250
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Diuretics in Different Samples: Update on the Pretreatment and Analysis Techniques

, , , , , , ORCID Icon & show all

References

  • Hoorn, E. J.; Ellison, D. H. Diuretic Resistance. Am. J. Kidney Dis. 2017, 69, 136–142. DOI: 10.1053/j.ajkd.2016.08.027.
  • Sarafidis, P. A.; Georgianos, P. I.; Lasaridis, A. N. Diuretics in Clinical Practice. Part I: mechanisms of Action, Pharmacological Effects and Clinical Indications of Diuretic Compounds. Expert Opin. Drug Saf. 2010, 9, 243–257. DOI: 10.1517/14740330903499240.
  • Moraes, J. T.; Salamanca-Neto, C. A. R.; Švorc, Ľ.; Sartori, E. R. Advanced Sensing Performance towards Simultaneous Determination of Quaternary Mixture of Antihypertensives Using Boron-Doped Diamond Electrode. Microchem. J. 2017, 134, 173–180. DOI: 10.1016/j.microc.2017.06.001.
  • De Wilde, L.; Roels, K.; Polet, M.; Van Eenoo, P.; Deventer, K. Identification and Confirmation of Diuretics and Masking Agents in Urine by Turbulent Flow Online Solid-Phase Extraction Coupled with Liquid Chromatography-Triple Quadrupole Mass Spectrometry for Doping Control. J. Chromatogr. A 2018, 1579, 31–40. DOI: 10.1016/j.chroma.2018.10.032.
  • Nan, P. Detection of Diuretic Doping by Capillary Electrophoresis and Electrochemical Technology: A Mini-Review. CPA. 2022, 18, 34–42. DOI: 10.2174/1573412917999201217163607.
  • Tao, Y.; Wang, S.; Wang, L.; Song, M.; Hang, T. Simultaneous Determination of Indapamide, Perindopril and Perindoprilat in Human Plasma or Whole Blood by UPLC-MS/MS and Its Pharmacokinetic Application. J. Pharm. Anal. 2018, 8, 333–340. DOI: 10.1016/j.jpha.2018.05.004.
  • Hoshikawa, K.; Naito, T.; Saotome, M.; Maekawa, Y.; Kawakami, J. Validated Liquid Chromatography Coupled to Tandem Mass Spectrometry Method for Simultaneous Quantitation of Tolvaptan and Its Five Major Metabolites in Human Plasma. Ann. Clin. Biochem. 2019, 56, 387–396. DOI: 10.1177/0004563219827045.
  • Zhang, L.; Wang, R.; Tian, Y.; Zhang, Z. Determination of Torasemide in Human Plasma and Its Bioequivalence Study by High-Performance Liquid Chromatography with Electrospray Ionization Tandem Mass Spectrometry. J. Pharm. Anal. 2016, 6, 95–102. DOI: 10.1016/j.jpha.2015.11.002.
  • Vojta, J.; Jedlicka, A.; Coufal, P.; Janeckova, L. A New, Rapid, Stability-Indicating UPLC Method for Separation and Determination of Impurities in Amlodipine Besylate, Valsartan and Hydrochlorothiazide in Their Combined Tablet Dosage Form. J. Pharm. Biomed. Anal. 2015, 109, 36–44. DOI: 10.1016/j.jpba.2015.01.059.
  • Kumar, A.; Dwivedi, S. P.; Prasad, T. Method Validation for Simultaneous Quantification of Olmesartan and Hydrochlorothiazide in Human Plasma Using LC-MS/MS and Its Application through Bioequivalence Study in Healthy Volunteers. Front. Pharmacol. 2019, 10, 810. DOI: 10.3389/fphar.2019.00810.
  • Patel, J. R.; Pethani, T. M.; Vachhani, A. N.; Sheth, N. R.; Dudhrejiya, A. V. Development and Validation of Bioanalytical Method for Simultaneous Estimation of Ramipril and Hydrochlorothiazide in Human Plasma Using Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 970, 53–59. DOI: 10.1016/j.jchromb.2014.08.023.
  • Moola, K. S.; Challa, B. S. R.; Bannoth, C. K. Quantification of Tolvaptan in Rabbit Plasma by LC-MS/MS: Application to a Pharmacokinetic Study. J. Pharm. Anal. 2015, 5, 371–377. DOI: 10.1016/j.jpha.2014.09.001.
  • Ramakrishna, R.; Puttrevu, S. K.; Bhateria, M.; Bala, V.; Sharma, V. L.; Bhatta, R. S. Simultaneous Determination of Azilsartan and Chlorthalidone in Rat and Human Plasma by Liquid Chromatography-Electrospray Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 990, 185–197. DOI: 10.1016/j.jchromb.2015.03.018.
  • Marube, L. C.; Caldas, S. S.; Soares, K. L.; Primel, E. G. Dispersive Liquid-Liquid Microextraction with Solidification of Floating Organic Droplets for Simultaneous Extraction of Pesticides, Pharmaceuticals and Personal Care Products. Microchim. Acta 2015, 182, 1765–1774. DOI: 10.1007/s00604-015-1507-7.
  • Ahmad Panahi, H.; Ejlali, M.; Chabouk, M. Two-Phase and Three-Phase Liquid-Phase Microextraction of Hydrochlorothiazide and Triamterene in Urine Samples. Biomed. Chromatogr. 2016, 30, 1022–1028. DOI: 10.1002/bmc.3645.
  • Ho, T.-T.; Li, Z.-G.; Lin, H.-Y.; Lee, M.-R. Determination of Diuretics in Urine Using Immobilized Multi-Walled Carbon Nanotubes in Hollow Fiber Liquid-Phase Microextraction Combined with Liquid Chromatography-Tandem Mass Spectrometry. J. Chinese Chemical Soc. 2013, 60, 1033–1042. DOI: 10.1002/jccs.201200603.
  • Wang, X. H.; Xie, L. F.; Dong, Q.; Liu, H. L.; Huang, Y. P.; Liu, Z. S. Synthesis of Monodisperse Molecularly Imprinted Microspheres with Multi-Recognition Ability via Precipitation Polymerization for the Selective Extraction of Cyromazine, Melamine, Triamterene and Trimethoprim. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 1007, 127–131. DOI: 10.1016/j.jchromb.2015.11.009.
  • Yilmaz, H.; Basan, H. Preconcentration of Indapamide from Human Urine Using Molecularly Imprinted Solid-Phase Extraction. J. Sep. Sci. 2015, 38, 3090–3095. DOI: 10.1002/jssc.201500427.
  • Liu, M.; Lv, B.; Jiang, H.; Yuan, P.; Zhu, H.; Gao, B. Determination of Diuretics in Human Urine Using HPLC Coupled with Magnetic Solid-Phase Extraction Based on a Metal-Organic Framework. Biomed. Chromatogr 2020, 34, e4876.
  • Bagheri, H.; Khanipour, P.; Asgari, S. Magnetic Field Assisted mu-Solid Phase Extraction of anti-Inflammatory and Loop Diuretic Drugs by Modified Polybutylene Terephthalate Nanofibers. Anal. Chim. Acta. 2016, 934, 88–97. DOI: 10.1016/j.aca.2016.06.003.
  • Arabi, M.; Ghaedi, M.; Ostovan, A. Development of a Lower Toxic Approach Based on Green Synthesis of Water-Compatible Molecularly Imprinted Nanoparticles for the Extraction of Hydrochlorothiazide from Human Urine. ACS Sustain. Chem. Eng. 2017, 5, 3775–3785. DOI: 10.1021/acssuschemeng.6b02615.
  • Almeida, C.; Ahmad, S. M.; Nogueira, J. M. Bar Adsorptive Microextraction Technique – Application for the Determination of Pharmaceuticals in Real Matrices. Anal. Bioanal. Chem. 2017, 409, 2093–2106. DOI: 10.1007/s00216-016-0156-y.
  • Al-Hashimi, N. N.; Aleih, H. A.; Al-Zoubi, N. M.; Hamed, S. H. Solid Bar Microextraction and HPLC/DAD Determination of Diuretic Drugs and Its Application to Spiked Human Urine. Jordan J. Pharmaceut. Sci. 2018, 11, 39–53.
  • Zheng, X.; Gao, H.; Cui, X.; Zhang, Y.; Chen, R.; Wang, Y.; Lauruol, P.; Wang, H. Simultaneous Determination of Indapamide, Perindopril and Its Active Metabolite Perindoprilat in Human Plasma Using UPLC-MS/MS Method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1169, 122585. DOI: 10.1016/j.jchromb.2021.122585.
  • Pandya, J. J.; Bhatt, N. M.; Chavada, V. D.; Sharma, P.; Sanyal, M.; Shrivastav, P. S. Simultaneous Analysis of Aliskiren and Hydrochlorothiazide in Pharmaceutical Preparations and Spiked Human Plasma by HPTLC. J. Taibah Univ. Sci. 2017, 11, 667–676. DOI: 10.1016/j.jtusci.2016.05.001.
  • Shah, P. A.; Sharma, P.; Shah, J. V.; Sanyal, M.; Shrivastav, P. S. Simultaneous Analysis of Losartan, Its Active Metabolite, and Hydrochlorothiazide in Human Plasma by a UPLC-MS/MS Method. Turk. J. Chem. 2015, 39, 714–733. DOI: 10.3906/kim-1502-4.
  • Shah, J. V.; Shah, P. A.; Shah, P. V.; Sanyal, M.; Shrivastav, P. S. Fast and Sensitive LC-MS/MS Method for the Simultaneous Determination of Lisinopril and Hydrochlorothiazide in Human Plasma. J. Pharm. Anal. 2017, 7, 163–169. DOI: 10.1016/j.jpha.2016.11.004.
  • Shah, J. V.; Shah, P. A.; Sanyal, M.; Shrivastav, P. S. Simultaneous Quantification of Amiloride and Hydrochlorothiazide in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry. J. Pharm. Anal. 2017, 7, 288–296. DOI: 10.1016/j.jpha.2017.03.007.
  • Patel, B.; Jangid, A. G.; Suhagia, B. N.; Desai, N. Challenges in Simultaneous Determination of Hydrochlorothiazide and Ramipril in Human Plasma: Application to a Bioequivalence Study. J. Chromatogr. Sci. 2018, 56, 867–878. DOI: 10.1093/chromsci/bmy055.
  • Palakeeti, B.; Rao, P. N.; Chinta, J. P. Development of New Stability Indicating UPLC-UV Method for the Extraction and Quantification of Perindopril and Indapamide from Human Plasma. Futur. J. Pharm. Sci. 2021, 7, 77. DOI: 10.1186/s43094-021-00220-8.
  • Pandya, J. J.; Sanyal, M.; Shrivastav, P. S. Simultaneous Densitometric Analysis of Amlodipine, Hydrochlorothiazide, Lisinopril, and Valsartan by HPTLC in Pharmaceutical Formulations and Human Plasma. J. Liquid Chromatogr. Related Technol. 2017, 40, 467–478. DOI: 10.1080/10826076.2017.1324482.
  • Jiang, J.; Tian, L.; Huang, Y.; Yan, Y.; Li, Y. A Rapid and Sensitive LC-MS/MS-ESI Method for the Determination of Tolvaptan and Its Two Main Metabolites in Human Plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1027, 158–164. DOI: 10.1016/j.jchromb.2016.03.032.
  • González Mendia, O.; Blanco, M. E.; Rico, E.; Alonso, M. L.; Maguregui, M. I.; Alonso, R. M. Efficient Method Development and Validation for the Determination of Cardiovascular Drugs in Human Plasma by SPE–UHPLC–PDA–FLD. Chromatographia 2017, 80, 605–615. DOI: 10.1007/s10337-017-3274-6.
  • ALOthman, A. L.; Alsheetan, K. M.; Aboul-Enein, H. Y.; Ali, I. Applications of Shun Shell Column and Nanocomposite Sorbent for Analysis of Eleven anti-Hypertensive in Human Plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1146, 122125. DOI: 10.1016/j.jchromb.2020.122125.
  • Chen, X.; Teng, W.; Miao, L.; Wu, Y.; Chen, D.; Huang, L.; Pan, J.; Wang, N.; Fang, J.; Liang, Y. Simultaneous Analysis of Hydrochlorothiazide, Triamterene and Reserpine in Rat Plasma by HPLC and DSPE. Chromatographia 2016, 79, 451–456. DOI: 10.1007/s10337-016-3060-x.
  • Wang, X. H.; Zhang, J.; Peng, C.; Dong, Q.; Huang, Y. P.; Liu, Z. S. Comparison of Multi-Recognition Molecularly Imprinted Polymers for Recognition of Melamine, Cyromazine, Triamterene, and Trimethoprim. Anal. Bioanal. Chem. 2015, 407, 7145–7155. DOI: 10.1007/s00216-015-8878-9.
  • Elfadil, D.; Palmieri, S.; Della Pelle, F.; Sergi, M.; Amine, A.; Compagnone, D. Enzyme Inhibition Coupled to Molecularly Imprinted Polymers for Acetazolamide Determination in Biological Samples. Talanta 2022, 240, 123195. DOI: 10.1016/j.talanta.2021.123195.
  • Zeng, L.; Li, Y.; Wu, X.; Zhang, J.; Xie, J.; Sun, C. Simultaneous Determination of 10 Adulterants in Antihypertensive Functional Foods Using Multi-Walled Carbon Nanotubes-Dispersive Solid-Phase Extraction Coupled with High Performance Liquid Chromatography. J. Chromatogr. Sci. 2015, 53, 1611–1621. DOI: 10.1093/chromsci/bmv031.
  • Wang, Y.; Jie, Y.; Hu, Q.; Yang, Y.; Ye, Y.; Zou, S.; Xu, J.; Ouyang, G. A Polymeric Solid-Phase Microextraction Fiber for the Detection of Pharmaceuticals in Water Samples. J. Chromatogr. A 2020, 1623, 461171. DOI: 10.1016/j.chroma.2020.461171.
  • Chen, D.; Xu, Q.; Lu, Y.; Mao, Y.; Yang, Y.; Tu, F.; Xu, J.; Chen, Y.; Jiang, X.; Lu, J.; Yang, Z. The QuEChERS Method Coupled with High-Performance Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Diuretics in Animal-Derived Foods. J. Food Compos. Anal. 2021, 101, 103965. DOI: 10.1016/j.jfca.2021.103965.
  • Helfer, A. G.; Michely, J. A.; Weber, A. A.; Meyer, M. R.; Maurer, H. H. Orbitrap Technology for Comprehensive Metabolite-Based Liquid Chromatographic-High Resolution-Tandem Mass Spectrometric Urine Drug Screening - Exemplified for Cardiovascular Drugs. Anal. Chim. Acta. 2015, 891, 221–233. DOI: 10.1016/j.aca.2015.08.018.
  • Youssef, A. O. A Highly Selective and Sensitive Tb(3+)-Acetylacetone Photo Probe for the Assessment of Acetazolamide in Pharmaceutical and Serum Samples. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2018, 195, 47–52. DOI: 10.1016/j.saa.2018.01.047.
  • Muller, L. S.; Moreira, A. P. L.; Muratt, D. T.; Viana, C.; de Carvalho, L. M. An Ultra-High Performance Liquid Chromatography-Electrospray Tandem Mass Spectrometric Method for Screening and Simultaneous Determination of Anorexic, Anxiolytic, Antidepressant, Diuretic, Laxative and Stimulant Drugs in Dietary Supplements Marketed for Weight Loss. J. Chromatogr. Sci. 2019, 57, 528–540. DOI: 10.1093/chromsci/bmz025.
  • Vinatoru, M.; Mason, T. J.; Calinescu, I. Ultrasonically Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE) of Functional Compounds from Plant Materials. TrAC, Trends Anal. Chem. 2017, 97, 159–178. DOI: 10.1016/j.trac.2017.09.002.
  • Huerta, B.; Jakimska, A.; Llorca, M.; Ruhi, A.; Margoutidis, G.; Acuna, V.; Sabater, S.; Rodriguez-Mozaz, S.; Barcelo, D. Development of an Extraction and Purification Method for the Determination of Multi-Class Pharmaceuticals and Endocrine Disruptors in Freshwater Invertebrates. Talanta 2015, 132, 373–381. DOI: 10.1016/j.talanta.2014.09.017.
  • Li, W.; Jian, W.; Fu, Y. Basic Sample Preparation Techniques in LC‐MS Bioanalysis: Protein Precipitation, Liquid–Liquid Extraction, and Solid‐Phase Extraction. Sample Prep. LC‐MS Bioanal. 2019, 1, 1–30. DOI: 10.1002/9781119274315.
  • Elkady, E. F.; Mandour, A. A.; Algethami, F. K.; Aboelwafa, A. A.; Farouk, F. Sequential Liquid-Liquid Extraction Coupled to LC-MS/MS for Simultaneous Determination of Amlodipine, Olmesartan and Hydrochlorothiazide in Plasma Samples: Application to Pharmacokinetic Studies. Microchem. J. 2020, 155, 104757. DOI: 10.1016/j.microc.2020.104757.
  • Kojro, G.; Wroczyński, P. Cloud Point Extraction in the Determination of Drugs in Biological Matrices. J. Chromatogr. Sci. 2020, 58, 151–162. DOI: 10.1093/chromsci/bmz064.
  • Mahdi, M. I.; Kadhim, K. H. Novel Approach and Cloud Point Extraction Method for Determination of Acetazolamide Drug. Indian J. Forensic Med. Toxicol. 2020, 14(2), 586–592. DOI: 10.37506/ijfmt.v14i2.2915
  • Jeannot, M. A.; Cantwell, F. F. Solvent Microextraction into a Single Drop. Anal. Chem. 1996, 68, 2236–2240. DOI: 10.1021/ac960042z.
  • Bello-López, M. Á.; Ramos-Payán, M.; Ocaña-González, J. A.; Fernández-Torres, R.; Callejón-Mochón, M. Analytical Applications of Hollow Fiber Liquid Phase Microextraction (HF-LPME): A Review. Anal. Lett. 2012, 45, 804–830. DOI: 10.1080/00032719.2012.655676.
  • Pandit, U. J.; Khan, I.; Wankar, S.; Raj, K. K.; Limaye, S. N. Development of Electrochemical Method for Determination of Tolvaptan at MWCNT/CPE in Pharmaceutical Preparations and Human Biological Fluids. Anal. Chem. Lett. 2015, 5, 338–350. DOI: 10.1080/22297928.2016.1140073.
  • Varshney, K. Carbon Nanotubes: A Review on Synthesis, Properties and Applications. Int. J. Eng. Res. General Sci. 2014, 2, 660.
  • Saraji, M.; Boroujeni, M. K. Recent Developments in Dispersive Liquid-Liquid Microextraction. Anal. Bioanal. Chem. 2014, 406, 2027–2066. DOI: 10.1007/s00216-013-7467-z.
  • Han, D.; Tang, B.; Row, K. H. Determination of Diuretic Drugs in Human Urine Using Dispersive Liquid–Liquid Microextraction by High Performance Liquid Chromatography. J. Liquid Chromatogr. Related Technol. 2013, 36, 2069–2081. DOI: 10.1080/10826076.2012.712931.
  • Ghambarian, M.; Yamini, Y.; Esrafili, A. Liquid-Phase Microextraction Based on Solidified Floating Drops of Organic Solvents. Microchim. Acta 2013, 180, 519–535. DOI: 10.1007/s00604-013-0969-8.
  • Moradi, M.; Yamini, Y.; Ebrahimpour, B. Emulsion-Based Liquid-Phase Microextraction: A Review. J. Iran. Chem. Soc. 2014, 11, 1087–1101. DOI: 10.1007/s13738-013-0376-4.
  • Regueiro, J.; Llompart, M.; Garcia-Jares, C.; Garcia-Monteagudo, J. C.; Cela, R. Ultrasound-Assisted Emulsification-Microextraction of Emergent Contaminants and Pesticides in Environmental Waters. J. Chromatogr. A 2008, 1190, 27–38. DOI: 10.1016/j.chroma.2008.02.091.
  • Ramkumar, A.; Ponnusamy, V. K.; Jen, J.-F. Rapid Determination of Indapamide in Human Urine Using Novel Low-Density Solvent Based Ultrasound Assisted Emulsification Microextraction Coupled with High Performance Liquid Chromatography-Variable Wavelength Detection. Anal. Methods 2013, 5, 2572. DOI: 10.1039/c3ay40187a.
  • Bian, Y.; Zhang, Y.; Zhou, Y.; Li, G.-H.; Feng, X.-S. Progress in the Pretreatment and Analysis of Flavonoids: An Update since 2013. Sep. Purif. Rev. 2022, 51, 11–37. DOI: 10.1080/15422119.2020.1801469.
  • Mahrouse, M. A. Simultaneous Ultraperformance Liquid Chromatography/Tandem Mass Spectrometry Determination of Four Antihypertensive Drugs in Human Plasma Using Hydrophilic-Lipophilic Balanced Reversed-Phase Sorbents Sample Preparation Protocol. Biomed. Chromatogr. 2018, 32, e4362. DOI: 10.1002/bmc.4362.
  • Hudari, F. F.; Zanoni, M. V. B. A Glassy Carbon Electrode Modified with Reduced Graphene Oxide for Sensitive Determination of Bumetanide in Urine at Levels Required for Doping Analysis. Microchim. Acta 2017, 184, 4117–4124. DOI: 10.1007/s00604-017-2443-5.
  • Narapusetti, A.; Sundar Bethanabhatla, S.; Sockalingam, A.; Rao Pilli, N. LC–MS/MS Assay for Acetazolamide, a Carbonic Anhydrase Inhibitor in Human Plasma and Its Clinical Application. J. Young Pharm. 2015, 7, 438–445. DOI: 10.5530/jyp.2015.4s.5.
  • Dubey, R.; Ghosh, M. Simultaneous Determination and Pharmacokinetic Study of Losartan, Losartan Carboxylic Acid, Ramipril, Ramiprilat, and Hydrochlorothiazide in Rat Plasma by a Liquid Chromatography/Tandem Mass Spectrometry Method. Sci. Pharm. 2015, 83, 107–124. DOI: 10.3797/scipharm.1410-15.
  • Gong, C. B.; Wei, Y. B.; Liu, L. T.; Zheng, A. X.; Yang, Y. H.; Chow, C. F.; Tang, Q. Photoresponsive Hollow Molecularly Imprinted Polymer for Trace Triamterene in Biological Samples. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 568–578. DOI: 10.1016/j.msec.2017.03.135.
  • Farnoudian-Habibi, A.; Kangari, S.; Massoumi, B.; Jaymand, M. Determination of Losartan Potassium in the Presence of Hydrochlorothiazide via a Combination of Magnetic Solid Phase Extraction and Fluorometry Techniques in Urine Samples. RSC Adv. 2015, 5, 102895–102903. DOI: 10.1039/C5RA20117A.
  • Bradshaw, D.; Garai, A.; Huo, J. Metal–Organic Framework Growth at Functional Interfaces: thin Films and Composites for Diverse Applications. Chem. Soc. Rev. 2012, 41, 2344–2381. DOI: 10.1039/c1cs15276a.
  • Seidi, S.; Tajik, M.; Baharfar, M.; Rezazadeh, M. Micro Solid-Phase Extraction (Pipette Tip and Spin Column) and Thin Film Solid-Phase Microextraction: Miniaturized Concepts for Chromatographic Analysis. TrAC, Trends Anal. Chem. 2019, 118, 810–827. DOI: 10.1016/j.trac.2019.06.036.
  • Ścigalski, P.; Kosobucki, P. Recent Materials Developed for Dispersive Solid Phase Extraction. Molecules 2020, 25, 4869. DOI: 10.3390/molecules25214869.
  • Buszewski, B.; Szultka, M. Past, Present, and Future of Solid Phase Extraction: A Review. Crit. Rev. Anal. Chem. 2012, 42, 198–213. DOI: 10.1080/07373937.2011.645413.
  • Fahad Alajmi, M.; Hussain, A.; Noeman Taqui, S.; Ali, I. Solid Phase Micro Membrane Tip Extraction and Capillary Electrophoresis of Metformin in Urine Samples. CPA 2017, 13, 403. DOI: 10.2174/1573412912666160804124750.
  • Huang, S.; Chen, G.; Ye, N.; Kou, X.; Zhu, F.; Shen, J.; Ouyang, G. Solid-Phase Microextraction: An Appealing Alternative for the Determination of Endogenous substances – A Review. Anal. Chim. Acta. 2019, 1077, 67–86. DOI: 10.1016/j.aca.2019.05.054.
  • Yu, M.-Y.; Yang, X.-Q.; Fan, R.; Zheng, Y.-K.; Shi, J.-B.; Zheng, Q. Non-Target Screening Analysis of Volatile Organic Compounds in Drinking Water by Headspace-Solid Phase Microextraction Gas Chromatography-Mass Spectrometry. Chin. J. Anal. Chem. 2020, 48, 1228–1235. DOI: 10.1016/S1872-2040(20)60044-5.
  • Sobczak, Ł.; Kołodziej, D.; Goryński, K. Modifying Current Thin-Film Microextraction (TFME) Solutions for Analyzing Prohibited Substances: Evaluating New Coatings Using Liquid Chromatography. J. Pharm. Anal. 2022, 12, 470–480. DOI: 10.1016/j.jpha.2021.12.007.
  • Reyes-Garces, N.; Bojko, B.; Pawliszyn, J. High Throughput Quantification of Prohibited Substances in Plasma Using Thin Film Solid Phase Microextraction. J. Chromatogr. A 2014, 1374, 40–49. DOI: 10.1016/j.chroma.2014.11.047.
  • Al-Hadithi, N.; Saad, B.; Grote, M. A Solid Bar Microextraction Method for the Liquid Chromatographic Determination of Trace Diclofenac, Ibuprofen and Carbamazepine in River Water. Microchim. Acta 2011, 172, 31–37. DOI: 10.1007/s00604-010-0463-5.
  • Neng, N.; Silva, A.; Nogueira, J. Adsorptive Micro-Extraction Techniques—Novel Analytical Tools for Trace Levels of Polar Solutes in Aqueous Media. J. Chromatogr. A 2010, 1217, 7303–7310. DOI: 10.1016/j.chroma.2010.09.048.
  • Ide, A. H.; Nogueira, J. M. F. New-Generation Bar Adsorptive Microextraction (BAmuE) Devices for a Better Eco-User-Friendly Analytical approach-Application for the Determination of Antidepressant Pharmaceuticals in Biological Fluids. J. Pharm. Biomed. Anal. 2018, 153, 126–134. DOI: 10.1016/j.jpba.2018.02.001.
  • Anastassiades, M.; Lehotay, S. J.; Štajnbaher, D.; Schenck, F. J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. DOI: 10.1093/jaoac/86.2.412.
  • Rahman, N.; Sameen, S.; Kashif, M. Application of Box-Behnken Design and Desirability Function in the Optimization of Spectrophotometric Method for the Quantification of WADA Banned Drug: Acetazolamide. J. Mol. Liq. 2019, 274, 270–277. DOI: 10.1016/j.molliq.2018.10.120.
  • Dangre, P.; Sawale, V.; Meshram, S.; Gunde, M. Development and Validation of RP-HPLC Method for the Simultaneous Estimation of Eprosartan Mesylate and Chlorthalidone in Tablet Dosage Form. Int. J. PharmTech Res. 2015, 8, 163.
  • Hadjikinova, R.; Petkova, N.; Hadjikinov, D.; Denev, P.; Hrusavov, D. Development and Validation of HPLC-RID Method for Determination of Sugars and Polyols. J. Pharmaceut. Sci. Res. 2017, 9, 1263.
  • El-Bagary, R. I.; Elkady, E. F.; Mowaka, S.; Attallah, M. A. A Validated HPLC Method for Simultaneous Determination of Perindopril Arginine, Amlodipine, and Indapamide: Application in Bulk and in Different Pharmaceutical Dosage Forms. J. AOAC Int. 2017, 100, 992–999. DOI: 10.5740/jaoacint.16-0279.
  • Naguib, I. A.; Abdelaleem, E. A.; Emam, A. A.; Ali, N. W.; Abdallah, F. F. Development and Validation of HPTLC and Green HPLC Methods for Determination of Furosemide, Spironolactone and Canrenone, in Pure Forms, Tablets and Spiked Human Plasma. Biomed. Chromatogr. 2018, 32, e4304. DOI: 10.1002/bmc.4304.
  • Patel, A. S.; Sayyed, S. N.; Lajporiya, I. M.; Manjra, U. M.; Ahmed, A.; Khan, G. J. An Eco-Friendly RP-HPLC and UV-Method Development and Validation for an Estimation of Tolvaptan in Bulk and Tablet Dosage Form Followed by Forced Degradation Studies. JPRI. 2021, 33(42B), 271–286. DOI: 10.9734/jpri/2021/v33i42B32446.
  • Chen, F.; Fang, B.; Li, P.; Wang, S. Simultaneous Determination of Five Diuretic Drugs Using Quantitative Analysis of Multiple Components by a Single Marker. BMC Chem. 2021, 15, 39.
  • Abd El-Hay, S. S.; Hashem, H.; Gouda, A. A. High Performance Liquid Chromatography for Simultaneous Determination of Xipamide, Triamterene and Hydrochlorothiazide in Bulk Drug Samples and Dosage Forms. Acta Pharm. 2016, 66, 109–118. DOI: 10.1515/acph-2016-0022.
  • Anderson, J. F. F.; Gerlin, M. C. G.; Sversut, R. A.; Oliveira, L. C. S.; Singh, A. K.; Amaral, M. S.; Kassab, N. M. Development and Validation of an Isocratic HPLC Method for Simultaneous Determination of Quaternary Mixtures of Antihypertensive Drugs in Pharmaceutical Formulations. Acta Chromatogr. 2017, 29, 95–110. DOI: 10.1556/1326.2017.29.1.9.
  • Manchanda, S.; Sahoo, P.; Majumdar, D. RP-HPLC Method Development and Validation for the Estimation of Acetazolamide in Bulk Drug and Formulations with Forced Degradation Studies. Pharm. Lett. 2016, 8, 338.
  • Stolarczyk, M.; Hubicka, U.; Żuromska-Witek, B.; Krzek, J. Simultaneous Determination of Eight Hypotensive Drugs of Various Chemical Groups in Pharmaceutical Preparations by HPLC-DAD. J. AOAC Int. 2015, 98, 1542–1548. DOI: 10.5740/jaoacint.15-022.
  • Chinta, S. R.; Paidikondala, K.; Katari, N. K.; Dongala, T.; Ediga, S. G.; Marisetti, V. M. Reverse-Phase LC Method Development and Validation for the Quantification of Acetazolamide and Its Specified and Unspecified Degradation Products in Hard Gelatin Capsule Formulations. J. Iran. Chem. Soc. 2022, 19, 775–784. DOI: 10.1007/s13738-021-02341-6.
  • Aa, M.; Kannappan, N.; Cb, M. K. Analytical Method Development and Validation for the Determination of Hydrochlorothiazide, Amlodipine Besylate and Telmisartan Hydrochloride in Multicomponent Tablet Dosage Form and in Biorelevant Media (FaSSIF) by RP-HPLC techniques. 2015.
  • Hammouda, M. E.; Abu El-Enin, M. A.; El-Sherbiny, D. T.; El-Wasseef, D. R.; El-Ashry, S. M. Simultaneous Determination of Enalapril and Hydrochlorothiazide in Pharmaceutical Preparations Using Microemulsion Liquid Chromatography. J. Chromatogr. Sci. 2015, 53, 90–96. DOI: 10.1093/chromsci/bmu024.
  • Dong, Y.; Yan, K.; Ma, Y.; Yang, Z.; Zhao, J.; Ding, J. A Modified LC-MS/MS Method to Simultaneously Quantify Glycerol and Mannitol Concentrations in Human Urine for Doping Control Purposes. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1022, 153–158. DOI: 10.1016/j.jchromb.2016.04.023.
  • Helmlin, H. J.; Murner, A.; Steiner, S.; Kamber, M.; Weber, C.; Geyer, H.; Guddat, S.; Schanzer, W.; Thevis, M. Detection of the Diuretic Hydrochlorothiazide in a Doping Control Urine Sample as the Result of a Non-Steroidal anti-Inflammatory Drug (NSAID) Tablet Contamination. Forensic Sci. Int. 2016, 267, 166–172. DOI: 10.1016/j.forsciint.2016.08.029.
  • Avataneo, V.; De Nicolo, A.; Rabbia, F.; Sciandra, M.; Tosello, F.; Cusato, J.; Perlo, E.; Fatiguso, G.; Allegra, S.; Favata, F.; et al. A Simple UHPLC-PDA Method with a Fast Dilute-and-Shot Sample Preparation for the Quantification of Canrenone and Its Prodrug Spironolactone in Human Urine Samples. J. Pharmacol. Toxicol. Methods. 2018, 94, 29–35. DOI: 10.1016/j.vascn.2018.08.003.
  • Gheddar, L.; Raul, J. S.; Kintz, P. First Identification of a Diuretic, Hydrochlorothiazide, in Hair: Application to a Doping Case and Interpretation of the Results. Drug Test. Anal. 2019, 11, 157–161. DOI: 10.1002/dta.2445.
  • Dahmana, N.; Gabriel, D.; Gurny, R.; Kalia, Y. N. Development and Validation of a Fast and Sensitive UHPLC-ESI-MS Method for the Simultaneous Quantification of Spironolactone and Its Metabolites in Ocular Tissues. Biomed. Chromatogr. 2018, 32, e4287. DOI: 10.1002/bmc.4287.
  • Richter, L. H. J.; Jacobs, C. M.; Mahfoud, F.; Kindermann, I.; Bohm, M.; Meyer, M. R. Development and Application of a LC-HRMS/MS Method for Analyzing Antihypertensive Drugs in Oral Fluid for Monitoring Drug Adherence. Anal. Chim. Acta. 2019, 1070, 69–79. DOI: 10.1016/j.aca.2019.04.026.
  • Chen, F.; Fang, B.; Wang, S. A Fast and Validated HPLC Method for Simultaneous Determination of Dopamine, Dobutamine, Phentolamine, Furosemide, and Aminophylline in Infusion Samples and Injection Formulations. J. Anal. Methods Chem. 2021, 2021,):8821126. DOI: 10.1155/2021/8821126.
  • Lee, J.-H.; An, T.-G.; Kim, S. J.; Shim, W.-S.; Lee, K.-T. Development of Liquid Chromatography Tandem Mass Spectrometry Method for Determination of Spironolactone in Human Plasma: application to a Bioequivalence Study of Daewon Spiracton Tablet® (Spironolactone 50 mg). J. Pharmaceut. Invest. 2015, 45, 601–609. DOI: 10.1007/s40005-015-0197-9.
  • Alrabiah, H.; Kadi, A. A.; Attwa, M. W.; Mostafa, G. A. E. Development and Validation of an HPLC-MS/MS Method for the Determination of Arginine-Vasopressin Receptor Blocker Conivaptan in Human Plasma and Rat Liver Microsomes: application to a Metabolic Stability Study. Chem. Cent. J. 2018, 12, 47.
  • Johannsen, J. O.; Reuter, H.; Hoffmann, F.; Blaich, C.; Wiesen, M. H. J.; Streichert, T.; Muller, C. Reliable and Easy-to-Use LC-MS/MS-Method for Simultaneous Determination of the Antihypertensives Metoprolol, Amlodipine, Canrenone and Hydrochlorothiazide in Patients with Therapy-Refractory Arterial Hypertension. J. Pharm. Biomed. Anal. 2019, 164, 373–381. DOI: 10.1016/j.jpba.2018.11.002.
  • Ebeid, W. M.; Elkady, E. F.; El-Zaher, A. A.; El-Bagary, R. I.; Patonay, G. Simultaneous Determination of Aliskiren Hemifumarate, Amlodipine Besylate and Hydrochlorothiazide in Spiked Human Plasma Using UPLC-MS/MS. J. Chromatogr. Sci. 2015, 53, 1178–1184. DOI: 10.1093/chromsci/bmu213.
  • Aydoǧmuş, Z. Simultaneous Determination of Aliskiren, Amlodipine and Hydrochlorothiazide in Spiked Human Plasma and Urine by High Performance Liquid Chromatography. J. Anal. Chem. 2015, 70, 502–509. DOI: 10.1134/S1061934815040176.
  • Nahar, L.; Onder, A.; Sarker, S. D. A Review on the Recent Advances in HPLC, UHPLC and UPLC Analyses of Naturally Occurring Cannabinoids (2010-2019). Phytochem. Anal. 2020, 31, 413–457. DOI: 10.1002/pca.2906.
  • Hemdan, A.; Magdy, R.; Farouk, M. Response Surface Design as a Powerful Tool for the Development of Environmentally Benign HPLC Methods for the Determination of Two Antihypertensive Combinations: Greenness Assessment by Two Green Analytical Chemistry Evaluation Tools. J. Sep. Sci. 2018, 41, 3213–3223. DOI: 10.1002/jssc.201800317.
  • Gillium, C.; Friciu, M.; Abatzoglou, N.; Leclair, G. Validation of a Stability-Indicating HPLC-UV Method for the Quantification of Acetazolamide in Oral-Mix and Oral-Mix SF. MethodsX 2020, 7, 100844. DOI: 10.1016/j.mex.2020.100844.
  • Naguib, I. A.; Abdelaleem, E. A.; Draz, M. E.; Zaazaa, H. E. Development and Validation of RP-HPLC Method for Determination of Hydrochlorothiazide, Amiloride Hydrochloride and Related Impurities in Bulk and Pharmaceutical Dosage Forms. Anal. Chem. Lett. 2015, 5, 85–93. DOI: 10.1080/22297928.2015.1026394.
  • Patil, M. P. N. HPLC Method Development–A Review. J. Pharmaceut. Res. Educ. 2017, 1, 243.
  • Tolba, M. M.; Belal, F. Two Liquid Chromatographic Approaches for the Simultaneous Determination of Xipamide and Its Degradation Product (2,6-Xylidine) Using Time-Programmed Fluorescence Detection. Luminescence 2017, 32, 491–501. DOI: 10.1002/bio.3203.
  • Shaaban, H. New Insights into Liquid Chromatography for More Eco-Friendly Analysis of Pharmaceuticals. Anal. Bioanal. Chem. 2016, 408, 6929–6944. DOI: 10.1007/s00216-016-9726-2.
  • Peris-García, E.; Pankajkumar-Patel, N.; Ruiz-Angel, M. J.; Carda-Broch, S.; García-Alvarez-Coque, M. C. Oil-In-Water Microemulsion Liquid Chromatography. Separation & Purification Reviews 2020, 49, 89–111. DOI: 10.1080/15422119.2018.1524386.
  • Pankajkumar-Patel, N.; Peris-Garcia, E.; Ruiz-Angel, M. J.; Carda-Broch, S.; Garcia-Alvarez-Coque, M. C. Modulation of Retention and Selectivity in Oil-in-Water Microemulsion Liquid Chromatography: A Review. J. Chromatogr. A 2019, 1592, 91–100. DOI: 10.1016/j.chroma.2019.01.046.
  • Li, L.; Lai, C.; Xuan, X.; Gao, C.; Li, N. Simultaneous Determination of Hydrochlorothiazide and Losartan Potassium in Osmotic Pump Tablets by Microemulsion Liquid Chromatography. J. Chromatogr. Sci. 2016, 54, 1415–1420. DOI: 10.1093/chromsci/bmw101.
  • Carlucci, G.; Palumbo, G.; Mazzeo, P.; Quaglia, M. G. Simultaneous Determination of Losartan and Hydrochlorothiazide in Tablets by High-Performance Liquid Chromatography. J. Pharm. Biomed. Anal. 2000, 23, 185–189. DOI: 10.1016/s0731-7085(00)00268-5.
  • Awad, H.; Khamis, M. M.; El-Aneed, A. Mass Spectrometry, Review of the Basics: Ionization. Appl. Spectrosc. Rev. 2015, 50, 158–175. DOI: 10.1080/05704928.2014.954046.
  • El-Aneed, A.; Cohen, A.; Banoub, J. Mass Spectrometry, Review of the Basics: Electrospray, MALDI, and Commonly Used Mass Analyzers. Appl. Spectrosc. Rev. 2009, 44, 210–230. DOI: 10.1080/05704920902717872.
  • Holcapek, M.; Jirasko, R.; Lisa, M. Recent Developments in Liquid Chromatography-Mass Spectrometry and Related Techniques. J. Chromatogr. A 2012, 1259, 3–15. DOI: 10.1016/j.chroma.2012.08.072.
  • Lo Faro, A. F.; Tini, A.; Gottardi, M.; Pirani, F.; Sirignano, A.; Giorgetti, R.; Busardo, F. P. Development and Validation of a Fast Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry Method for Determining Carbonic Anhydrase Inhibitors and Their Metabolites in Urine and Hair. Drug Test. Anal. 2021, 13, 1552–1560. DOI: 10.1002/dta.3055.
  • Ki, N.-Y.; Hur, J.; Kim, B. H.; Kim, K. H.; Moon, B. J.; Oh, H. B.; Hong, J. Rapid Screening of Sulfonamides in Dietary Supplements Based on Extracted Common Ion Chromatogram and Neutral Loss Scan by LC-Q/TOF-Mass Spectrometry. J. Food Drug Anal. 2019, 27, 164–174. DOI: 10.1016/j.jfda.2018.08.006.
  • Eliuk, S.; Makarov, A. Evolution of Orbitrap Mass Spectrometry Instrumentation. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 2015, 8, 61–80. DOI: 10.1146/annurev-anchem-071114-040325.
  • Abushareeda, W.; Vonaparti, A.; Saad, K. A.; Almansoori, M.; Meloug, M.; Saleh, A.; Aguilera, R.; Angelis, Y.; Horvatovich, P. L.; Lommen, A.; et al. High Resolution Full Scan Liquid Chromatography Mass Spectrometry Comprehensive Screening in Sports Antidoping Urine Analysis. J. Pharm. Biomed. Anal. 2018, 151, 10–24. DOI: 10.1016/j.jpba.2017.12.025.
  • Svan, A.; Hedeland, M.; Arvidsson, T.; Pettersson, C. E. The Differences in Matrix Effect between Supercritical Fluid Chromatography and Reversed Phase Liquid Chromatography Coupled to ESI/MS. Anal. Chim. Acta. 2018, 1000, 163–171. DOI: 10.1016/j.aca.2017.10.014.
  • Siddiqui, M. R.; AlOthman, Z. A.; Rahman, N. Analytical Techniques in Pharmaceutical Analysis: A Review. Arab. J. Chem. 2017, 10, S1409–S1421. DOI: 10.1016/j.arabjc.2013.04.016.
  • Subramanian, V.; Nagappan, K.; Sandeep Mannemala, S. Optimization and Validation of a Sensitive Method for HPLC-PDA Simultaneous Determination of Torasemide and Spironolactone in Human Plasma Using Central Composite Design. Acta Chim. Slov. 2015, 62, 633–641. DOI: 10.17344/acsi.2014.1262.
  • Antal, I.; Koneracka, M.; Zavisova, V.; Kubovcikova, M.; Kormosh, Z.; Kopcansky, P. Statins Determination: A Review of Electrochemical Techniques. Crit. Rev. Anal. Chem. 2017, 47, 474–489. DOI: 10.1080/10408347.2017.1332973.
  • Mansano, G. R.; Pires Eisele, A. P.; Sartori, E. R. Electrochemical Evaluation of a Boron-Doped Diamond Electrode for Simultaneous Determination of an Antihypertensive Ternary Mixture of Amlodipine, Hydrochlorothiazide and Valsartan in Pharmaceuticals. Anal. Methods 2015, 7, 1053–1060. DOI: 10.1039/C4AY02511C.
  • Bulut, İ. Simultaneous Square-Wave Voltammetric Determination of Acetazolamide and Theophylline in Pharmaceutical Formulations. Russ. J. Electrochem. 2016, 52, 427–434. DOI: 10.1134/S1023193516050025.
  • Karimi, R.; Gholivand, M. B.; Amiri, M. Monitoring of Triamterene and Hydrochlorothiazide at Carbonic Materials Modified Electrode. Electroanal. Chem. 2019, 847, 113176. DOI: 10.1016/j.jelechem.2019.05.058.
  • Machini, W. B.; David-Parra, D. N.; Teixeira, M. F. Electrochemical Investigation of the Voltammetric Determination of Hydrochlorothiazide Using a Nickel Hydroxide Modified Nickel Electrode. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 57, 344–348. DOI: 10.1016/j.msec.2015.07.035.
  • Said, M. I.; Rageh, A. H.; F. A. M., Abdel-Aal. Fabrication of Novel Electrochemical Sensors Based on Modification with Different Polymorphs of MnO2 Nanoparticles. Application to Furosemide Analysis in Pharmaceutical and Urine Samples. RSC Adv. 2018, 8, 18698–18713. DOI: 10.1039/c8ra02978d.
  • Kor, K.; Zarei, K. Development and Characterization of an Electrochemical Sensor for Furosemide Detection Based on Electropolymerized Molecularly Imprinted Polymer. Talanta 2016, 146, 181–187. DOI: 10.1016/j.talanta.2015.08.042.
  • Medeiros, R. A.; Baccarin, M.; Fatibello-Filho, O.; Rocha-Filho, R. C.; Deslouis, C.; Debiemme-Chouvy, C. Comparative Study of Basal-Plane Pyrolytic Graphite, Boron-Doped Diamond, and Amorphous Carbon Nitride Electrodes for the Voltammetric Determination of Furosemide in Pharmaceutical and Urine Samples. Electrochim. Acta 2016, 197, 179–185. DOI: 10.1016/j.electacta.2015.10.065.
  • Kumar, N.; Goyal, R. N. Melamine/Fe3O4 Nanoparticles Based Molecular Imprinted Highly Sensitive Sensor for Determination of Hydrochlorothiazide: An Antihypertensive Drug. J. Electrochem. Soc. 2017, 164, B240–B246. DOI: 10.1149/2.1451706jes.
  • Khorshed, A. A.; Khairy, M.; Banks, C. E. Electrochemical Determination of Antihypertensive Drugs by Employing Costless and Portable Unmodified Screen-Printed Electrodes. Talanta 2019, 198, 447–456. DOI: 10.1016/j.talanta.2019.01.117.
  • Wang, Y.; Cheng, J.; Liu, X.; Ding, F.; Zou, P.; Wang, X.; Zhao, Q.; Rao, H. C3N4 Nanosheets/Metal–Organic Framework Wrapped with Molecularly Imprinted Polymer Sensor: Fabrication, Characterization, and Electrochemical Detection of Furosemide. ACS Sustainable Chem. Eng. 2018, 6, 16847–16858. DOI: 10.1021/acssuschemeng.8b04179.
  • Esfandiari Baghbamidi, S. Voltammetric Sensor Based on 1-Benzyl-4-Ferrocenyl-1H- [1,2,3]-Triazole/Carbon Nanotube Modified Glassy Carbon Electrode; Detection of Hydrochlorothiazide in the Presence of Propranolol. Int. J. Electrochem. Sci. 2016, 11(12), 10874–10883. DOI: 10.20964/2016.12.92.
  • Calegari, F.; Roberto de Oliveira, P.; Marcolino Junior, L. H.; Bergamini, M. F. A Carbon Black Composite Electrode for Flow Injection Amperometric Determination of Hydrochlorothiazide. Anal. Methods 2019, 11, 2422–2427. DOI: 10.1039/C9AY00555B.
  • Mundaca-Uribe, R.; Diego, M. d.; Henríquez-Aedo, K.; Aranda, M.; Peña-Farfal, C. Development and Characterization of a Sensor Based on Carbon Nanofibers: Application to Acetazolamide Determination in Pharmaceuticals and Biological Fluids. J. Chil. Chem. Soc. 2019, 64, 4382–4385. DOI: 10.4067/s0717-97072019000104382.
  • Tian, F.; Li, H.; Li, M.; Li, C.; Lei, Y.; Yang, B. A Tantalum Electrode Coated with Graphene Nanowalls for Simultaneous Voltammetric Determination of Dopamine, Uric Acid, L-Tyrosine, and Hydrochlorothiazide. Microchim. Acta 2017, 184, 1611–1619. DOI: 10.1007/s00604-017-2154-y.
  • Tantawy, M. A.; El Fiky, H. A.; Badawey, A. M.; Abd El Ghany, M. F.; Fares, N. V. A Novel Glassy Carbon Electrode Modified with Multi-Walled Carbon Nanotubes for Potentiometric Xipamide Determination. J. Electrochem. Soc. 2021, 168, 056506. DOI: 10.1149/1945-7111/abfcdb.
  • Lourencao, B. C.; Medeiros, R. A.; Fatibello-Filho, O. Simultaneous Determination of Antihypertensive Drugs by Flow Injection Analysis Using Multiple Pulse Amperometric Detection with a Cathodically Pretreated Boron-Doped Diamond Electrode. Electroanal. Chem. 2015, 754, 154–159. DOI: 10.1016/j.jelechem.2015.06.022.
  • Pereira, P. F.; da Silva, W. P.; Marra, M. C.; Muñoz, R. A. A.; Richter, E. M. A High-Throughput BIA-MPA Method for the Simultaneous Determination of Amiloride and Furosemide. Anal. Methods 2016, 8, 7959–7965. DOI: 10.1039/C6AY02506D.
  • Silva, E. F.; Tanaka, A. A.; Fernandes, R. N.; Munoz, R. A. A.; da Silva, I. S. Batch Injection Analysis with Electrochemical Detection for the Simultaneous Determination of the Diuretics Furosemide and Hydrochlorothiazide in Synthetic Urine and Pharmaceutical Samples. Microchem. J. 2020, 157, 105027. DOI: 10.1016/j.microc.2020.105027.
  • Coelho, J. H.; Eisele, A. P. P.; Valezi, C. F.; Mattos, G. J.; Schirmann, J. G.; Dekker, R. F. H.; Barbosa-Dekker, A. M.; Sartori, E. R. Exploring the Exocellular Fungal Biopolymer Botryosphaeran for Laccase-Biosensor Architecture and Application to Determine Dopamine and Spironolactone. Talanta 2019, 204, 475–483. DOI: 10.1016/j.talanta.2019.06.033.
  • Machini, W. B.; Teixeira, M. F. Analytical Development of a Binuclear Oxo-Manganese Complex Bio-Inspired on Oxidase Enzyme for Doping Control Analysis of Acetazolamide. Biosens. Bioelectron. 2016, 79, 442–448. DOI: 10.1016/j.bios.2015.12.026.
  • Saini, A.; Kaur, N.; Singh, N. A Highly Fluorescent Sensor Based on Hybrid Nanoparticles for Selective Determination of Furosemide in Aqueous Medium. Sens. Actuators, B 2016, 228, 221–230. DOI: 10.1016/j.snb.2016.01.026.
  • Hudari, F. F.; Souza, J. C.; Zanoni, M. V. B. Adsorptive Stripping Voltammetry for Simultaneous Determination of Hydrochlorothiazide and Triamterene in Hemodialysis Samples Using a Multi-Walled Carbon Nanotube-Modified Glassy Carbon Electrode. Talanta 2018, 179, 652–657. DOI: 10.1016/j.talanta.2017.11.071.
  • Ksenofontov, A. A.; Lukanov, M. M.; Antina, E. V. Fluorescent Detection of Loop Diuretics by Sensors Based on Zinc(II) Bis(Dipyrromethenate)s. Dyes Pigm. 2020, 179, 108389. DOI: 10.1016/j.dyepig.2020.108389.
  • Munyendo, L.; Njoroge, D.; Hitzmann, B. The Potential of Spectroscopic Techniques in Coffee Analysis—A Review. Processes 2021, 10, 71. DOI: 10.3390/pr10010071.
  • Binh, T. T.; Phuong Tram, L. T.; Van Hop, N.; Giang Chau, N. D.; Luu, N. D.; Quynh Trang, N. T. Simultaneous Determination of Hydrochlorothiazide and Losartan Potassium in Pharmaceutical Product by UV-Vis Spectrophotometric Method with Kalman Filter Algorithm. J. Anal. Methods Chem. 2021, 2021:2754133. DOI: 10.1155/2021/2754133.
  • Chandarana, C. V.; Prajapati, P. R.; Jani, G. K. Quantification of Spironolactone by Fourier Transform Infrared Spectrophotometry in Bulk and Tablet Dosageform. Vib. Spectrosc. 2019, 100, 185–190. DOI: 10.1016/j.vibspec.2018.12.006.
  • Sanchez, F. G.; Diaz, A. N.; Lopez Guerrero, M. M. Time-Resolved Spectroscopy for Selective Determination of Fluorescent Diuretics. Spectrosc. Lett. 2015, 48, 481–486. DOI: 10.1080/00387010.2014.895385.
  • Mohammed, N. M. S.; Abdo, H. R.; Hassan, H. M. Method Development and Validation of Simultaneous Determination of Hydrochlorothiazide And Losartan In Tablet Dosage Form by RP-HPLC. International journal of Pharmaceutical sciences and research, 2019, 10(1), 227–231. DOI:10.13040/IJPSR.0975-8232.10(1).1000-05.
  • McGown, L. B.; Bright, F. V. Phase-Resolved Fluorescence Spectroscopy. Anal. Chem. 1984, 56, 1400A–1417A. DOI: 10.1021/ac00277a001.
  • Li, L.; Wang, Y.; Zhang, W.; Yu, S.; Wang, X.; Gao, N. New Advances in Fluorescence Excitation-Emission Matrix Spectroscopy for the Characterization of Dissolved Organic Matter in Drinking Water Treatment: A Review. Chem. Eng. J. 2020, 381, 122676. DOI: 10.1016/j.cej.2019.122676.
  • Hu, Y.; Wu, H. L.; Yin, X. L.; Gu, H. W.; Kang, C.; Xiang, S. X.; Xia, H.; Yu, R. Q. Chemometrics-Assisted Determination of Amiloride and Triamterene in Biological Fluids with Overlapped Peaks and Unknown Interferences. Bioanalysis 2015, 7, 1685–1697. DOI: 10.4155/bio.15.88.
  • Albertsdottir, A. D.; Van Gansbeke, W.; Van Eenoo, P.; Polet, M. Enabling the Inclusion of Non-Hydrolysed sulfated long term Anabolic Steroid Metabolites in a Screening for Doping Substances by Means of Gas Chromatography Quadrupole Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2021, 1642, 462039. DOI: 10.1016/j.chroma.2021.462039.
  • Polet, M.; Van Gansbeke, W.; Van Eenoo, P. Development and Validation of an Open Screening Method for Doping Substances in Urine by Gas Chromatography Quadrupole Time-of-Flight Mass Spectrometry. Anal. Chim. Acta. 2018, 1042, 52–59. DOI: 10.1016/j.aca.2018.08.050.
  • Begou, O.; Drabert, K.; Theodoridis, G.; Tsikas, D. GC-NICI-MS Analysis of Acetazolamide and Other Sulfonamide (R-SO2-NH2) Drugs as Pentafluorobenzyl Derivatives [R-SO2-N(PFB)2] and Quantification of Pharmacological Acetazolamide in Human Urine. J. Pharm. Anal. 2020, 10, 49–59. DOI: 10.1016/j.jpha.2019.11.006.
  • Grapp, M.; Kaufmann, C.; Streit, F.; Binder, L. Systematic Forensic Toxicological Analysis by Liquid-Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry in Serum and Comparison to Gas Chromatography-Mass Spectrometry. Forensic Sci. Int. 2018, 287, 63–73. DOI: 10.1016/j.forsciint.2018.03.039.
  • Wang, L.; Du, Z.; Guan, Y.; Wang, B.; Pei, Y.; Zhang, L.; Fang, M. Identifying Absorbable Bioactive Constituents of Yupingfeng Powder Acting on COVID-19 through Integration of UPLC-Q/TOF-MS and Network Pharmacology Analysis. Chin. Herb. Med. 2022, 14, 283–293. DOI: 10.1016/j.chmed.2022.02.001.
  • Dolowy, M. Influence of Different Chromatographic Conditions on the level of Detection and Quantitation of Spironolactone by Means of TLC-Densitometry. J. Anal. Methods Chem. 2019, 2019, 8792783.
  • Ramu, B.; Chittela, K. B. High Performance Thin Layer Chromatography and Its Role Pharmaceutical Industry. Open Sci. J. Biosci. Bioeng. 2018, 5, 29–34.
  • Li, L.; Huang, Y.; Zhao, W.; Zhang, G.; Zhang, H.; Chen, A. Simultaneous Separation and Rapid Determination of Spironolactone and Its Metabolite Canrenone in Different Pharmaceutical Formulations and Urinary Matrices by Capillary Zone Electrophoresis. J. Sep. Sci. 2016, 39, 2869–2875. DOI: 10.1002/jssc.201600255.
  • Fayez, Y. M.; Hegazy, M. A. Micellar Electrokinetic Chromatography (MEKC) with Multiresponse Chemometric Optimization for the Determination of Hydrochlorothiazide and Coformulated Antihypertensives in the Presence of Hydrochlorothiazide Major Impurity. J. Chromatogr. Sci. 2016, 54, 1050–1060. DOI: 10.1093/chromsci/bmw056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.