190
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Exploring the Mechanism of Anionic Chemosensing by Imidazoles: A Review

ORCID Icon, , & ORCID Icon

References

  • Santos-Figueroa, L. E.; Moragues, M. E.; Climent, E.; Agostini, A.; Martínez-Máñez, R.; Sancenón, F. Chromogenic and Fluorogenic Chemosensors and Reagents for Anions. A Comprehensive Review of the Years 2010–2011. Chem. Soc. Rev. 2013, 42, 3489–3613. DOI: 10.1039/c3cs35429f.
  • Batool, M.; Afzal, Z.; Junaid, H. M.; Solangi, A. R.; Hassan, A. Sulfonamides as Optical Chemosensors. Crit. Rev. Anal. Chem. 2022. DOI: 10.1080/10408347.2022.2105135.
  • Junaid, H. M.; Batool, M.; Harun, F. W.; Akhter, M. S.; Shabbir, N. Naked Eye Chemosensing of Anions by Schiff Bases. Crit. Rev. Anal. Chem. 2022, 52, 463–480. DOI: 10.1080/10408347.2020.1806703.
  • Jain, A.; Gupta, R.; Agarwal, M. Rationally Designed Tri-Armed Imidazole–Indole Hybrids as Naked Eye Receptors for Fluoride Ion Sensing. Synth. Commun. 2017, 47, 1307–1318. DOI: 10.1080/00397911.2017.1324625.
  • Bhaumik, C.; Das, S.; Maity, D.; Baitalik, S. A Terpyridyl-Imidazole (tpy-HImzPh3) Based Bifunctional Receptor for Multichannel Detection of Fe2+ and F − Ions. Dalton Trans. 2011, 40, 11795–11808. DOI: 10.1039/c1dt10965k.
  • Manoj Kumar, S.; Jothi, D.; Munusamy, S.; Enbanathan, S.; Kulathu Iyer, S. Imidazole-Derived New Colorimetric/Fluorometric Chemosensor for the Sensitive Recognition of CN − Ions: Real-Time Application in Food Samples and Fluorescence Bio-Imaging. J. Photochem. Photobiol. A 2023, 434, 114269. DOI: 10.1016/j.jphotochem.2022.114269.
  • Batista, R. M.; Oliveira, E.; Costa, S. P.; Lodeiro, C.; Raposo, M. M. M. Cyanide and Fluoride Colorimetric Sensing by Novel Imidazo-Anthraquinones Functionalised with Indole and Carbazole. Supramol. Chem. 2014, 26, 71–80. DOI: 10.1080/10610278.2013.824082.
  • Bhaskar, R.; Vijayakumar, V.; Srinivasadesikan, V.; Lee, S.-L.; Sarveswari, S. Rationally Designed Imidazole Derivative as Colorimetric and Fluorometric Sensor for Selective, Qualitative and Quantitative Cyanide Ion Detection in Real Time Samples. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 234, 118212. DOI: 10.1016/j.saa.2020.118212.
  • Marín-Hernández, C.; Santos-Figueroa, L. E.; Moragues, M. E.; Raposo, M. M. M.; Batista, R. M. F.; Costa, S. P. G.; Pardo, T.; Martínez-Máñez, R.; Sancenón, F. Imidazoanthraquinone Derivatives for the Chromofluorogenic Sensing of Basic Anions and Trivalent Metal Cations. J. Org. Chem. 2014, 79, 10752–10761. DOI: 10.1021/jo501515e.
  • Kumar, D.; Thomas, K. R. J. 2-Hydroxyarylimidazole-Based Colorimetric and Ratiometric Fluoride Ion Sensors. RSC Adv 2014, 4, 56466–56474. DOI: 10.1039/C4RA10482J.
  • Li, T.; Yu, L.; Jin, D.; Chen, B.; Li, L.; Chen, L.; Li, Y. A Colorimetric and Fluorescent Probe for Fluoride Anions Based on a Phenanthroimidazole–Cyanine Platform. Anal. Methods 2013, 5, 1612–1616. DOI: 10.1039/c3ay26461k.
  • Son, Y.-A.; Gwon, S.-Y.; Kim, S.-H. Chromene and Imidazole Based D-π-a Chemosensor Preparation and Its Anion Responsive Effects. Molecular Crystals and Liquid Crystals 2014, 599, 16–22. DOI: 10.1080/15421406.2014.935913.
  • Das, S.; Karmakar, S.; Mardanya, S.; Baitalik, S. Synthesis, Structural Characterization, and Multichannel Anion and Cation Sensing Studies of a Bifunctional Ru(ii) Polypyridyl–Imidazole Based Receptor. Dalton Trans. 2014, 43, 3767–3782. DOI: 10.1039/c3dt52424h.
  • Bhaumik, C.; Maity, D.; Das, S.; Baitalik, S. Synthesis, Structural Characterization, Solvatochromism, and Ion-Binding Studies of a Ditopic Receptor Based on 2-(4-[2,2′: 6′,2′′]Terpyridin-4′-yl-Phenyl)-1H-Phenanthro[9,10-d] Imidazole (tpy-HImzphen) Unit. RSC Adv. 2012, 2, 2581–2594. DOI: 10.1039/c2ra00023g.
  • Kong, F.; Liu, Q.; Wu, X.; Wang, Z.; Chen, Q.; Chen, L. 2-(4-Formylphenyl)Phenanthroimidazole as a Colorimetric and Fluorometric Probe for Selective Fluoride Ion Sensing. J. Fluoresc. 2011, 21, 1331–1335. DOI: 10.1007/s10895-011-0858-7.
  • Suganya, S.; Park, J. S.; Velmathi, S. Highly Fluorescent Imidazole Probes for the Pico Molar Detection of CN − Ion and Application in Living Cells. J. Fluoresc. 2016, 26, 207–215. DOI: 10.1007/s10895-015-1702-2.
  • Beneto, A. J.; Siva, A. Highly Selective Colorimetric Detection of Cyanide Anions in Aqueous Media by Triphenylamine and Phenanthro(9,10-d)Imidazole Based Probes. Photochem. Photobiol. Sci. 2017, 16, 255–261. DOI: 10.1039/c6pp00345a.
  • Gupta, R. C.; Ali, R.; Razi, S. S.; Srivastava, P.; Dwivedi, S. K.; Misra, A. Synthesis and Application of a New Class of D–π–a Type Charge Transfer Probe Containing Imidazole – Naphthalene Units for Detection of F − and CO2. RSC Adv. 2017, 7, 4941–4949. DOI: 10.1039/C6RA26439E.
  • Parthiban, C.; Ciattini, S.; Chelazzi, L.; Elango, K. P. Colorimetric Sensing of Anions by Cu(II), Co(II), Ni(II) and Zn(II) Complexes of Naphthoquinone-Imidazole Hybrid—Influence of Complex Formation on Selectivity and Sensing Medium. Sens. Actuators, B 2016, 231, 768–778. DOI: 10.1016/j.snb.2016.03.106.
  • Jayasudha, P.; Manivannan, R.; Elango, K. P. Highly Selective Colorimetric Receptors for Detection of Fluoride Ion in Aqueous Solution Based on Quinone-Imidazole Ensemble—Influence of Hydroxyl Group. Sens. Actuators, B 2016, 237, 230–238. DOI: 10.1016/j.snb.2016.06.084.
  • Jayasudha, P.; Manivannan, R.; Elango, K. P. A Diquinone–Imidazole Ensemble for Selective Colorimetric Sensing of Cyanide in Aqueous Medium via Anion Induced NIR Absorption. RSC Adv. 2016, 6, 25473–25479. DOI: 10.1039/C6RA00677A.
  • Mardanya, S.; Karmakar, S.; Mondal, D.; Baitalik, S. An Imidazolyl-Pyreno-Imidazole Conjugate as a Cyanide Sensor and a Set–Reset Memorized Sequential Logic Device. Dalton Trans. 2015, 44, 15994–16012. DOI: 10.1039/c5dt01317h.
  • Manivannan, R.; Ciattini, S.; Chelazzi, L.; Elango, K. P. Benzoquinone–Imidazole Hybrids as Selective Colorimetric Sensors for Cyanide in Aqueous, Solid and Gas Phases. RSC Adv. 2015, 5, 87341–87351. DOI: 10.1039/C5RA13597D.
  • Manivannan, R.; Elango, K. P. Spectral and Electrochemical Studies on Anion Recognition by Ferrocene Based Imidazoles Possessing Different Electron Acceptor Moieties. J. Organomet. Chem. 2015, 799–800, 99–107. DOI: 10.1016/j.jorganchem.2015.09.029.
  • Batista, R. M. F.; Costa, S. P. G.; Raposo, M. M. M. Naphthyl-Imidazo-Anthraquinones as Novel Colorimetric and Fluorimetric Chemosensors for Ion Sensing. J. Photochem. Photobiol. A 2013, 259, 33–40. DOI: 10.1016/j.jphotochem.2013.03.001.
  • Goswami, S.; Chakrabarty, R. An Imidazole Based Colorimetric Sensor for Fluoride Anion. Eur. J. Chem. 2011, 2, 410–415. DOI: 10.5155/eurjchem.2.3.410-415.189.
  • Zheng, Y.; Wang, Q.; Tan, C. Selective Signaling of Fluoride Anion Based on Imidazole Moieties. Luminescence 2012, 27, 302–306. DOI: 10.1002/bio.1351.
  • Mo, H.-J.; Shen, Y.; Ye, B.-H. Selective Recognition of Cyanide Anion via Formation of Multipoint NH and Phenyl CH Hydrogen Bonding with Acyclic Ruthenium Bipyridine Imidazole Receptors in Water. Inorg. Chem. 2012, 51, 7174–7184. DOI: 10.1021/ic300217v.
  • Zheng, Y.; Tan, C.; Wang, Q.; Zhang, C. C. 2-(3-Pyridyl)Imidazole-4,5-Dicarboxylic Acid Based Lanthanide Luminescent Anion Sensor. Solid State Sci. 2011, 13, 1687–1691. DOI: 10.1016/j.solidstatesciences.2011.06.014.
  • Liu, Y.; Qiu, Q.; Zhang, X.; Huang, K.; Qin, D. Tetra-Imidazole Functionalized Pyrene for Constructing Co-MOF and Its Application for Sensing of Cyanide Ion. J. Solid State Chem. 2021, 300, 122258. DOI: 10.1016/j.jssc.2021.122258.
  • Yilmaz, M. D. A Novel Ratiometric and Colorimetric Probe for Rapid and Ultrasensitive Detection of Nitrite in Water Based on an Acenaphtho[1,2-d] Imidazole Derivative. Anal. Chim. Acta 2021, 1166, 338597. DOI: 10.1016/j.aca.2021.338597.
  • Pandith, A.; Uddin, N.; Choi, C. H.; Kim, H.-S. Highly Selective Imidazole-Appended 9,10-N,N′-Diaminomethylanthracene Fluorescent Probe for Switch-on Zn2+ Detection and Switch-off H2PO4− and CN − Detection in 80% Aqueous DMSO, and Applications to Sequential Logic Gate Operations. Sens. Actuators, B 2017, 247, 840–849. DOI: 10.1016/j.snb.2017.03.112.
  • Bu, F.; Zhao, B.; Kan, W.; Wang, L.; Song, B.; Wang, J.; Zhang, Z.; Deng, Q.; Yin, G. A Phenanthro[9,10-d]Imidazole-Based AIE Active Fluorescence Probe for Sequential Detection of Ag(+)/AgNPs and SCN(-) in Water and Saliva Samples and Its Application in Living Cells. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 223, 117333. DOI: 10.1016/j.saa.2019.117333.
  • Asaithambi, G.; Periasamy, V. Phenanthrene-Imidazole-Based Fluorescent Sensor for Selective Detection of Ag + and F − Ions: Real Sample Application and Live Cell Imaging. Res. Chem. Intermed. 2019, 45, 1295–1308. DOI: 10.1007/s11164-018-3678-4.
  • Yu, H.; Fan, M.; Liu, Q.; Su, Z.; Li, X.; Pan, Q.; Hu, X. Two Highly Water-Stable Imidazole-Based Ln-MOFs for Sensing Fe3+,Cr2O72–/CrO42– in a Water Environment. Inorg. Chem. 2020, 59, 2005–2010. DOI: 10.1021/acs.inorgchem.9b03364.
  • Saha, D.; Das, S.; Maity, D.; Dutta, S.; Baitalik, S. Synthesis, Structural Characterization, and Photophysical, Electrochemical, Intercomponent Energy-Transfer, and Anion-Sensing Studies of Imidazole 4,5-Bis(Benzimidazole)-Bridged OsIIOsII and RuIIOsII Bipyridine Complexes. Inorg. Chem. 2011, 50, 46–61. DOI: 10.1021/ic100905u.
  • Khan, S. A.; Ullah, Q.; Parveen, H.; Mukhtar, S.; Alzahrani, K. A.; Asad, M. Synthesis and Photophysical Investigation of Novel Imidazole Derivative an Efficient Multimodal Chemosensor for Cu(II) and Fluoride Ions. J. Photochem. Photobiol. A 2021, 406, 113022. DOI: 10.1016/j.jphotochem.2020.113022.
  • Avinash, I.; Parveen, S.; Anantharaman, G. Backbone Boron-Functionalized Imidazoles/Imidazolium Salts: Synthesis, Structure, Metalation Studies, and Fluoride Sensing Properties. Inorg. Chem. 2020, 59, 5646–5661. DOI: 10.1021/acs.inorgchem.0c00348.
  • Jamkratoke, M.; Tumcharern, G.; Tuntulani, T.; Tomapatanaget, B. A Selective Spectrofluorometric Determination of Micromolar Level of Cyanide in Water Using Naphthoquinone Imidazole Boronic-Based Sensors and a Surfactant Cationic CTAB Micellar System. J. Fluoresc. 2011, 21, 1179–1187. DOI: 10.1007/s10895-010-0796-9.
  • Zhang, Y.; Yu, X. Colorimetric and Electrochemical Sensing for Fluoride Anion by Ferrocenyl-Based Imidazole Compound with Electron Donor–Acceptor Structure. Res. Chem. Intermed. 2017, 43, 1099–1105. DOI: 10.1007/s11164-016-2685-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.