456
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Applications of Hyperspectral Imaging Technology Combined with Machine Learning in Quality Control of Traditional Chinese Medicine from the Perspective of Artificial Intelligence: A Review

, , , , &

References

  • Chang, Z. F.; Jia, D. X.; Bare, J. Chinese Materia Medica (International Standard Library of Chinese Medicine). Beijing: People’s medical publishing house, 2014.
  • Liu, W. X.; Dong, J. C. Development and Issues of Traditional Chinese Pharmacy as Discipline Concept. J. Air Force Med. Univ. 2021, 12, 8–17. (In Chinese) DOI: 10.13276/j.issn.1674-8913.2021.01.002.
  • Kiani, S.; van Ruth, S. M.; Minaei, S.; Ghasemi-Varnamkhasti, M. Hyperspectral Imaging, a Non-Destructive Technique in Medicinal and Aromatic Plant Products Industry: Current Status and Potential Future Applications. Comput. Electron. Agric. 2018, 152, 9–18. DOI: 10.1016/j.compag.2018.06.025.
  • Pathak, H.; Igathinathane, C.; Zhang, Z.; Archer, D.; Hendrickson, J. A Review of Unmanned Aerial Vehicle-Based Methods for Plant Stand Count Evaluation in Row Crops. Comput. Electron. Agric. 2022, 198, 107064. DOI: 10.1016/j.compag.2022.107064.
  • Xue, J.; Fuentes, S.; Poblete-Echeverria, C.; Gonzalez Viejo, C.; Tongson, E.; Du, H.; Su, B. Automated Chinese Medicinal Plants Classification Based on Machine Learning Using Leaf Morpho-Colorimetry, Fractal Dimension and Visible/near Infrared Spectroscopy. Int. J. agric. Biol. Eng. 2019, 12, 123–131. DOI: 10.25165/j.ijabe.20191202.4637.
  • Wang, D.; Cao, W.; Zhang, F.; Li, Z.; Xu, S.; Wu, X. A Review of Deep Learning in Multiscale Agricultural Sensing. Remote Sens. 2022, 14, 559. DOI: 10.3390/rs14030559.
  • Bajgain, B.; Lorenzetti, D.; Lee, J.; Sauro, K. Determinants of Implementing Artificial Intelligence-Based Clinical Decision Support Tools in Healthcare: A Scoping Review Protocol. BMJ Open 2023, 13, e068373. DOI: 10.1136/bmjopen-2022-068373.
  • Lavecchia, A. Deep Learning in Drug Discovery: Opportunities, Challenges and Future Prospects. Drug Discov. Today 2019, 24, 2017–2032. DOI: 10.1016/j.drudis.2019.07.006.
  • Hunkenschroer, A. L.; Luetge, C. Ethics of AI-Enabled Recruiting and Selection: A Review and Research Agenda. J. Bus Ethics 2022, 178, 977–1007. DOI: 10.1007/s10551-022-05049-6.
  • Hengstler, M.; Enkel, E.; Duelli, S. Applied Artificial Intelligence and Trust—The Case of Autonomous Vehicles and Medical Assistance Devices. Technol. Forecast. Soc. Change 2016, 105, 105–120. DOI: 10.1016/j.techfore.2015.12.014.
  • Hey, T.; Butler, K.; Jackson, S.; Thiyagalingam, J. Machine Learning and Big Scientific Data. Philos. Trans. A Math Phys. Eng. Sci. 2020, 378, 20190054. DOI: 10.1098/rsta.2019.0054.
  • Wieme, J.; Mollazade, K.; Malounas, I.; Zude-Sasse, M.; Zhao, M.; Gowen, A.; Argyropoulos, D.; Fountas, S.; Van Beek, J. Application of Hyperspectral Imaging Systems and Artificial Intelligence for Quality Assessment of Fruit, Vegetables and Mushrooms: A Review. Biosyst. Eng. 2022, 222, 156–176. DOI: 10.1016/j.biosystemseng.2022.07.013.
  • Vijayan, R. S. K.; Kihlberg, J.; Cross, J. B.; Poongavanam, V. Enhancing Preclinical Drug Discovery with Artificial Intelligence. Drug Discov. Today 2022, 27, 967–984. DOI: 10.1016/j.drudis.2021.11.023.
  • Zhao, D.; Tian, Z.; Cai, J.; He, J. Microbial Spore Genetic Marker Technology, a Potential Technology for Traditional Chinese Medicine Traceability System. Chin. Med. 2022, 17, 61. DOI: 10.1186/s13020-022-00620-9.
  • Xiong, H.-S.; Zhang, S.-N.; Zhu, Y.-H.; Yan, X.-J.; Ye, Z.-L.; Yan, K.-J.; Qu, H.-B. Study of Intelligent Manufacturing Quality Digitalization of Traditional Chinese Medicine and Practice on Compound Danshen Dripping Pills. Zhongguo Zhong Yao Za Zhi 2020, 45, 1698–1706. (In Chinese). DOI: 10.19540/j.cnki.cjcmm.20200207.308.
  • Li, D.; Hu, J.; Zhang, L.; Li, L.; Yin, Q.; Shi, J.; Guo, H.; Zhang, Y.; Zhuang, P. Deep Learning and Machine Intelligence: New Computational Modeling Techniques for Discovery of the Combination Rules and Pharmacodynamic Characteristics of Traditional Chinese Medicine. Eur. J. Pharmacol. 2022, 933, 175260. DOI: 10.1016/j.ejphar.2022.175260.
  • Saha, D.; Manickavasagan, A. Machine Learning Techniques for Analysis of Hyperspectral Images to Determine Quality of Food Products: A Review. Curr. Res. Food Sci. 2021, 4, 28–44. DOI: 10.1016/j.crfs.2021.01.002.
  • Wu, D.; Sun, D. W. Advanced Applications of Hyperspectral Imaging Technology for Food Quality and Safety Analysis and Assessment: A review-Part I: Fundamentals. Innov. Food Sci. Emerg. Technol. 2013, 19, 1–14. DOI: 10.1016/j.ifset.2013.04.014.
  • Ozaki, Y. Infrared Spectroscopy—Mid-Infrared, near-Infrared, and Far-Infrared/Terahertz Spectroscopy. Anal. Sci. 2021, 37, 1193–1212. DOI: 10.2116/analsci.20R008.
  • Tomar, M.; Bhardwaj, R.; Kumar, M.; Singh, S. P.; Krishnan, V.; Kansal, R.; Verma, R.; Yadav, V. K.; Dahuja, A.; Ahlawat, S. P.; et al. Development of NIR Spectroscopy Based Prediction Models for Nutritional Profiling of Pearl Millet (Pennisetum glaucum (L.)) R.Br: A Chemometrics Approach. LWT 2021, 149, 111813. DOI: 10.1016/j.lwt.2021.111813.
  • Türker-Kaya, S.; Huck, C. W. A Review of Mid-Infrared and near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis. Molecules 2017, 22, 168. DOI: 10.3390/molecules22010168.
  • Liu, L. M.; Qu, H. B. Recent Advancement of Chemical Imaging in Pharmaceutical Quality Control: From Final Product Testing to Industrial Utilization. J. Innov. Opt. Health Sci. 2020, 13, 1930014. DOI: 10.1142/S1793545819300143.
  • Wang, C.; Liu, B.; Liu, L.; Zhu, Y.; Hou, J.; Liu, P.; Li, X. A Review of Deep Learning Used in the Hyperspectral Image Analysis for Agriculture. Artif. Intell. Rev. 2021, 54, 5205–5253. DOI: 10.1007/s10462-021-10018-y.
  • Roy, S. K.; Krishna, G.; Dubey, S. R.; Chaudhuri, B. B. HybridSN: Exploring 3-D-2-D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 277–281. DOI: 10.1109/LGRS.2019.2918719.
  • Shetty, N.; Rinnan, Å.; Gislum, R. Selection of Representative Calibration Sample Sets for near-Infrared Reflectance Spectroscopy to Predict Nitrogen Concentration in Grasses. Chemom. Intell. Lab. Syst. 2012, 111, 59–65. DOI: 10.1016/j.chemolab.2011.11.013.
  • Xiang, D.; Konigsberger, M.; Wabuyele, B.; Hornung, K.; Cheney, J. Development of Robust Quantitative Methods by near-Infrared Spectroscopy for Rapid Pharmaceutical Determination of Content Uniformity in Complex Tablet Matrix. Analyst 2009, 134, 1405–1415. DOI: 10.1039/b821836f.
  • Kennard, R. W.; Stone, L. A. Computer Aided Design of Experiments. Technometrics 1969, 11, 137–148. DOI: 10.1080/00401706.1969.10490666.
  • Galvão, R. K. H.; Araujo, M. C. U.; José, G. E.; Pontes, M. J. C.; Silva, E. C.; Saldanha, T. C. B. A Method for Calibration and Validation Subset Partitioning. Talanta 2005, 67, 736–740. DOI: 10.1016/j.talanta.2005.03.025.
  • Snee, R. D. Validation of Regression Models: Methods and Examples. Technometrics 1977, 19, 415–428. [Database] DOI: 10.1080/00401706.1977.10489581.
  • Zhan, X. Y.; Zhao, N.; Lin, Z. Z.; Wu, Z. S., Yuan, R. J., Qiao, Y. J. Effect of Algorithms for Calibration Set Selection on Quantitatively Determining Asiaticoside Content in Centella Total Glucosides by near Infrared Spectroscopy. Spectrosc. Spectr. Anal. 2014, 34, 3267–3272. (In Chinese) DOI: 10.3964/j.issn.1000-0593(2014)12-3267-06.
  • Cen, H. Y.; He, Y. Theory and Application of near Infrared Reflectance Spectroscopy in Determination of Food Quality. Trends Food Sci. Technol. 2007, 18, 72–83. DOI: 10.1016/j.tifs.2006.09.003.
  • Xiong, Z.; Sun, D.-W.; Xie, A.; Pu, H.; Han, Z.; Luo, M. Quantitative Determination of Total Pigments in Red Meats Using Hyperspectral Imaging and Multivariate Analysis. Food Chem. 2015, 178, 339–345. DOI: 10.1016/j.foodchem.2015.01.071.
  • Rinnan, A.; Berg, F. V. D.; Engelsen, S. B. Review of the Most Common Pre-Processing Techniques for near-Infrared Spectra. Trends Anal. Chem., 2009, 28, 1201–1222. DOI: 10.1016/j.trac.2009.07.007.
  • Wang, Q.; Liu, Y.; Xu, Q.; Feng, J.; Yu, H. Identification of Mildew Degrees in Honeysuckle Using Hyperspectral Imaging Combined with Variable Selection. J. Food Measure. 2019, 13, 2157–2166. DOI: 10.1007/s11694-019-00136-1.
  • Tian, X.; Fan, S.; Huang, W.; Wang, Z.; Li, J. Detection of Early Decay on Citrus Using Hyperspectral Transmittance Imaging Technology Coupled with Principal Component Analysis and Improved Watershed Segmentation Algorithms. Postharvest Biol. Technol. 2020, 161, 111071. DOI: 10.1016/j.postharvbio.2019.111071.
  • Dhami, N.; Mishra, A. D. Phytochemical Variation: How to Resolve the Quality Controversies of Herbal Medicinal Products? J. Herb. Med. 2015, 5, 118–127. DOI: 10.1016/j.hermed.2015.04.002.
  • Araújo, M. C. U.; Saldanha, T. C. B.; Galvão, R. K. H.; Yoneyama, T.; Chame, H. C.; Visani, V. The Successive Projections Algorithm for Variable Selection in Spectroscopic Multicomponent Analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. DOI: 10.1016/S0169-7439(01)00119-8.
  • Scholkopf, B.; Smola, A.; Muller, K. R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Comput. 1998, 10, 1299–1319. DOI: 10.1162/089976698300017467.
  • Mika, S.; Ratsch, G.; Weston, J.; Scholkopf, B.; Mullers, K. R. Fisher Discriminant Analysis with Kernels. Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No. 98TH8468), 1999, 41–48. DOI: 10.1109/NNSP.1999.788121.
  • Tenenbaum, J. B.; de Silva, V.; Langford, J. C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 2000, 290, 2319–2323. DOI: 10.1126/science.290.5500.2319.
  • Roweis, S. T.; Saul, L. K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 2000, 290, 2323–2326. DOI: 10.1126/science.290.5500.2323.
  • Mishkin, D.; Radenović, F.; Matas, J. Repeatability is Not Enough: Learning Affine Regions via Discriminability. Computer Vision – ECCV 2018. 15th European Conference. Proceedings: Lecture Notes in Computer Science (LNSC 11213), 287–304. DOI: 10.1007/978-3-030-01240-3_18.
  • Barroso-Laguna, A.; Riba, E.; Ponsa, D.; Mikolajczyk, K. Key.Net: Keypoint Detection by Handcrafted and Learned CNN Filters. IEEE/CVF International Conference on Computer Vision (ICCV), 2019, 5835–5843. DOI: 10.1109/ICCV.2019.00593.
  • Luo, Z. X.; Zhou, L.; Bai, X. Y.; Chen, H.; Zhang, J.; Yao, Y.; Li, S.; Fang, T.; Quan, L. ASLFeat: Learning Local Features of Accurate Shape and Localization. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, 6588–6597. DOI: 10.1109/CVPR42600.2020.00662.
  • Zhang, Y.; Hui, J.; Qin, Q.; Sun, Y.; Zhang, T.; Sun, H.; Li, M. Transfer-Learning-Based Approach for Leaf Chlorophyll Content Estimation of Winter Wheat from Hyperspectral Data. Remote Sens. Environ. 2021, 267, 112724. DOI: 10.1016/j.rse.2021.112724.
  • Ma, J.; Zhang, X. J. Study on Remote Sensing Field Hyperspectral Characteristics of Lycium barbarum L. diseases and Pests. Guangdong Agric. Sci. 2015, 42, 165–172. (In Chinese)
  • Zhu, H.; Chu, B.; Zhang, C.; Liu, F.; Jiang, L.; He, Y. Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease with Successive Projections Algorithm and Machine-Learning Classifiers. Sci. Rep. 2017, 7, 4125. DOI: 10.1038/s41598-017-04501-2.
  • Myneni, R. B.; Hall, F. G.; Sellers, P. J.; Marshak, A. L. The Interpretation of Spectral Vegetation Indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. DOI: 10.1109/36.377948.
  • Peerbhay, K. Y.; Mutanga, O.; Ismail, R. Commercial Tree Species Discrimination Using Airborne AISA Eagle Hyperspectral Imagery and Partial Least Squares Discriminant Analysis(PLS-DA) in KwaZulu-Natal, South Africa. ISPRS J. Photogramm. Remote Sens. 2013, 79, 19–28. DOI: 10.1016/j.isprsjprs.2013.01.013.
  • Okwuashi, O.; Ndehedehe, C. E. Deep Support Vector Machine for Hyperspectral Image Classification. Pattern Recognit. 2020, 103, 107298. DOI: 10.1016/j.patcog.2020.107298.
  • Zhao, C. H.; Gao, B.; Zhang, L. J.; Xiaoqing, W. Classification of Hyperspectral Imagery Based on Spectral Gradient, SVM and Spatial Random Forest. Infrared Phys. Technol. 2018, 95, 61–69. DOI: 10.1016/j.infrared.2018.10.012.
  • Friedman, N.; Geiger, D.; Goldszmidt, M. Bayesian Network Classifiers. Mach. Learn. 1997, 29, 131–163. DOI: 10.1023/A:1007465528199.
  • Zhang, H.; Wu, T.; Zhang, L.; Zhang, P. Development of a Portable Field Imaging Spectrometer: Application for the Identification of Sun-Dried and Sulfur-Fumigated Chinese Herbals. Appl. Spectrosc. 2016, 70, 879–887. DOI: 10.1177/0003702816638293.
  • Liu, Y.; Wang, Q.; Xu, Q.; Feng, J.; Yu, H.; Yin, Y. Non-Destructive Detection of Flos Lonicerae Treated by Sulfur Fumigation Based on Hyperspectral Imaging. Food Measure 2018, 12, 2809–2818. DOI: 10.1007/s11694-018-9896-z.
  • He, J.; Zhang, C.; He, Y. Application of near-Infrared Hyperspectral Imaging to Detect Sulfur Dioxide Residual in the Fritillaria thunbergii Bulbus Treated by Sulfur Fumigation. Appl. Sci. 2017, 7, 77. DOI: 10.3390/app7010077.
  • Feng, J.; Liu, Y.; Shi, X.; Wang, Q. Potential of Hyperspectral Imaging for Rapid Identification of True and False Honeysuckle Tea Leaves. Food Measure. 2018, 12, 2184–2192. DOI: 10.1007/s11694-018-9834-0.
  • Sandasi, M.; Vermaak, I.; Chen, W.; Viljoen, A. M. Skullcap and Germander: Preventing Potential Toxicity through the Application of Hyperspectral Imaging and Multivariate Image Analysis as a Novel Quality Control Method. Planta Med. 2014, 80, 1329–1339. DOI: 10.1055/s-0034-1383037.
  • Djokam, M.; Sandasi, M.; Chen, W.; Viljoen, A.; Vermaak, I. Hyperspectral Imaging as a Rapid Quality Control Method for Herbal Tea Blends. Appl. Sci. 2017, 7, 268. DOI: 10.3390/app7030268.
  • Yin, W.-J.; Ru, C.-L.; Zheng, J.; Zhang, L.; Yan, J.-Z.; Zhang, H. Fusion of Spectrum and Image Features to Identify Glycyrrhizae radix et Rhizoma from Different Origins Based on Hyperspectral Imaging Technology. Zhongguo Zhong Yao Za Zhi 2021, 46, 923–930. (In Chinese) DOI: 10.19540/j.cnki.cjcmm.20201120.103.
  • Zheng, J.; Ru, C.-L.; Zhang, L.; Yin, W.-J.; Zhang, H.; Yan, J.-Z. Identification of Armeniacae Semen Amarum and Persicae Semen from Different Origins Based on near Infrared Hyperspectral Imaging Technology. Zhongguo Zhong Yao Za Zhi 2021, 46, 2571–2577. (In Chinese) DOI: 10.19540/j.cnki.cjcmm.20201015.202.
  • Zhang, L.; Ru, C. L.; Yin, W. J.; Zheng, J.; Zhang, H.; Yan, J. Z. Identification of Ziziphi Spinosae Semen from Different Habitats Based on near-Infrared Hyperspectral Imaging Technology and Watershed Algorithm. Chin. J. Pharm. Anal. 2021, 41, 726–734. (In Chinese) DOI: 10.16155/j.0254-1793.2021.04.22.
  • Yang, J.; Xi, M.; Jiang, B.; Man, J.; Meng, Q.; Li, B. FADN: Fully Connected Attitude Detection Network Based on Industrial Video. IEEE Trans. Ind. Inf. 2021, 17, 2011–2020. DOI: 10.1109/TII.2020.2984370.
  • Mou, L. C.; Ghamisi, P.; Zhu, X. X. Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sensing 2017, 55, 3639–3655. DOI: 10.1109/TGRS.2016.2636241.
  • Liu, Q.; Xiao, L.; Yang, J.; Wei, Z. CNN-Enhanced Graph Convolutional Network with Pixel- and Superpixel-Level Feature Fusion for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sensing 2021, 59, 8657–8671. DOI: 10.1109/TGRS.2020.3037361.
  • Zhang, Y.; Ma, W.; Hou, R.; Rong, D.; Qin, X.; Cheng, Y.; Wang, H. Spectroscopic Profiling-Based Geographic Herb Identification by Neural Network with Random Weights. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 278, 121348. DOI: 10.1016/j.saa.2022.121348.
  • Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep Convolutional Neural Networks for Hyperspectral Image Classification. J. Sens. 2015, 2015, 1–12. DOI: 10.1155/2015/258619.
  • Zhang, H.; Pan, Y.; Liu, X.; Chen, Y.; Gong, X.; Zhu, J.; Yan, J.; Zhang, H. Recognition of the Rhizome of Red Ginseng Based on Spectral-Image Dual-Scale Digital Information Combined with Intelligent Algorithms. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 297, 122742. DOI: 10.1016/j.saa.2023.122742.
  • Feng, L.; Zhu, S.; Zhou, L.; Zhao, Y.; Bao, Y.; Zhang, C.; He, Y. Detection of Subtle Bruises on Winter Jujube Using Hyperspectral Imaging with Pixel-Wise Deep Learning Method. IEEE Access 2019, 7, 64494–64505. DOI: 10.1109/ACCESS.2019.2917267.
  • Wu, N.; Zhang, C.; Bai, X.; Du, X.; He, Y. Discrimination of Chrysanthemum Varieties Using Hyperspectral Imaging Combined with a Deep Convolutional Neural Network. Molecules 2018, 23, 2831. DOI: 10.3390/molecules23112831.
  • Zhao, J.; Sugirbay, A.; Chen, Y.; Zhang, S.; Liu, F.; Bu, L.; Chen, Y.; Wang, Z.; Chen, J. FEM Explicit Dynamics Simulation and NIR Hyperspectral Reflectance Imaging for Determination of Impact Bruises of Lycium barbarum L. Postharvest Biol. Technol. 2019, 155, 102–110. DOI: 10.1016/j.postharvbio.2019.05.024.
  • Xia, Z.; Zhang, C.; Weng, H.; Nie, P.; He, Y. Sensitive Wavelengths Selection in Identification of Ophiopogon Japonicus Based on near-Infrared Hyperspectral Imaging Technology. Int. J. Anal. Chem. 2017, 2017, 6018769. DOI: 10.1155/2017/6018769.
  • Ru, C. L.; Li, Z. H.; Tang, R. Z. A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI). Sensors, 2019, 19, 2045. DOI: 10.3390/s19092045.
  • Shen, G. F.; Huang, J. H.; Xu, M. C.; Jin, Q. Discriminant Analysis of Red Ginseng from Different Origins Based on NIR-Hyperspectral Imaging Technology. World Chin. Med. 2021, 16, 3419–3423. (In Chinese).
  • Cheng, J. H.; Chen, Z. G. Rapid Identification of Frankincense Origin Based on Hyperspectral Data. J. Heilongjiang Bayi Agric. Univ. 2021, 33, 93–98. (In Chinese)
  • Sun, M.; Wang, R.; Cheng, X. H.; Huang, Y.; Liu, Y. L. Application of Hyperspectral Imaging Technique for Cordyceps Powder Content and True/False Identification. Chin. J. Mod. Appl. Pharm. 2017, 34, 1114–1117. (In Chinese) DOI: 10.13748/j.cnki.issn1007-7693.2017.08.009.
  • Tankeu, S.; Vermaak, I.; Chen, W.; Sandasi, M.; Kamatou, G.; Viljoen, A. Hyperspectral Imaging and Support Vector Machine: A Powerful Combination to Differentiate Black Cohosh (Actaea racemosa) from Other Cohosh Species. Planta Med. 2018, 84, 407–419. DOI: 10.1055/s-0043-119887.
  • Tankeu, S.; Vermaak, I.; Chen, W.; Sandasi, M.; Viljoen, A. Differentiation between Two “Fang ji” Herbal Medicines, Stephania Tetrandra and the Nephrotoxic Aristolochia fangchi, Using Hyperspectral Imaging. Phytochemistry 2016, 122, 213–222. DOI: 10.1016/j.phytochem.2015.11.008.
  • Wang, J.; Zeng, X. Y.; Du, S. P. Identification and Grading of Tea Using Computer Vision. Appl. Eng. Agric. 2010, 26, 639–645. DOI: 10.13031/2013.32051.
  • Yuan, R. R.; Wang, B.; Liu, G. S.; He, J. G.; Wan, G. L.; Fan, N. Y.; Li, Y.; Sun, Y. R. Study on Detection and Discrimination of Damaged Jujube Based on Hyperspectral Data. Spectrosc. Spectr. Anal. 2021, 41, 2879–2885. DOI: 10.3964/j.issn.1000-0593(2021)09-2879-07.
  • Liang, J.; Li, X.; Zhu, P.; Xu, N.; He, Y. Hyperspectral Reflectance Imaging Combined with Multivariate Analysis for Diagnosis of Sclerotinia Stem Rot on Arabidopsis thaliana leaves. Appl. Sci. 2019, 9, 2092. DOI: 10.3390/app9102092.
  • Wu, D.; Meng, L.; Yang, L.; Wang, J.; Fu, X.; Du, X.; Li, S.; He, Y.; Huang, L. Feasibility of Laser-Induced Breakdown Spectroscopy and Hyperspectral Imaging for Rapid Detection of Thiophanate-Methyl Residue on Mulberry Fruit. IJMS 2019, 20, 2017. DOI: 10.3390/ijms20082017.
  • García-Martín, J. F.; Badaró, A. T.; Barbin, D. F.; Álvarez-Mateos, P. Identification of Copper in Stems and Roots of Jatropha Curcas L. by Hyperspectral Imaging. Processes, 2020, 8, 823. DOI: 10.3390/pr8070823.
  • He, J.; He, Y.; Zhang, C. Determination and Visualization of Peimine and Peiminine Content in Fritillaria thunbergii Bulbi Treated by Sulfur Fumigation Using Hyperspectral Imaging with Chemometrics. Molecules 2017, 22, 1402. DOI: 10.3390/molecules22091402.
  • Wang, Q.; Liu, Y.; Gao, X.; Xie, A.; Yu, H. Potential of Hyperspectral Imaging for Nondestructive Determination of Chlorogenic Acid Content in Flos Lonicerae. Food Measure 2019, 13, 2603–2612. DOI: 10.1007/s11694-019-00180-x.
  • Thomas, S.; Kuska, M. T.; Bohnenkamp, D.; Brugger, A.; Alisaac, E.; Wahabzada, M.; Behmann, J.; Mahlein, A.-K. Benefits of Hyperspectral Imaging for Plant Disease Detection and Plant Protection: A Technical Perspective. J. Plant Dis. Prot. 2018, 125, 5–20. DOI: 10.1007/s41348-017-0124-6.
  • Quijada-Morín, N.; García-Estévez, I.; Nogales-Bueno, J.; Rodríguez-Pulido, F. J.; Heredia, F. J.; Rivas-Gonzalo, J. C.; Escribano-Bailón, M. T.; Hernández-Hierro, J. M. Trying to Set up the Flavanolic Phases during Grape Seed Ripening: A Spectral and Chemical Approach. Talanta 2016, 160, 556–561. DOI: 10.1016/j.talanta.2016.07.064.
  • Nogales-Bueno, J.; Baca-Bocanegra, B.; Hernández-Hierro, J. M.; Garcia, R.; Barroso, J. M.; Heredia, F. J.; Rato, A. E. Assessment of Total Fat and Fatty Acids in Walnuts Using near-Infrared Hyperspectral Imaging. Front. Plant Sci. 2021, 12, 729880. DOI: 10.3389/fpls.2021.729880.
  • Hebling e Tavares, J. P.; Da Silva Medeiros, M. L.; Barbin, D. F. Near-Infrared Techniques for Fraud Detection in Dairy Products: A Review. J. Food Sci. 2022, 87, 1943–1960. DOI: 10.1111/1750-3841.16143.
  • Cao, C. H.; Duan, H. X.; Gao, X. P. Hyperspectral Image Classification Based on Three-Dimensional Adaptive Sampling and Improved Iterative Shrinkage-Threshold Algorithm. J. Vis. Commun. Image Represent 2023, 90, 103693. DOI: 10.1016/j.jvcir.2022.103693.
  • Kleiss, S. F.; Ma, K. F.; El Moumni, M.; Schuurmann, R. C. L.; Zeebregts, C. J.; Haalboom, M.; Bokkers, R. P. H.; de Vries, J.-P. Reliability Assessment of Hyperspectral Imaging with the HyperViewTM System for Lower Extremity Superficial Tissue Oxygenation in Young Healthy Volunteers. J. Clin. Monit. Comput. 2022, 36, 713–723. DOI: 10.1007/s10877-021-00698-w.
  • Yeo, H. C.; Selvarajoo, K. Machine Learning Alternative to Systems Biology Should Not Solely Depend on Data. Brief. Bioinform. 2022, 23, bbac436. DOI: 10.1093/bib/bbac436.
  • Li, J.; Hao, J.; Feng, Q.; Sun, X.; Liu, M. Optimal Selection of Heterogeneous Ensemble Strategies of Time Series Forecasting with Multi-Objective Programming. Expert Syst. Appl. 2021, 166, 114091. DOI: 10.1016/j.eswa.2020.114091.
  • Pastore, V. P.; Zimmerman, T. G.; Biswas, S. K.; Bianco, S. Annotation-Free Learning of Plankton for Classification and Anomaly Detection. Sci. Rep. 2020, 10, 12142. DOI: 10.1038/s41598-020-68662-3.
  • Benkendorf, D. J.; Hawkins, C. P. Effects of Sample Size and Network Depth on a Deep Learning Approach to Species Distribution Modeling. Ecol. Inform 2020, 60, 101137. DOI: 10.1016/j.ecoinf.2020.101137.
  • Shuai, Z.; Xiong, J.; Xie, Z.; Jiang, P. Hyperspectral Face Recognition Based on Spatio-Spectral Fusion and Local Binary Pattern. AOPC 2017: Opt. Sens. Imaging Technol. Appl. 2017, 27, 10462. DOI: 10.1117/12.2281920.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.