540
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Real-Time Biosensing Bacteria and Virus with Quartz Crystal Microbalance: Recent Advances, Opportunities, and Challenges

, , , , , , & show all

References

  • Das, K.; Penelle, J.; Rotello, V. M. Selective Picomolar Detection of Hexachlorobenzene in Water Using a Quartz Crystal Microbalance Coated with a Molecularly Imprinted Polymer Thin Film. Langmuir. 2003, 19, 3921–3925. DOI: 10.1021/la026781u.
  • Templier, V.; Roux, A.; Roupioz, Y.; Livache, T. Ligands for Label-Free Detection of Whole Bacteria on Biosensors: A Review. TrAC, Trends Anal. Chem. 2016, 79, 71–79. DOI: 10.1016/j.trac.2015.10.015.
  • Yu, Z.; Gong, H.; Li, Y.; Xu, J.; Zhang, J.; Zeng, Y.; Liu, X.; Tang, D. Chemiluminescence-Derived Self-Powered Photoelectrochemical Immunoassay for Detecting a Low-Abundance Disease-Related Protein. Anal. Chem. 2021, 93, 13389–13397. DOI: 10.1021/acs.analchem.1c03344.
  • Lv, S.; Zhang, K.; Zeng, Y.; Tang, D. Double Photosystems-Based ‘Z-Scheme’ Photoelectrochemical Sensing Mode for Ultrasensitive Detection of Disease Biomarker Accompanying Three-Dimensional DNA Walker. Anal. Chem. 2018, 90, 7086–7093. DOI: 10.1021/acs.analchem.8b01825.
  • Zeng, R.; Gong, H.; Li, Y.; Li, Y.; Lin, W.; Tang, D.; Knopp, D. CRISPR-Cas12a-Derived Photoelectrochemical Biosensor for Point-Of-Care Diagnosis of Nucleic Acid. Anal. Chem. 2022, 94, 7442–7448. DOI: 10.1021/acs.analchem.2c01373.
  • Zeng, R.; Li, Y.; Li, Y.; Wan, Q.; Huang, Z.; Qiu, Z.; Tang, D. Smartphone-Based Photoelectrochemical Immunoassay with Co(9)S(8)@ZnIn(2)S(4) for Point-of-Care Diagnosis of Breast Cancer Biomarker. Research (Wash D C). 2022, 2022, 9831521. DOI: 10.34133/2022/9831521.
  • Yu, Z.; Gong, H.; Gao, Y.; Li, L.; Xue, F.; Zeng, Y.; Li, M.; Liu, X.; Tang, D. Integrated Photothermal-Pyroelectric Biosensor for Rapid and Point-of-Care Diagnosis of Acute Myocardial Infarction: A Convergence of Theoretical Research and Commercialization. Small. 2022, 18, e2202564. DOI: 10.1002/smll.202202564.
  • Zeng, R.; Qiu, M.; Wan, Q.; Huang, Z.; Liu, X.; Tang, D.; Knopp, D. Smartphone-Based Electrochemical Immunoassay for Point-of-Care Detection of SARS-CoV-2 Nucleocapsid Protein. Anal. Chem. 2022, 94, 15155–15161. DOI: 10.1021/acs.analchem.2c03606.
  • Huang, L.; Zeng, R.; Xu, J.; Tang, D. Point-of-Care Immunoassay Based on a Multipixel Dual-Channel Pressure Sensor Array with Visual Sensing Capability of Full-Color Switching and Reliable Electrical Signals. Anal. Chem. 2022, 94, 13278–13286. DOI: 10.1021/acs.analchem.2c03393.
  • Yu, Z.; Tang, Y.; Cai, G.; Ren, R.; Tang, D. Paper Electrode-Based Flexible Pressure Sensor for Point-of-Care Immunoassay with Digital Multimeter. Anal. Chem. 2019, 91, 1222–1226. DOI: 10.1021/acs.analchem.8b04635.
  • Huang, X. H.; Chen, Q.; Pan, W.; Yao, Y. Advances in the Mass Sensitivity Distribution of Quartz Crystal Microbalances: A Review. Sensors. 2022, 22, 5112. DOI: 10.3390/s22145112.
  • Lange, K. Bulk and Surface Acoustic Wave Biosensors for Milk Analysis. Biosensors-Basel. 2022, 12, 602. DOI: 10.3390/bios12080602.
  • Pohanka, M.; Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove, Czech Republic; Department of Geology and Pedology, Mendel University in Brno, Czech Republic The Piezoelectric Biosensors: Principles and Applications, a Review. Int. J. Electrochem. Sci. 2017, 12, 496–506. DOI: 10.20964/2017.01.44.
  • Easley, A. D.; Ma, T.; Eneh, C. I.; Yun, J.; Thakur, R. M.; Lutkenhaus, J. L. A Practical Guide to Quartz Crystal Microbalance with Dissipation Monitoring of Thin Polymer Films. J. Poly. Sci. 2022, 60, 1090–1107. DOI: 10.1002/pol.20210324.
  • Bratek-Skicki, A.; Sadowska, M.; Maciejewska-Prończuk, J.; Adamczyk, Z. Nanoparticle and Bioparticle Deposition Kinetics: Quartz Microbalance Measurements. Nanomat. 2021, 11, 145. DOI: 10.3390/nano11010145.
  • Mujahid, A.; Afzal, A.; Dickert, F. L. An Overview of High Frequency Acoustic Sensors-QCMs, SAWs and FBARs-Chemical and Biochemical Applications. Sensors. 2019, 19, 4395. DOI: 10.3390/s19204395.
  • Afzal, A.; Mujahid, A.; Schirhagl, R.; Bajwa, S. Z.; Latif, U.; Feroz, S. Gravimetric Viral Diagnostics: QCM Based Biosensors for Early Detection of Viruses. Chemosensors. 2017, 5, 7. DOI: 10.3390/chemosensors5010007.
  • Bally, M.; Block, S.; Hook, F.; Larson, G.; Parveen, N.; Rydell, G. E. Physicochemical Tools for Studying Virus Interactions with Targeted Cell Membranes in a Molecular and Spatiotemporally Resolved Context. Anal. Bioanal. Chem. 2021, 413, 7157–7178. DOI: 10.1007/s00216-021-03510-5.
  • Wang, L.; Lin, J. H. Recent Advances on Magnetic Nanobead Based Biosensors: From Separation to Detection. Trac, Trends Anal. Chem. 2020, 128, 115915.
  • Jia, M. F.; Zhang, Z.; Li, J. H.; Ma, X.; Chen, L. X.; Yang, X. B. Molecular Imprinting Technology for Microorganism Analysis. Trac, Trends Anal. Chem. 2018, 106, 190–201. DOI: 10.1016/j.trac.2018.07.011.
  • Subramanian, S.; Huiszoon, R. C.; Chu, S.; Bentley, W. E.; Ghodssi, R. Microsystems for Biofilm Characterization and sensing – A Review. Biofilm. 2020, 2, 100015. DOI: 10.1016/j.bioflm.2019.100015.
  • Kalograiaki, I.; Campanero-Rhodes, M. A.; Proverbio, D.; Euba, B.; Garmendia, J.; Aastrup, T.; Solis, D. Bacterial Surface Glycans: Microarray and QCM Strategies for Glycophenotyping and Exploration of Recognition by Host Receptors. Methods Enzymol. 2018, 598, 37–70.
  • Lim, H. J.; Saha, T.; Tey, B. T.; Tan, W. S.; Ooi, C. W. Quartz Crystal Microbalance-Based Biosensors as Rapid Diagnostic Devices for Infectious Diseases. Biosens. Bioelectron. 2020, 168, 112513. DOI: 10.1016/j.bios.2020.112513.
  • Skládal, P. Piezoelectric Biosensors. TrAC, Trends Anal. Chem. 2016, 79, 127–133. DOI: 10.1016/j.trac.2015.12.009.
  • Johannsmann, D.; Reviakine, I.; Richter, R. P. Dissipation in Films of Adsorbed Nanospheres Studied by Quartz Crystal Microbalance (QCM). Anal. Chem. 2009, 81, 8167–8176. DOI: 10.1021/ac901381z.
  • Voinova, M. V.; Jonson, M.; Kasemo, B. Missing Mass Effect in Biosensor’s QCM Applications. Biosens. Bioelectron. 2002, 17, 835–841. DOI: 10.1016/s0956-5663(02)00050-7.
  • Latif, U.; Can, S.; Sussitz, H. F.; Dickert, F. L. Molecular Imprinted Based Quartz Crystal Microbalance Sensors for Bacteria and Spores. Chemosensors. 2020, 8, 64. DOI: 10.3390/chemosensors8030064.
  • Speight, R. E.; Cooper, M. A. A Survey of the 2010 Quartz Crystal Microbalance Literature. J. Mol. Recognit. 2012, 25, 451–473. DOI: 10.1002/jmr.2209.
  • Bragazzi, N. L.; Amicizia, D.; Panatto, D.; Tramalloni, D.; Valle, I.; Gasparini, R. Chapter Six – Quartz-Crystal Microbalance (QCM) for Public Health: An Overview of Its Applications. In Advances in Protein Chemistry and Structural Biology; R. Donev, Ed.; Academic Press: Cambridge, MA, 2015; pp 149.
  • Vashist, S. K.; Vashist, P. Recent Advances in Quartz Crystal Microbalance-Based Sensors. J. Sens. 2011, 2011, 1–13. DOI: 10.1155/2011/571405.
  • Olsson, A. L. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K. Acoustic Sensing of the Bacterium-Substratum Interface Using QCM-D and the Influence of Extracellular Polymeric Substances. J. Colloid Interface Sci. 2011, 357, 135–138. DOI: 10.1016/j.jcis.2011.01.035.
  • Guha, A.; Ahmad, O. S.; Guerreiro, A.; Karim, K.; Sandström, N.; Ostanin, V. P.; van der Wijngaart, W.; Piletsky, S. A.; Ghosh, S. K. Direct Detection of Small Molecules Using a Nano-Molecular Imprinted Polymer Receptor and a Quartz Crystal Resonator Driven at a Fixed Frequency and Amplitude. Biosens. Bioelectron. 2020, 158, 112176. DOI: 10.1016/j.bios.2020.112176.
  • Driscoll, M.; Ramsay, C.; Watkin, J. Improved Sensitivity Method for Rapid Hygiene Monitoring Using ATP Bioluminescence. Luminescence. 2006, 21, 274.
  • Song, W.; Zhu, Z.; Mao, Y.; Zhang, S. A Sensitive Quartz Crystal Microbalance Assay of Adenosine Triphosphate via DNAzyme-Activated and Aptamer-Based Target-Triggering Circular Amplification. Biosens. Bioelectron. 2014, 53, 288–294. DOI: 10.1016/j.bios.2013.09.067.
  • Zhou, Q.; Tang, D. Recent Advances in Photoelectrochemical Biosensors for Analysis of Mycotoxins in Food. TrAC, Trends Anal. Chem. 2020, 124, 115814. DOI: 10.1016/j.trac.2020.115814.
  • Lin, Y.; Zhou, Q.; Tang, D.; Niessner, R.; Yang, H.; Knopp, D. Silver Nanolabels-Assisted Ion-Exchange Reaction with CdTe Quantum Dots Mediated Exciton Trapping for Signal-On Photoelectrochemical Immunoassay of Mycotoxins. Anal. Chem. 2016, 88, 7858–7866. DOI: 10.1021/acs.analchem.6b02124.
  • Shu, J.; Tang, D. Current Advances in Quantum-Dots-Based Photoelectrochemical Immunoassays. Chem. Asian J. 2017, 12, 2780–2789. DOI: 10.1002/asia.201701229.
  • Shu, J.; Tang, D. Recent Advances in Photoelectrochemical Sensing: From Engineered Photoactive Materials to Sensing Devices and Detection Modes. Anal. Chem. 2020, 92, 363–377. DOI: 10.1021/acs.analchem.9b04199.
  • Schnettelker, A.; Lieberzeit, P. A Self-Organisation Synthesis Approach for Bacteria Molecularly Imprinted Polymers. Procedia Eng. 2016, 168, 557–560. DOI: 10.1016/j.proeng.2016.11.524.
  • Shen, Z. Q.; Wang, J. F.; Qiu, Z. G.; Jin, M.; Wang, X. W.; Chen, Z. L.; Li, J. W.; Cao, F. H. QCM Immunosensor Detection of Escherichia coli O157:H7 Based on Beacon Immunomagnetic Nanoparticles and Catalytic Growth of Colloidal Gold. Biosens. Bioelectron. 2011, 26, 3376–3381. DOI: 10.1016/j.bios.2010.12.035.
  • Wan, Y.; Zhang, D.; Hou, B. R. Determination of Sulphate-Reducing Bacteria Based on Vancomycin-Functionalised Magnetic Nanoparticles Using a Modification-Free Quartz Crystal Microbalance. Biosens. Bioelectron. 2010, 25, 1847–1850. DOI: 10.1016/j.bios.2009.12.028.
  • Bayramoglu, G.; Ozalp, V. C.; Oztekin, M.; Arica, M. Y. Rapid and Label-Free Detection of Brucella melitensis in Milk and Milk Products Using an Aptasensor. Talanta. 2019, 200, 263–271. DOI: 10.1016/j.talanta.2019.03.048.
  • Bunroddith, K.; Viseshakul, N.; Chansiri, K.; Lieberzeit, P. QCM-Based Rapid Detection of PCR Amplification Products of Ehrlichia canis. Anal. Chim. Acta. 2018, 1001, 106–111. DOI: 10.1016/j.aca.2017.10.037.
  • Poller, A. M.; Spieker, E.; Lieberzeit, P. A.; Preininger, C. Surface Imprints: Advantageous Application of Ready2use Materials for Bacterial Quartz-Crystal Microbalance Sensors. ACS Appl. Mater. Interfaces. 2017, 9, 1129–1135. DOI: 10.1021/acsami.6b13888.
  • Kushwaha, A.; Srivastava, J.; Singh, A. K.; Anand, R.; Raghuwanshi, R.; Rai, T.; Singh, M. Epitope Imprinting of Mycobacterium leprae Bacteria via Molecularly Imprinted Nanoparticles Using Multiple Monomers Approach. Biosens. Bioelectron. 2019, 145, 111698. DOI: 10.1016/j.bios.2019.111698.
  • Soylu, M. Ç.; Azgin, S. T. Sensitive Multi-Detection of Escherichia coli by Quartz Crystal Microbalance with a Novel Surface Controllable Sensing Method in Liquid Organic Fertilizer Produced by Sewage Sludge. ChemistrySelect. 2021, 6, 13955–13963. DOI: 10.1002/slct.202102149.
  • Liu, F.; Li, Y.; Su, X.-L.; Slavik, M. F.; Ying, Y.; Wang, J. QCM Immunosensor with Nanoparticle Amplification for Detection of Escherichia coli O157:H7. Sens. & Instrumen. Food Qual. 2007, 1, 161–168. DOI: 10.1007/s11694-007-9021-1.
  • Jiang, X.; Wang, R.; Wang, Y.; Su, X.; Ying, Y.; Wang, J.; Li, Y. Evaluation of Different Micro/Nanobeads Used as Amplifiers in QCM Immunosensor for More Sensitive Detection of E. coli O157:H7. Biosens. Bioelectron. 2011, 29, 23–28. DOI: 10.1016/j.bios.2011.07.059.
  • Thanh Ngo, V. K.; Nguyen, D. G.; Uyen Nguyen, H. P.; Man Tran, V.; My Nguyen, T. K.; Phat Huynh, T.; Vinh Lam, Q.; Dat Huynh, T.; Lien Truong, T. N. Quartz Crystal Microbalance (QCM) as Biosensor for the Detecting of Escherichia coli O157:H7. Adv. Nat. Sci: Nanosci. Nanotechnol. 2014, 5, 045004. DOI: 10.1088/2043-6262/5/4/045004.
  • Jing, X.; Wu, Y.; Wang, D.; Qu, C.; Liu, J.; Gao, C.; Mohamed, A.; Huang, Q.; Cai, P.; Ashry, N. M. Ionic Strength-Dependent Attachment of Pseudomonas aeruginosa PAO1 on Graphene Oxide Surfaces. Environ. Sci. Technol. 2022, 56, 16707–16715. DOI: 10.1021/acs.est.1c08672.
  • Wang, H.; Wang, L.; Hu, Q.; Wang, R.; Li, Y.; Kidd, M. Rapid and Sensitive Detection of Campylobacter jejuni in Poultry Products Using a Nanoparticle-Based Piezoelectric Immunosensor Integrated with Magnetic Immunoseparation. J. Food Prot. 2018, 81, 1321–1330. DOI: 10.4315/0362-028X.JFP-17-381.
  • Hong, S.-R.; Kim, M.-S.; Jeong, H.-D.; Hong, S. Development of Real-Time and Quantitative QCM Immunosensor for the Rapid Diagnosis of Aeromonas hydrophila Infection. Aquac. Res. 2017, 48, 2055–2063. DOI: 10.1111/are.13039.
  • Wang, L. J.; Wang, R. H.; Chen, F.; Jiang, T. S.; Wang, H.; Slavik, M.; Wei, H.; Li, Y. B. QCM-Based Aptamer Selection and Detection of Salmonella Typhimurium. Food Chem. 2017, 221, 776–782. DOI: 10.1016/j.foodchem.2016.11.104.
  • Wang, R.; Li, Y. Hydrogel Based QCM Aptasensor for Detection of Avian Influenza Virus. Biosens. Bioelectron. 2013, 42, 148–155. DOI: 10.1016/j.bios.2012.10.038.
  • Yu, X.; Chen, F.; Wang, R.; Li, Y. Whole-Bacterium SELEX of DNA Aptamers for Rapid Detection of E.coli O157:H7 Using a QCM Sensor. J. Biotechnol. 2018, 266, 39–49. DOI: 10.1016/j.jbiotec.2017.12.011.
  • Kim, Y. K.; Lim, S.-I.; Cho, Y.-Y.; Choi, S.; Song, J.-Y.; An, D.-J. Detection of H3N2 Canine Influenza Virus Using a Quartz Crystal Microbalance. J. Virol. Methods. 2014, 208, 16–20. DOI: 10.1016/j.jviromet.2014.07.022.
  • Oravczová, V.; Tatarko, M.; Süle, J.; Hun, M.; Kerényi, Z.; Hucker, A.; Hianik, T. Detection of Listeria innocua by Acoustic Aptasensor. In Proceedings, 2020, 60(1), 18.
  • Klangprapan, S.; Choke-Arpornchai, B.; Lieberzeit, P. A.; Choowongkomon, K. Sensing the Classical Swine Fever Virus with Molecularly Imprinted Polymer on Quartz Crystal Microbalance. Heliyon. 2020, 6, e04137. DOI: 10.1016/j.heliyon.2020.e04137.
  • Long, W.; Patra, I.; Alhachami, F. R.; Sherbekov, U. A.; Majdi, A.; Abed, S. A. Aptamer Based Nanoprobes for Detection of Foodborne Virus in Food and Environment Samples: Recent Progress and Challenges. Crit. Rev. Anal. Chem. DOI: 10.1080/10408347.2022.2114785
  • Rodphukdeekul, S.; Tabata, M.; Ratanaporncharoen, C.; Takeuchi, Y.; Somboon, P.; Boonlue, W.; Miyahara, Y.; Sriyudthsak, M. Quantitative Assessment of Periodontal Bacteria Using a Cell-Based Immunoassay with Functionalized Quartz Crystal Microbalance. Chemosensors. 2021, 9, 159. DOI: 10.3390/chemosensors9070159.
  • Samardzic, R.; Sussitz, H. F.; Jongkon, N.; Lieberzeit, P. A. Quartz Crystal Microbalance in-Line Sensing of Escherichia Coli in a Bioreactor Using Molecularly Imprinted Polymers. Sens. Lett. 2014, 12, 1152–1155. DOI: 10.1166/sl.2014.3201.
  • Kalograiaki, I.; Euba, B.; Proverbio, D.; Campanero-Rhodes, M. A.; Aastrup, T.; Garmendia, J.; Solís, D. Combined Bacteria Microarray and Quartz Crystal Microbalance Approach for Exploring Glycosignatures of Nontypeable Haemophilus influenzae and Recognition by Host Lectins. Anal. Chem. 2016, 88, 5950–5957. DOI: 10.1021/acs.analchem.6b00905.
  • Lim, H. J.; Saha, T.; Tey, B. T.; Tan, W. S.; Hassan, S. S.; Ooi, C. W. Quartz Crystal Microbalance-Based Biosensing of Hepatitis B Antigen Using a Molecularly Imprinted Polydopamine Film. Talanta. 2022, 249, 123659. DOI: 10.1016/j.talanta.2022.123659.
  • Kabay, G.; DeCastro, J.; Altay, A.; Smith, K.; Lu, H.-W.; Capossela, A. M.; Moarefian, M.; Aran, K.; Dincer, C. Emerging Biosensing Technologies for the Diagnostics of Viral Infectious Diseases. Adv. Mater. 2022, 34, 2201085. DOI: 10.1002/adma.202201085.
  • Ventura-Aguilar, R. I.; Bautista-Baños, S.; Mendoza-Acevedo, S.; Bosquez-Molina, E. Nanomaterials for Designing Biosensors to Detect Fungi and Bacteria Related to Food Safety of Agricultural Products. Postharvest Biol. Technol. 2023, 195, 112116. DOI: 10.1016/j.postharvbio.2022.112116.
  • Koh, I.; Josephson, L. Magnetic Nanoparticle Sensors. Sensors (Basel). 2009, 9, 8130–8145. DOI: 10.3390/s91008130.
  • Lim, M.-C.; Park, J. Y.; Park, K.; Ok, G.; Jang, H.-J.; Choi, S.-W. An Automated System for Separation and Concentration of Food-Borne Pathogens Using Immunomagnetic Separation. Food Control. 2017, 73, 1541–1547. DOI: 10.1016/j.foodcont.2016.11.021.
  • Zeng, R.; Tang, D. Magnetic Bead-Based Photoelectrochemical Immunoassay for Sensitive Detection of Carcinoembryonic Antigen Using Hollow Cadmium Sulfide. Talanta. 2020, 219, 121215. DOI: 10.1016/j.talanta.2020.121215.
  • Zhou, Q.; Lin, Y.; Zhang, K.; Li, M.; Tang, D. Reduced Graphene Oxide/BiFeO(3) Nanohybrids-Based Signal-on Photoelectrochemical Sensing System for Prostate-Specific Antigen Detection Coupling with Magnetic Microfluidic Device. Biosens. Bioelectron. 2018, 101, 146–152. DOI: 10.1016/j.bios.2017.10.027.
  • Gao, Z.; Xu, M.; Hou, L.; Chen, G.; Tang, D. Magnetic Bead-Based Reverse Colorimetric Immunoassay Strategy for Sensing Biomolecules. Anal. Chem. 2013, 85, 6945–6952. DOI: 10.1021/ac401433p.
  • Ozalp, V. C.; Bayramoglu, G.; Kavruk, M.; Keskin, B. B.; Oktem, H. A.; Arica, M. Y. Pathogen Detection by Core-Shell Type Aptamer-Magnetic Preconcentration Coupled to Real-Time PCR. Anal. Biochem. 2014, 447, 119–125. DOI: 10.1016/j.ab.2013.11.022.
  • Yang, Y.; Pang, W.; Zhang, H.; Cui, W.; Jin, K.; Sun, C.; Wang, Y.; Zhang, L.; Ren, X.; Duan, X. Manipulation of Single Cells via a Stereo Acoustic Streaming Tunnel (SteAST). Microsyst. Nanoeng. 2022, 8, 88. DOI: 10.1038/s41378-022-00424-9.
  • Call, Z. D.; Jang, I.; Geiss, B. J.; Dandy, D. S.; Henry, C. S. Progress toward a Simplified UTI Diagnostic: Pump-Free Magnetophoresis for E. coli Detection. Anal. Chem. 2022, 94, 7545–7550. DOI: 10.1021/acs.analchem.2c00316.
  • Boisen, M. L.; Oottamasathien, D.; Jones, A. B.; Millett, M. M.; Nelson, D. S.; Bornholdt, Z. A.; Fusco, M. L.; Abelson, D. M.; Oda, S.; Hartnett, J. N.; et al. Development of Prototype Filovirus Recombinant Antigen Immunoassays. J. Infect. Dis. 2015, 212, S359–S367. DOI: 10.1093/infdis/jiv353.
  • Prozorov, T. Magnetic Microbes: Bacterial Magnetite Biomineralization. Semin. Cell Dev. Biol. 2015, 46, 36–43. DOI: 10.1016/j.semcdb.2015.09.003.
  • Liu, S.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Preparation, Surface Functionalization and Application of Fe3O4 Magnetic Nanoparticles. Adv. Colloid Interface Sci. 2020, 281, 102165. DOI: 10.1016/j.cis.2020.102165.
  • Ozalp, V. C.; Bayramoglu, G.; Erdem, Z.; Arica, M. Y. Pathogen Detection in Complex Samples by Quartz Crystal Microbalance Sensor Coupled to Aptamer Functionalized Core-Shell Type Magnetic Separation. Anal. Chim. Acta. 2015, 853, 533–540. DOI: 10.1016/j.aca.2014.10.010.
  • Au, A. K.; Huynh, W.; Horowitz, L. F.; Folch, A. 3D-Printed Microfluidics. Angew. Chem. Int. Ed. Engl. 2016, 55, 3862–3881. DOI: 10.1002/anie.201504382.
  • Mairhofer, J.; Roppert, K.; Ertl, P. Microfluidic Systems for Pathogen Sensing: A Review. Sensors (Basel). 2009, 9, 4804–4823. DOI: 10.3390/s90604804.
  • Lee, H.; Kim, G.; Park, E.; Jeon, S. Lenz’s Law-Based Virtual Net for Detection of Pathogenic Bacteria from Water. Anal. Chem. 2019, 91, 15585–15590. DOI: 10.1021/acs.analchem.9b03636.
  • Cetin, B.; Li, D. Dielectrophoresis in Microfluidics Technology. Electrophor. 2011, 32, 2410–2427. DOI: 10.1002/elps.201100167.
  • Zeinali, S.; Çetin, B.; Oliaei, S. N.; Karpat, Y. Fabrication of Continuous Flow Microfluidics Device with 3D Electrode Structures for High Throughput DEP Applications Using Mechanical Machining. Electrophor. 2015, 36, 1432–1442. DOI: 10.1002/elps.201400486.
  • Çetin, B.; Kang, Y.; Wu, Z.; Li, D. Continuous Particle Separation by Size via AC-Dielectrophoresis Using a Lab-on-a-Chip Device with 3-D Electrodes. Electrophor. 2009, 30, 766–772. DOI: 10.1002/elps.200800464.
  • Karaman, A.; Açıkgöz, H. N.; Çetin, B.; Özer, M. B. A Numerical Model for Acoustophoretic Separation Based on Elastic Moduli Differences of Cells/Microparticles. J. Acoust. Soc. Am. 2021, 150, A62–A62. DOI: 10.1121/10.0007627.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.