination of Cobalt. J. Mol. Liq. 2016, 224, 538–543. DOI: 10.1016/j.molliq.2016.10.005.
  • Yilmaz, E.; Soylak, M. Ultrasound Assisted-Deep Eutectic Solvent Based on Emulsification Liquid Phase Microextraction Combined with Microsample Injection Flame Atomic Absorption Spectrometry for Valence Speciation of Chromium (III/VI) in Environmental Samples. Talanta 2016, 160, 680–685. DOI: 10.1016/j.talanta.2016.08.001.
  • Yilmaz, E.; Soylak, M. Ultrasound Assisted-Deep Eutectic Solvent Extraction of Iron from Sheep, Bovine and Chicken Liver Samples. Talanta 2015, 136, 170–173. DOI: 10.1016/j.talanta.2014.12.034.
  • Bağda, E.; Altundağ, H.; Soylak, M. Highly Simple Deep Eutectic Solvent Extraction of Manganese in Vegetable Samples Prior to Its ICP-OES Analysis. Biol. Trace Elem. Res. 2017, 179, 334–339. DOI: 10.1007/s12011-017-0967-5.
  • Kapukıran, F.; Fırat, M.; Chormey, D. S.; Bakırdere, S.; Özdoğan, N. Accurate and Sensitive Determination Method for Procymidone and Chlorflurenol in Municipal Wastewater, Medical Wastewater and Irrigation Canal Water by GC–MS after Vortex Assisted Switchable Solvent Liquid Phase Microextraction. Bull. Environ. Contam. Toxicol. 2019, 102, 848–853. DOI: 10.1007/s00128-019-02618-w.
  • Di, X.; Wang, X.; Liu, Y.; Guo, X.; Di, X. Solid-Phase Extraction Coupled with Switchable Hydrophilicity Solvent-Based Homogeneous Liquid–Liquid Microextraction for Chloramphenicol Enrichment in Environmental Water Samples: A Novel Alternative to Classical Extraction Techniques. Anal. Bioanal. Chem. 2019, 411, 803–812. DOI: 10.1007/s00216-018-1486-8.
  • Shishov, A.; Sviridov, I.; Timofeeva, I.; Chibisova, N.; Moskvin, L.; Bulatov, A. An Effervescence Tablet-Assisted Switchable Solvent-Based Microextraction: On-Site Preconcentration of Steroid Hormones in Water Samples Followed by HPLC-UV Determination. J. Mol. Liq. 2017, 247, 246–253. DOI: 10.1016/j.molliq.2017.09.120.
  • Erarpat, S.; Bodur, S.; Chormey, D. S.; Bakırdere, S. Switchable Solvent Liquid-Phase Microextraction-Gas Chromatography-Quadrupole Isotope Dilution Mass Spectrometry for the Determination of 4 n Nonylphenol in Municipal Wastewater. Microchem. J. 2019, 144, 1–5. DOI: 10.1016/j.microc.2018.08.049.
  • Wang, X.; Gao, M.; Zhang, Z.; Gu, H.; Liu, T.; Yu, N.; Wang, X.; Wang, H. Development of CO2-Mediated Switchable Hydrophilicity Solvent-Based Microextraction Combined with HPLC-UV for the Determination of Bisphenols in Foods and Drinks. Food Anal. Methods 2018, 11, 2093–2104. DOI: 10.1007/s12161-018-1187-0.
  • Shahraki, S.; Ahmar, H.; Nejati-Yazdinejad, M. Electrochemical Determination of Nitrazepam by Switchable Solvent Based Liquid-Liquid Microextraction Combined with Differential Pulse Voltammetry. Microchem. J. 2018, 142, 229–235. DOI: 10.1016/j.microc.2018.07.003.
  • Erarpat, S.; Bodur, S.; Öztürk Er, E.; Bakırdere, S. Combination of Ultrasound‐Assisted Ethyl Chloroformate Derivatization and Switchable Solvent Liquid‐Phase Microextraction for the Sensitive Determination of l‐Methionine in Human Plasma by GC–MS. J. Sep. Sci. 2020, 43, 1100–1106. DOI: 10.1002/jssc.201901078.
  • Di, X.; Wang, X.; Liu, Y.; Guo, X.; Di, X. Microwave Assisted Extraction in Combination with Solid Phase Purification and Switchable Hydrophilicity Solvent-Based Homogeneous Liquid-Liquid Microextraction for the Determination of Sulfonamides in Chicken Meat. J. Chromatogr. B 2019, 1118-1119, 109–115. DOI: 10.1016/j.jchromb.2019.04.036.
  • Liu, J. F.; Jiang, G. B.; Chi, Y. G.; Cai, Y. Q.; Zhou, Q. X.; Hu, J. T. Use of Ionic Liquids for Liquid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons. Anal. Chem. 2003, 75, 5870–5876. DOI: 10.1021/ac034506m.
  • Aguilera-Herrador, E.; Lucena, R.; Cardenas, S.; Valcárcel, M. Direct Coupling of Ionic Liquid Based Single-Drop Microextraction and GC/MS. Anal. Chem. 2008, 80, 793–800. DOI: 10.1021/ac071555g.
  • Ye, C.; Zhou, Q.; Wang, X.; Xiao, J. Determination of Phenols in Environmental Water Samples by Ionic Liquid‐Based Headspace Liquid‐Phase Microextraction Coupled with High‐Performance Liquid Chromatography. J. Sep. Sci. 2007, 30, 42–47. DOI: 10.1002/jssc.200600256.
  • Liu, J. F.; Chi, Y. G.; Jiang, G. B.; Tai, C.; Peng, J. F.; Hu, J. T. Ionic Liquid-Based Liquid-Phase Microextraction, a New Sample Enrichment Procedure for Liquid Chromatography. J. Chromatogr. A 2004, 1026, 143–147. DOI: 10.1016/j.chroma.2003.11.005.
  • Liu, J. F.; Peng, J. F.; Chi, Y. G.; Jiang, G. B. Determination of Formaldehyde in Shiitake Mushroom by Ionic Liquid-Based Liquid-Phase Microextraction Coupled with Liquid Chromatography. Talanta 2005, 65, 705–709. DOI: 10.1016/j.talanta.2004.07.037.
  • Vidal, L.; Chisvert, A.; Canals, A.; Salvador, A. Sensitive Determination of Free Benzophenone-3 in Human Urine Samples Based on an Ionic Liquid as Extractant Phase in Single-Drop Microextraction Prior to Liquid Chromatography Analysis. J. Chromatogr. A 2007, 1174, 95–103. DOI: 10.1016/j.chroma.2007.07.077.
  • Fan, C.; Liang, Y.; Dong, H.; Ding, G.; Zhang, W.; Tang, G.; Yang, J.; Kong, D.; Wang, D.; Cao, Y. In-situ ionic liquid dispersive liquid-liquid microextraction using a new anion-exchange reagent combined Fe3O4 magnetic nanoparticles for determination of pyrethroid pesticides in water samples.Anal. Chim. Acta 2017, 975, 20–29.
  • Zhao, R. S.; Wang, S. S.; Cheng, C. G.; Zhang, L. L.; Wang, X. Rapid Enrichment and Sensitive Determination of Tetrabromobisphenol a in Environmental Water Samples with Ionic Liquid Dispersive Liquid-Phase Microextraction Prior to HPLC–ESI-MS–MS. Chromatographia 2011, 73, 793–797. DOI: 10.1007/s10337-010-1845-x.
  • Gu, T.; Zhang, M.; Tan, T.; Chen, J.; Li, Z.; Zhang, Q.; Qiu, H. Deep Eutectic Solvents as Novel Extraction Media for Phenolic Compounds from Model Oil. Chem. Commun. (Camb) 2014, 50, 11749–11752. DOI: 10.1039/c4cc04661g.
  • Helalat–Nezhad, Z.; Ghanemi, K.; Fallah–Mehrjardi, M. Dissolution of Biological Samples in Deep Eutectic Solvents: An Approach for Extraction of Polycyclic Aromatic Hydrocarbons Followed by Liquid Chromatography-Fluorescence Detection. J. Chromatogr. A 2015, 1394, 46–53. DOI: 10.1016/j.chroma.2015.03.053.
  • Bi, W.; Tian, M.; Row, K. H. Evaluation of Alcohol-Based Deep Eutectic Solvent in Extraction and Determination of Flavonoids with Response Surface Methodology Optimization. J. Chromatogr. A 2013, 1285, 22–30. DOI: 10.1016/j.chroma.2013.02.041.
  • Lamei, N.; Ezoddin, M.; Abdi, K. Air Assisted Emulsification Liquid-Liquid Microextraction Based on Deep Eutectic Solvent for Preconcentration of Methadone in Water and Biological Samples. Talanta 2017, 165, 176–181. DOI: 10.1016/j.talanta.2016.11.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.