242
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Advancements in Liquid Chromatographic Techniques to Estimate Pesticide Residues Found in Medicinal Plants around the Globe

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Sofowora, A.; Ogunbodede, E.; Onayade, A. The Role and Place of Medicinal Plants in the Strategies for Disease Prevention. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 210–229. DOI: 10.4314/ajtcam.v10i5.2.
  • Alves, R. R.; Rosa, I. M. Biodiversity, Traditional Medicine and Public Health: Where Do They Meet? J. Ethnobiol. Ethnomed. 2007, 3, 14. DOI: 10.1186/1746-4269-3-14.
  • Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. DOI: 10.3390/molecules21050559.
  • Chen, S. L.; Yu, H.; Luo, H. M.; Wu, Q.; Li, C. F.; Steinmetz, A. Conservation and Sustainable Use of Medicinal Plants: Problems, Progress, and Prospects. Chin. Med. 2016, 11, 37. DOI: 10.1186/s13020-016-0108-7.
  • Ekor, M. The Growing Use of Herbal Medicines: Issues Relating to Adverse Reactions and Challenges in Monitoring Safety. Front. Pharmacol. 2014, 4, 177. DOI: 10.3389/fphar.2013.00177.
  • Aktar, M. W.; Sengupta, D.; Chowdhury, A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip. Toxicol. 2009, 2, 1–12. DOI: 10.2478/v10102-009-0001-7.
  • Souto, A. L.; Sylvestre, M.; Tölke, E. D.; Tavares, J. F.; Barbosa-Filho, J. M.; Cebrián-Torrejón, G. Plant-Derived Pesticides as an Alternative to Pest Management and Sustainable Agricultural Production: Prospects, Applications and Challenges. Molecules 2021, 26, 4835. DOI: 10.3390/molecules26164835.
  • Annoymous The 2015European Union Report on Pesticide Residues in food-European Food Safety Authority. Efsa J 2017, 15, 4791. DOI: 10.2903/j.efsa.2017.4791.
  • Kaur, R.; Mavi, G. K.; Raghav, S.; Khan, I. Pesticides Classification and Its Impact on Environment. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1889–1897. DOI: 10.20546/ijcmas.2019.803.224.
  • Damalas, C. A.; Eleftherohorinos, I. G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health. 2011, 8, 1402–1419. DOI: 10.3390/ijerph8051402.
  • Long, M.; Laier, P.; Vinggaard, A. M.; Andersen, H. R.; Lynggaard, J.; Bonefeld-Jørgensen, E. C. Effects of Currently Used Pesticides in the AhR-CALUX Assay: Comparison between the Human TV101L and the Rat H4IIE Cell Line. Tox. 2003, 194, 77–93. DOI: 10.1016/j.tox.2003.08.001.
  • Goulart, T. L. S.; Boyle, R. T.; Souza, M. M. Cytotoxicity of the Association of Pesticides Roundup Transorb® and Furadan 350 SC® on the Zebrafish Cell Line, ZF-L. Toxicol. in Vitro 2015, 29, 1377–1384. DOI: 10.1016/j.tiv.2015.06.007.
  • Aït-Aïssa, S.; Laskowski, S.; Laville, N.; Porcher, J. M.; Brion, F. Anti-Androgenic Activities of Environmental Pesticides in the MDA-kb2 Reporter Cell Line. Toxicol. in Vitro 2010, 24, 1979–1985. DOI: 10.1016/j.tiv.2010.08.014.
  • Gore, A. C. Organochlorine Pesticides Directly Regulate Gonadotropin-Releasing Hormone Gene Expression and Biosynthesis in the GT1-7 Hypothalamic Cell Line. Mol. Cell Endocrinol. 2002, 192, 157–170. DOI: 10.1016/S0303-7207(02)00010-2.
  • Hanna, C.; Boily, M.; Jumarie, C. Pesticides Inhibit Retinoic Acid Catabolism in PLHC-1 and ZFL Fish Hepatic Cell Lines. Chem. Res. Toxicol. 2022, 35, 1045–1058. DOI: 10.1021/acs.chemrestox.2c00050.
  • Damalas, C. A.; Koutroubas, S. D. Farmers’ Exposure to Pesticides: Toxicity Types and Ways of Prevention. Toxic 2016, 4, 1. DOI: 10.3390/toxics4010001.
  • Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D. T. Agriculture Development, Pesticide Application and Its Impact on the Environment. IJERPH 2021, 18, 1112. DOI: 10.3390/ijerph18031112.
  • Riedel, M.; Speer, K.; Stuke, S.; Schmeer, K. Simultaneous Analysis of 70 Pesticides Using HPlc/MS/MS: A Comparison of the Multiresidue Method of Klein and Alder and the QuEChERS Method. J. AOAC Int. 2010, 93, 1972–1986. DOI: 10.1093/jaoac/93.6.1972.
  • Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine Pesticides, Their Toxic Effects on Living Organisms and Their Fate in the Environment. Interdiscip. Toxicol. 2016, 9, 90–100. DOI: 10.1515/intox-2016-0012.
  • Alengebawy, A.; Abdelkhalek, S. T.; Qureshi, S. R.; Wang, M. Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxic 2021, 9, 42. DOI: 10.3390/toxics9030042.
  • Matisová, E.; Hrouzková, S. Analysis of Endocrine Disrupting Pesticides by Capillary GC with Mass Spectrometric Detection. Int. J. Environ. Res. Public Health. 2012, 9, 3166–3196. DOI: 10.3390/ijerph9093166.
  • Abubakar, Y.; Tijjani, T.; Egbuna, C.; Adetunji, C. O.; Kala, S.; Kryeziu, T. L. Pesticides, History, and Classification. Nat. Rem. Pest, Disease Weed Cont 2020, 1, 29–42. DOI: 10.1016/B978-0-12-819304-4.00003-8.
  • Lushchak, V. I.; Matviishyn, T. M.; Husak, V. V.; Storey, J. M.; Storey, K. B. Pesticide Toxicity: A Mechanistic Approach. Excli J. 2018, 17, 1101–1136. DOI: 10.17179/excli2018-1710.
  • D'Silva, C.; Krishna, B. Rodenticide Poisoning. Indian J. Crit. Care Med. 2019, 23, S272–S277. DOI: 10.5005/jp-journals-10071-23318.
  • Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L. P.; Bonmatin, J. M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D. W.; Giorio, C.; Girolami, V.; et al. Systemic Insecticides (Neonicotinoids and Fipronil): Trends, Uses, Mode of Action and Metabolites. Environ. Sci. Pollut. Res. Int. 2015, 22, 5–34. DOI: 10.1007/s11356-014-3470-y.
  • Costa, L. G. Organophosphorus Compounds at 80: Some Old and New Issues. Toxicol. Sci. 2018, 162, 24–35. DOI: 10.1093/toxsci/kfx266.
  • Naughton, S. X.; Terry, A. V. Jr. Neurotoxicity in Acute and Repeated Organophosphate Exposure. Tox 2018, 408, 101–112. DOI: 10.1016/j.tox.2018.08.011.
  • Mdeni, N. L.; Adeniji, A. O.; Okoh, A. I.; Okoh, O. O. Analytical Evaluation of Carbamate and Organophosphate Pesticides in Human and Environmental Matrices: A Review. Molecules 2022, 27, 618. DOI: 10.3390/molecules27030618.
  • Case, K. M.; Vega, N. M.; Gupta, R. C.; Lasher, M. A.; Canerdy, T. D. Safety Evaluation of Parastar® plus in Dogs and Assessment of Transferable Residue of Fipronil and Cyphenothrin from Dogs to Humans. Fron. Vet. Sci 2016, 3, 89. DOI: 10.3389/fvets.2016.00089.
  • Ramchandra, A. M.; Chacko, B.; Victor, P. J. Pyrethroid Poisoning. Indian J. Crit. Care Med. 2019, 23, S267–S271. DOI: 10.5005/jp-journals-10071-23304.
  • https://pubmed.ncbi.nlm.nih.gov/27333117/.
  • Grimalt, S.; Dehouck, P. Review of Analytical Methods for the Determination of Pesticide Residues in Grapes. J. Chromatogr. A. 2016, 1433, 1–23. DOI: 10.1016/j.chroma.2015.12.076.
  • Campanale, C.; Massarelli, C.; Losacco, D.; Bisaccia, D.; Triozzi, M.; Uricchio, V. F. The Monitoring of Pesticides in Water Matrices and the Analytical Criticalities: A Review. TrAC Trend. Anal. Chem. 2021, 144, 116423. DOI: 10.1016/j.trac.2021.116423.
  • Jia, M.; E, Z.; Zhai, F.; Bing, X. Rapid Multi-Residue Detection Methods for Pesticides and Veterinary Drugs. Molecules. 2020, 25, 3590. DOI: 10.3390/molecules25163590.
  • Solntsev, K. M.; Stefan, S.; Stephan, K.; Kristin, C. G.; Shady, A. A. Isolation of Biologically Active Compounds from Mangrove Sediments. Anal. Bioanal. Chem. 2019, 411, 6521–6529. DOI: 10.1007/s00216-019-02001-y.
  • Kowalska, G.; Pankiewicz, U.; Kowalski, R. Estimation of Pesticide Residues in Selected Products of Plant Origin from Poland with the Use of the HPLC-MS/MS Technique. Agriculture 2020, 10, 192. DOI: 10.3390/agriculture10060192.
  • Fitriadi, B. R. Validation of Pesticides Multi-Residual Testing Method on Nutmeg by Using UPLC-MS/MS. WJC 2021, 4, 119–130. DOI: 10.21580/wjc.v4i2.8698.
  • Reinholds, I.; Pugajeva, I.; Bavrins, K.; Kuckovska, G.; Bartkevics, V. Mycotoxins, Pesticides and Toxic Metals in Commercial Spices and Herbs. Food Addit. Contam. B: Surveill. 2017, 10, 5–14. DOI: 10.1080/19393210.2016.1210244.
  • Jia, Z.; Mao, X.; Chen, K.; Wang, K.; Ji, S. Comprehensive Multiresidue Method for the Simultaneous Determination of 74 Pesticides and Metabolites in Traditional Chinese Herbal Medicines by Accelerated Solvent Extraction with High-Performance Liquid Chromatography/Tandem Mass Spectrometry. J. AOAC Int. 2010, 93, 1570–1588. DOI: 10.1093/jaoac/93.5.1570.
  • Calvaruso, E.; Cammilleri, G.; Pulvirenti, A.; Lo Dico, G. M.; Lo Cascio, G.; Giaccone, V.; Vitale Badaco, V.; Ciprì, V.; Alessandra, M. M.; Vella, A.; et al. Residues of 165 Pesticides in Citrus Fruits Using LC-MS/MS: A Study of the Pesticides Distribution from the Peel to the Pulp. Nat. Prod. Res. 2020, 34, 34–38. DOI: 10.1080/14786419.2018.1561682.
  • Baig, S. A.; Akhtera, N. A. Determination of the Organophosphorus Pesticide in Vegetables by High-Performance Liquid Chromatography. American-Eurasian J. Agric. Environ. Sci. 2009, 6, 513–519.
  • Abbas, M. S.; Soliman, A. S.; El-Gammal, H. A.; Amer, M. E.; Attallah, E. R. Development and Validation of a Multiresidue Method for the Determination of 323 Pesticide Residues in Dry Herbs Using QuEChERS Method and LC-ESI-MS/MS. Inter. J. Env. Analy. Chem. 2017, 97, 1003–1023. DOI: 10.1080/03067319.2017.1381954.
  • Li, R. X.; Li, M. M.; Wang, T.; Wang, T. L.; Chen, J. Y.; Francis, F.; Fan, B.; Kong, Z. Q.; Dai, X. F. Screening of Pesticide Residues in Traditional Chinese Medicines Using Modified QuEChERS Sample Preparation Procedure and LC-MS/MS Analysis. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2020, 1152, 122224. DOI: 10.1016/j.jchromb.2020.122224.
  • Zhu, L.; Wu, M.; Zhao, Y.; Tao, C.; Lu, Y.; Zhang, J.; Wan, L. The QuEChERS Method Coupled to HPLC-QqQ-MS/MS for the Determination of 25 Banned Pesticide Residues in Ethnic Medicines. Res. Sq. 2022, 1, 1–16. DOI: 10.21203/rs.3.rs-2182624/v1.
  • Yang, C.; Fadwa, A.; Rima, J.; Jon, W. Multiresidue Pesticide Analysis of Dried Botanical Dietary Supplements Using an Automated Dispersive SPE Cleanup for QuEChERS and High-Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Agri. Food Chem. 2014, 60, 9991–9999.
  • ZhiHang, W.; YuYing, L.; HaiTong, H. Determination of 20 kinds of pesticide residues in herbal tea by ultra performance liquid chromatography-tandem mass spectrometry. J. Food Saf. Qual. 2018, 9, 1–12.
  • Chen, L.; Song, F.; Liu, Z.; Zheng, Z.; Xing, J.; Liu, S. Study of the ESI and APCI Interfaces for the UPLC–MS/MS Analysis of Pesticides in Traditional Chinese Herbal Medicine. Anal. Bioanal. Chem. 2014, 406, 1481–1491. DOI: 10.1007/s00216-013-7508-7.
  • Shin, E. H.; Choi, J. H.; Abd E Aty, A. M.; Khay, S.; Kim, S. J.; Im, M. H.; Kwon, C. H.; Shim, J. H. Simultaneous Determination of Three Acidic Herbicide Residues in Food Crops Using HPLC and Confirmation via LC‐MS/MS. Biomed. Chromatogr. 2011, 25, 124–135. DOI: 10.1002/bmc.1513.
  • Kujawski, M. W.; Namieśnik, J. Levels of 13 Multi-Class Pesticide Residues in Polish Honeys Determined by LC-ESI-MS/MS. Foo. Cont. 2011, 22, 914–919. DOI: 10.1016/j.foodcont.2010.11.024.
  • Bais, S. K.; Chanderwar, A. V. Comparative Evaluation of Endosulfan Content in Triphala Churna Marketed in Yavatmal District of India by HPLC Method. Intern. J. Pharm. Pharma. Sci. 2011, 3, 35–41.
  • Koshy, R.; Yadav, S.; Rajeshkumar, R.; Singh, V. K.; Setty, M. M.; Murali, B.; Agarwal, A. Optimization and Validation of a Multiresidue Method for Screening of 126 Pesticide Residues in Herbal Raw Materials and Extracts Used as Ingredients in Ayurvedic Medicines and Dietary Supplements. J. AOAC Int. 2022, 105, 748–758. DOI: 10.1093/jaoacint/qsab153.
  • Chamkasem, N.; Harmon, T. Analysis of Pesticides in Olive Oil Using a Modified QuEChERS Method with LC-MS/MS and GC-MS/MS. Regsci. 2015, 3, 16–35. DOI: 10.21423/JRS.REGSCI.3119.
  • Cavanna, D.; Hurkova, K.; Džuman, Z.; Serani, A.; Serani, M.; Dall’Asta, C.; Tomaniova, M.; Hajslova, J.; Suman, M. A Non-Targeted High-Resolution Mass Spectrometry Study for Extra Virgin Olive Oil Adulteration with Soft Refined Oils: Preliminary Findings from Two Different Laboratories. ACS Omega 2020, 5, 24169–24178. DOI: 10.1021/acsomega.0c00346.
  • Valkó, K. Application of High-Performance Liquid Chromatography-Based Measurements of Lipophilicity to Model Biological Distribution. J. Chromatogr. A. 2004, 1037, 299–310. DOI: 10.1016/j.chroma.2003.10.084.
  • Lai, X. W.; Sun, D. L.; Ruan, C. Q.; Zhang, H.; Liu, C. L. Rapid Analysis of Aflatoxins B1, B2, and Ochratoxin a in Rice Samples Using Dispersive Liquid-Liquid Microextraction Combined with HPLC. J. Sep. Sci. 2014, 37, 92–98. DOI: 10.1002/jssc.201300970.
  • Liu, X.; Liu, Z.; Bian, L.; Ping, Y.; Li, S.; Zhang, J.; Wang, J.; Van Schepdael, A.; Wang, X. Determination of Pesticide Residues in Chilli and Sichuan Pepper by High Performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry. Food Chem. 2022, 387, 132915. DOI: 10.1016/j.foodchem.2022.132915.
  • Kang, J. S. Principles and Applications of LC-MS/MS for the Quantitative Bioanalysis of Analytes in Various Biological Samples. In Tandem Mass Spectrometry–Applications Principles; Jeevan Prasain, Ed.; InTech Publishers: London, UK, 2012; 441–492. DOI: 10.5772/32085.
  • Ru-Zhen, Y.; Ming-Lin, W.; Jin-Hua, W.; Rong, Z.; Xiao-Yu, L.; Wei-Hua, L. Dispersive Solid-Phase Extraction Cleanup Combined with Accelerated Solvent Extraction for the Determination of Carbamate Pesticide Residues in Radix Glycyrrhizae Samples by UPLC-MS-MS. J. Chrom. Sci. 2011, 49, 702–708. DOI: 10.1093/chrsci/49.9.702.
  • Guo, H.; He, L.; Xing, B. Applications of Surface-Enhanced Raman Spectroscopy in the Analysis of Nanoparticles in the Environment. Environ. Sci.: Nano 2017, 4, 2093–2107. DOI: 10.1039/C7EN00653E.
  • Chen, L.; Song, F.; Liu, Z.; Zheng, Z.; Xing, J.; Liu, S. Multi-Residue Method for Fast Determination of Pesticide Residues in Plants Used in Traditional Chinese Medicine by Ultra-High-Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. J. Chromatogr. A. 2012, 1225, 132–140. DOI: 10.1016/j.chroma.2011.12.071.
  • Fan, X.; Tang, T.; Du, S.; Sang, N.; Huang, H.; Zhang, C.; Zhao, X. Simultaneous Determination of 108 Pesticide Residues in Three Traditional Chinese Medicines Using a Modified QuEChERS Mixed Sample Preparation Method and HPLC-MS/MS. Molecules 2022, 27, 7636–7649. DOI: 10.3390/molecules27217636.
  • Moreno-González, D.; Huertas-Pérez, J. F.; Gámiz-Gracia, L.; García-Campaña, A. M. High-Throughput Methodology for the Determination of 33 Carbamates in Herbal Products by UHPLC–MS/MS. Food Anal. Methods. 2015, 8, 2059–2068. DOI: 10.1007/s12161-014-9998-0.
  • Taleuzzaman, M.; Ali, S.; Gilani, S. J.; Imam, S. S.; Hafeez, A. Ultra-Performance Liquid Chromatography (UPLC)-a Review. Aus. J. Analy. Pharm. Chem. 2015, 2, 1056.
  • Basharat, R.; Kotra, V.; Loong, L. Y.; Mathews, A.; Kanakal, M. M.; Dev, C. B. P.; Nyamathulla, S.; Varala, R.; Ming, L. C.; Rao, K. S.; et al. Ultra Performance Liquid Chromatography (Mini-Review). Orient. J. Chem. 2021, 37, 847–857. DOI: 10.13005/ojc/370411.
  • Nováková, L.; Matysová, L.; Solich, P. Advantages of Application of UPLC in Pharmaceutical Analysis. Talan 2006, 68, 908–918. DOI: 10.1016/j.talanta.2005.06.035.
  • Yang, S.; Sadilek, M.; Synovec, R. E.; Lidstrom, M. E. Liquid Chromatography-Tandem Quadrupole Mass Spectrometry and Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry Measurement of Targeted Metabolites of Methylobacteriumextorquens AM1 Grown on Two Different Carbon Sources. J Chromatogr A 2009, 1216, 3280–3289. DOI: 10.1016/j.chroma.2009.02.030.
  • Bauer, A.; Luetjohann, J.; Rohn, S.; Jantzen, E.; Kuballa, J. Development of a Suspect Screening Strategy for Pesticide Metabolites in Fruit and Vegetables by UPLC-Q-Tof-MS. Food Anal. Methods 2018, 11, 1591–1607. DOI: 10.1007/s12161-017-1143-4.
  • Shahrajabian, M. H.; Sun, W.; Cheng, Q. Spanish Chamomile (Anacyclus Pyrethrum) and Pyrethrum (Tanacetum Cineraiifolium): Organic and Natural Pesticides and Treasure of Medicinal Herbs. Not. Sci. Biol. 2021, 2021, 13, 10816. DOI: 10.15835/nsb13110816.
  • Elazzouzi, H.; Fadili, K.; Cherrat, A.; Amalich, S.; Zekri, N.; Zerkani, H.; Tagnaout, I.; Hano, C.; Lorenzo, J. M.; Zair, T. Phytochemistry, Biological and Pharmacological Activities of the Anacyclus Pyrethrum (L.) Lag: A Systematic Review. Plants 2022, 11, 2578. DOI: 10.3390/plants11192578.
  • Enan, E. Pesticides and Alternatives: Innovative Chemical and Biological Approaches to Pest Control: Edited by John E. Casida, Department of Entomological Sciences, University of California, Berkeley, CA. Pestic. Biochem. Physiol. 1991, 41, 319–342. DOI: 10.1016/0048-3575(91)90086-2.
  • Likić, V. A. Extraction of Pure Components from Overlapped Signals in Gas Chromatography-Mass Spectrometry (GC-MS). BioData Min. 2009, 2, 6. DOI: 10.1186/1756-0381-2-6.
  • Masondo, N. A.; Makunga, N. P. Advancement of Analytical Techniques in Some South African Commercialized Medicinal Plants: Current and Future Perspectives. Sou. Afr. J. Bot. 2019, 126, 40–57. DOI: 10.1016/j.sajb.2019.06.037.
  • Pan, L.; Ren, L.; Chen, F.; Feng, Y.; Luo, Y. Antifeedant Activity of Ginkgo Biloba Secondary Metabolites against Hyphantriacunea Larvae: Mechanisms and Applications. PLoS One. 2016, 11, e0155682. DOI: 10.1371/journal.pone.0155682.
  • Kawaguchi, M.; Takatsu, A.; Ito, R.; Nakazawa, H. Applications of Stir-Bar Sorptive Extraction to Food Analysis. TrAC Trend. Anal. Chem. 2013, 45, 280–293. DOI: 10.1016/j.trac.2013.01.007.
  • Watanabe, E.; Kobara, Y.; Baba, K.; Eun, H. Aqueous Acetonitrile Extraction for Pesticide Residue Analysis in Agricultural Products with HPLC-DAD. Food Chem. 2014, 154, 7–12. DOI: 10.1016/j.foodchem.2013.12.075.
  • Pico, P. Solid-Phase Extraction./HERBICIDES. /Solid-Phase Extract. 2000, 1, 2991–2991.
  • Falqui-Cao, C.; Wang, Z.; Urruty, L.; Pommier, J. J.; Montury, M. Focused Microwave Assistance for Extracting Some Pesticide Residues from Strawberries into Water before Their Determination by SPME/HPLC/DAD. J. Agric. Food Chem. 2001, 49, 5092–5097. DOI: 10.1021/jf010519u.
  • Diagne, R. G.; Foster, G. D.; Khan, S. U. Comparison of Soxhlet and Microwave-Assisted Extractions for the Determination of Fenitrothion Residues in Beans. J. Agric. Food Chem. 2002, 50, 3204–3207. DOI: 10.1021/jf011469w.
  • Timchenko, Y. B. Advantages and Disadvantages of High-Performance Liquid Chromatography (HPCL). J. Environ. Anal. Chem. 2021, 8, 1–2. DOI: 10.37421/2380-2391.2021.8.335.
  • Hogendoorn, E. A. High-Performance Liquid Chromatography Methods in Pesticide Residue Analysis. In Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation (Book Chapter). Wiley Publishers: New York. 2007, DOI: 10.1002/9780470027318.
  • López-Ruiz, R.; Romero-González, R.; Garrido Frenich, A. Ultrahigh-Pressure Liquid Chromatography-Mass Spectrometry: An Overview of the Last Decade. Trends Anal. Chem 2019, 118, 170–181. DOI: 10.1016/j.trac.2019.05.044.
  • Čajka, T.; Hajšlová, J. Gas Chromatography–High-Resolution Time-of-Flight Mass Spectrometry in Pesticide Residue Analysis: Advantages and Limitations. J. Chrom. A 2004, 1058, 251–261. DOI: 10.1016/j.chroma.2004.07.097.
  • Khan, N. S.; Pradhan, D.; Choudhary, S.; Saxena, P.; Poddar, N. K.; Jain, A. K. Immunoassay-Based Approaches for Development of Screening of Chlorpyrifos. J. Anal. Sci. Tech. 2021, 12, 1–16. 12 DOI: 10.1186/s40543-021-00282-6.
  • Fadlalla, M. H.; Ling, S.; Wang, R.; Li, X.; Yuan, J.; Xiao, S.; Wang, K.; Tang, S.; Elsir, H.; Wang, S. Development of ELISA and Lateral Flow Immunoassays for Ochratoxins (OTA and OTB) Detection Based on Monoclonal Antibody. Front. Cell. Infect. Microbiol. 2020, 10, 80. DOI: 10.3389/fcimb.2020.00080.
  • Nunes, G. S.; Toscano, I. A.; Barceló, D. Analysis of Pesticides in Food and Environmental Samples by Enzyme-Linked Immunosorbent Assays. Trend. Analy. Chem. 1998, 17, 79–87. DOI: 10.1016/S0165-9936(97)00116-7.
  • Stalikas, C. D.; Konidari, C. N. Analytical Methods to Determine Phosphonic and Amino Acid Group-Containing Pesticides. J. Chromatogr. A 2001, 907, 1–19. DOI: 10.1016/s0021-9673(00)01009-8.
  • Syrgabek, Y.; Alimzhanova, M. Modern Analytical Methods for the Analysis of Pesticides in Grapes: A Review. Food 2022, 11, 1623. DOI: 10.3390/foods11111623.
  • Naseri, M.; Mohammadniaei, M.; Sun, Y.; Ashley, J. The Use of Aptamers and Molecularly Imprinted Polymers in Biosensors for Environmental Monitoring: A Tale of Two Receptors. Chemosensors 2020, 8, 32. DOI: 10.3390/chemosensors8020032.
  • Fauzi, N. I. M.; Fen, Y. W.; Omar, N. A. S.; Hashim, H. S. Recent Advances on Detection of Insecticides Using Optical Sensors. Sensors 2021, 21, 3856. DOI: 10.3390/s21113856.
  • Luo, L.; Dong, L.; Huang, Q.; Ma, S.; Fantke, P.; Li, J.; Jiang, J.; Fitzgerald, M.; Yang, J.; Jia, Z.; et al. Detection and Risk Assessments of Multi-Pesticides in 1771 Cultivated Herbal Medicines by LC/MS-MS and GC/MS-MS. Chemosphere 2021, 262, 127477. DOI: 10.1016/j.chemosphere.2020.127477.
  • Russo, K.; Lucchetti, D.; Triolone, D.; Giustino, P. D.; Mancuso, M.; Delfino, D.; Neri, B. Pesticides and Mycotoxins Evaluation in Medicinal Herbs and Spices from EU and non-EU Countries. Phytochem. Lett. 2021, 46, 153–161. DOI: 10.1016/j.phytol.2021.10.002.
  • Craven, C. C.; Birjandi, A. P.; Simons, B.; Ping, J.; Xing-Fang, L. Determination of Eighty-Two Pesticides and Application to Screening Pesticides in Cannabis Growing Facilities. J. Environ. Sci. (China) 2021, 104, 11–16. DOI: 10.1016/j.jes.2020.11.004.
  • Hou, X.; Liu, L.; Wei, L.; Feng, D.; Lv, M.; Wang, X.; Yu, X.; Lu, Z.; Hou, Z. A Novel Analysis Method for Simultaneous Determination of 31 Pesticides by High-Performance Liquid Chromatography-Tandem Mass Spectrometry in Ginseng. J. Anal. Meth. Chem. 2022, 2022, 1–9., Article ID 4208243. DOI: 10.1155/2022/4208243.
  • Chen, M.; Chen, L.; Pan, L.; Liu, R.; Guo, J.; Fan, M.; Wang, X.; Liu, H.; Liu, S. Simultaneous Analysis of Multiple Pesticide Residues in Tobacco by Magnetic Carbon Composite-Based QuEChERS Method and Liquid Chromatography Coupled to Quadrupole Time-of-Flight Mass Spectrometry. J. Chromatogr. A. 2022, 1668, 462913. DOI: 10.1016/j.chroma.2022.462913.
  • Li, H.; Jiang, Z.; Cao, X.; Su, H.; Shao, H.; Jin, F.; Abd El-Aty, A. M.; Wang, J. Simultaneous Determination of Three Pesticide Adjuvant Residues in Plant-Derived Agro-Products Using Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 2017, 1528, 53–60. DOI: 10.1016/j.chroma.2017.10.075.
  • Senosy, I. A.; Lu, Z.; Zhou, D. D.; Abdelrahman, T. M.; Chen, M.; Zhuang, Z. L.; Liu, X.; Cao, Y.; Li, J.; Yang, Z. H. Construction of a Magnetic Solid-Phase Extraction Method for the Analysis of Azole Pesticides Residue in Medicinal Plants. Food Chem. 2022, 386, 132743. DOI: 10.1016/j.foodchem.2022.132743.
  • Cebi, N.; Manav, O. G.; Olgun, E. O. Analysis of Pesticide Residues in Hazelnuts Using the QuEChERS Method by Liquid Chromatography–Tandem Mass Spectrometry. Micro. J. 2021, 166, 106208. DOI: 10.1016/j.microc.2021.106208.
  • Famurewa, A. C.; Ekeleme-Egedigwe, C. A.; Onyeabo, C.; Kanu, S. C.; Besong, E. E.; Maduagwuna, E. K. Comparative Assessment of Different Coconut Oils: Chromatographic and Spectrometric Analyses of Pesticide Residues, Toxic Heavy Metals, and Associated Contents. Measurement: Food 2023, 10, 100082. DOI: 10.1016/j.meafoo.2023.100082.
  • Nantia, E. A.; Moreno-González, D.; Manfo, F. T.; Gámiz-Gracia, L.; García-Campaña, A. M. QuEChERS-Based Method for the Determination of Carbamate Residues in Aromatic Herbs by UHPLC-MS/MS. Food Chem. 2017, 216, 334–341. DOI: 10.1016/j.foodchem.2016.08.038.
  • Afify, A. E. M. R. Recent Techniques Applied for Pesticides Identification and Determination in Natural Products and Its Impact to Human Health Risk. In Pesticides in the Modern World - Trends in Pesticides Analysis 2010, 40, 92–98. DOI: 10.5772/16740.
  • Narváez, A.; Rodríguez-Carrasco, Y.; Castaldo, L.; Izzo, L.; Ritieni, A. Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole Orbitrap High-Resolution Mass Spectrometry for Multi-Residue Analysis of Mycotoxins and Pesticides in Botanical Nutraceuticals. Toxins (Basel) 2020, 12, 114. DOI: 10.3390/toxins12020114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.