348
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Preparation and Application of Magnetic Molecularly Imprinted Plasmonic SERS Composite Nanoparticles

, , &

References

  • Li, J.; Dong, S.; Gong, Q.; Li, X. Advances in the Preparation of Molecularly Imprinted Films. Chin. Polym. Bull. 2007, 1, 40–44.
  • Gergely, B.; George, H.; Blanka, T. The Selectivity of Molecularly Imprinted Polymers. Polymers 2021, 13, 1781. DOI: 10.3390/polym13111781.
  • Zhang, M.; Huang, J.; Tang, L. Preparation and Permeability Studies of Protein Molecularly Imprinted Membranes. Chin. J. Chem. 2009, 67, 2840–2844.
  • Wang, M.; Fu, Q.; Zhang, K.; Wan, Y.; Wang, L.; Gao, M.; Xia, Z.; Gao, D. A Magnetic and Carbon Dot Based Molecularly Imprinted Composite for Fluorometric Detection of 2,4,6-Trinitrophenol. Mikrochim. Acta 2019, 186, 86. DOI: 10.1007/s00604-018-3200-0.
  • Sultana, R.; Burcin, B.-P. D.; Nur, U.; Cem, E.; Muhammad, S.; Afzal, S.; Bengi, U. Molecularly Imprinted Polymers (MIPs) Combined with Nanomaterials as Electrochemical Sensing Applications for Environmental Pollutants. Trends Environ. Anal. Chem. 2022, 36, e00176. DOI: 10.1016/j.teac.2022.e00176.
  • Carneiro, M. C. C. G.; Sousa-Castillo, A.; Correa-Duarte, M. A.; Sales, M. G. F. Dual Biorecognition by Combining Molecularly-Imprinted Polymer and Antibody in SERS Detection. Application to Carcinoembryonic Antigen. Biosens. Bioelectron. 2019, 146, 111761. DOI: 10.1016/j.bios.2019.111761.
  • Liu, Z.; Gao, Y.; Jin, L.; Jin, H.; Xu, N.; Yu, X.; Yu, S. Core–Shell Regeneration Magnetic Molecularly Imprinted Polymers-Based SERS for Sibutramine Rapid Detection. ACS Sustain. Chem. Eng. 2019, 7, 8168–8175. DOI: 10.1021/acssuschemeng.8b06120.
  • Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y.; et al. Chemical Mapping of a Single Molecule by Plasmon-Enhanced Raman Scattering. Nature 2013, 498, 82–86. DOI: 10.1038/nature12151.
  • Tu, X.; Muhammad, P.; Liu, J.; Ma, Y.; Wang, S.; Yin, D.; Liu, Z. Molecularly Imprinted Polymer-Based Plasmonic Immunosandwich Assay for Fast and Ultrasensitive Determination of Trace Glycoproteins in Complex Samples. Anal. Chem. 2016, 88, 12363–12370. DOI: 10.1021/acs.analchem.6b03597.
  • Kwon, G.; Kim, J.; Kim, D.; Ko, Y.; Yamauchi, Y.; You, J. Nanoporous Cellulose Paper-Based SERS Platform for Multiplex Detection of Hazardous Pesticides. Cellulose 2019, 26, 4935–4944. DOI: 10.1007/s10570-019-02427-8.
  • Neng, J.; Xu, K.; Wang, Y.; Jia, K.; Zhang, Q.; Sun, P. Sensitive and Selective Detection of New Red Colorant Based on Surface-Enhanced Raman Spectroscopy Using Molecularly Imprinted Hydrogels. Appl. Sci. 2019, 9, 2672. DOI: 10.3390/app9132672.
  • Kim, D.; Lee, K.; Jeon, Y.; Kwon, G.; Kim, U. J.; Oh, C. S.; Kim, J.; You, J. Plasmonic Nanoparticle-Analyte Nanoarchitectronics Combined with Efficient Analyte Deposition Method on Regenerated Cellulose-Based SERS Platform. Cellulose 2021, 28, 11493–11502. DOI: 10.1007/s10570-021-04283-x.
  • Song, S. W.; Kim, D.; Kim, J.; You, J.; Kim, H. M. Flexible Nanocellulose-Based SERS Substrates for Fast Analysis of Hazardous Materials by Spiral Scanning. J. Hazard. Mater. 2021, 414, 125160. DOI: 10.1016/j.jhazmat.2021.125160.
  • Lim, H.; Kim, D.; Kim, Y.; Nagaura, T.; You, J.; Kim, J.; Kim, H.-J.; Na, J.; Henzie, J.; Yamauchi, Y. A Mesopore-Stimulated Electromagnetic near-Field: Electrochemical Synthesis of Mesoporous Copper Films by Micelle Self-Assembly. J. Mater. Chem. A 2020, 8, 21016–21025. DOI: 10.1039/D0TA06228F.
  • Lim, H.; Kim, D.; Kwon, G.; Kim, H.-J.; You, J.; Kim, J.; Eguchi, M.; Nanjundan, A. K.; Na, J.; Yamauchi, Y. Synthesis of Uniformly Sized Mesoporous Silver Films and Their SERS Application. J. Phys. Chem. C 2020, 124, 23730–23737. DOI: 10.1021/acs.jpcc.0c07234.
  • Kim, D.; Kim, J.; Henzie, J.; Ko, Y.; Lim, H.; Kwon, G.; Na, J.; Kim, H.-J.; Yamauchi, Y.; You, J. Mesoporous Au Films Assembled on Flexible Cellulose Nanopaper as High-Performance SERS Substrates. Chem. Eng. J. 2021, 419, 129445. DOI: 10.1016/j.cej.2021.129445.
  • Hu, C.; Peng, F.; Mi, F.; Wang, Y.; Geng, P.; Pang, L.; Ma, Y.; Li, G.; Li, Y.; Guan, M. SERS-Based Boronate Affinity Biosensor with Biomimetic Specificity and Versatility: Surface-Imprinted Magnetic Polymers as Recognition Elements to Detect Glycoproteins. Anal. Chim. Acta 2022, 1191, 339289. DOI: 10.1016/j.aca.2021.339289.
  • Pan, J.; Yao, H.; Xu, L.; Ou, H.; Huo, P.; Li, X.; Yan, Y. Selective Recognition of 2,4,6-Trichlorophenol by Molecularly Imprinted Polymers Based on Magnetic Halloysite Nanotubes Composites. J. Phys. Chem. C 2011, 115, 5440–5449. DOI: 10.1021/jp111120x.
  • Ma, R.-T.; Ha, W.; Chen, J.; Shi, Y.-P. Highly Dispersed Magnetic Molecularly Imprinted Nanoparticles with Well-Defined Thin Film for the Selective Extraction of Glycoprotein. J. Mater. Chem. B 2016, 4, 2620–2627. DOI: 10.1039/c6tb00409a.
  • Pamela, M. Review of SERS Substrates for Chemical Sensing. Nanomaterials 2017, 7, 142. DOI: 10.3390/nano7060142.
  • Xie, X.; Gao, G.; Kang, S.; Lei, Y.; Pan, Z.; Shibayama, T.; Cai, L. Toward Hybrid Au Nanorods @ M (Au, Ag, Pd and Pt) Core–Shell Heterostructures for Ultrasensitive SERS Probes. Nanotechnology 2017, 28, 245602. DOI: 10.1088/1361-6528/aa70f3.
  • Mikoliunaite, L.; Talaikis, M.; Michalowska, A.; Dobilas, J.; Stankevic, V.; Kudelski, A.; Niaura, G. Thermally Stable Magneto-Plasmonic Nanoparticles for SERS with Tunable Plasmon Resonance. Nanomaterials 2022, 12, 2860. DOI: 10.3390/nano12162860.
  • Yang, Z.; Jin H.; Yu, A.; Yu , Z.; Shi, D.; Yan , S.; Qin, L.; Liu, S.; Chen, M. Construction of Surface Molecularly Imprinted Photonic Hydrogel Sensors with High Sensitivity. Colloids Surf. A Physicochem. Eng. Asp. 2022, 639, 128341. DOI: 10.1016/j.colsurfa.2022.128341.
  • Kakkar, V.; Narula, P. Role of Molecularly Imprinted Hydrogels in Drug delivery - A Current Perspective. Int. J. Pharm. 2022, 625, 121883. DOI: 10.1016/j.ijpharm.2022.121883.
  • Dinc, M.; Esen, C.; Mizaikoff, B. Recent Advances on Core–Shell Magnetic Molecularly Imprinted Polymers for Biomacromolecules. Trends Anal. Chem. 2019, 114, 202–217. DOI: 10.1016/j.trac.2019.03.008.
  • Liu, X.; Yang, X.; Li, K.; Liu, H.; Xiao, R.; Wang, W.; Wang, C.; Wang, S. Fe3O4@Au SERS Tags-Based Lateral Flow Assay for Simultaneous Detection of Serum Amyloid a and C-Reactive Protein in Unprocessed Blood Sample. Sens. Actuators B: Chem. 2020, 320, 128350. DOI: 10.1016/j.snb.2020.128350.
  • Charan, S.; Kuo, C. W.; Kuo, Y.-W.; Singh, N.; Drake, P.; Lin, Y.-J.; Tay, L.; Chen, P. Synthesis of Surface Enhanced Raman Scattering Active Magnetic Nanoparticles for Cell Labeling and Sorting. J. Appl. Phys. 2009, 105, 07B310. DOI: 10.1063/1.3073828.
  • Lin, X.-D.; Li, J.-F.; Huang, Y.-F.; Tian, X.-D.; Uzayisenga, V.; Li, S.-B.; Ren, B.; Tian, Z.-Q. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy: Nanoparticle Synthesis, Characterization and Applications in Electrochemistry. J. Electroanal. Chem. 2013, 688, 5–11. DOI: 10.1016/j.jelechem.2012.07.017.
  • Kuan, C.; Yijian, Z.; Minglin, W.; Zhixiang, X.; Long, Z.; Longhua, X.; Qinzhi, W. Advances in Metal-Organic Framework-Plasmonic Metal Composites Based SERS Platforms: Engineering Strategies in Chemical Sensing, Practical Applications and Future Perspectives in Food Safety. Chem. Eng. J. 2023, 459, 141539. DOI: 10.1016/j.cej.2023.141539.
  • Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M. Electromagnetic Theories of Surface-Enhanced Raman Spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076. DOI: 10.1039/c7cs00238f.
  • Ogundare, S. A.; van Zyl, W. E. A Review of Cellulose-Based Substrates for SERS: Fundamentals, Design Principles, Applications. Cellulose 2019, 26, 6489–6528. DOI: 10.1007/s10570-019-02580-0.
  • Hu, B.; Pu, H.; Sun, D.-W. Multifunctional Cellulose Based Substrates for SERS Smart Sensing: Principles, Applications and Emerging Trends for Food Safety Detection. Trends Food Sci. Technol. 2021, 110, 304–320. DOI: 10.1016/j.tifs.2021.02.005.
  • Chen, W.; Lei, W.; Xue, M.; Xue, F.; Meng, Z-h.; Zhang, W-b.; Qu, F.; Shea, K. J. Protein Recognition by a Surface Imprinted Colloidal Array. J. Mater. Chem. A 2014, 2, 7165–7169. DOI: 10.1039/c4ta00048j.
  • Freitas, M.; Sá Couto, M.; Barroso, M. F.; Pereira, C.; de-los-Santos-Álvarez, N.; Miranda-Ordieres, A. J.; Lobo-Castañón, M. J.; Delerue-Matos, C. Highly Monodisperse Fe3O4@Au Superparamagnetic Nanoparticles as Reproducible Platform for Genosensing Genetically Modified Organisms. ACS Sens. 2016, 1, 1044–1053. DOI: 10.1021/acssensors.6b00182.
  • Alula, M. T.; Madingwane, M. L. Colorimetric Quantification of Chromium (VI) Ions Based on Oxidoreductase-like Activity of Fe3O4. Sens. Actuators B: Chem. 2020, 324, 128726. DOI: 10.1016/j.snb.2020.128726.
  • Ding, H. L.; Zhang, Y. X.; Wang, S.; Xu, J. M.; Xu, S. C.; Li, G. H. Fe3O4@SiO2 Core/Shell Nanoparticles: The Silica Coating Regulations with a Single Core for Different Core Sizes and Shell Thicknesses. Chem. Mater. 2012, 24, 4572–4580. DOI: 10.1021/cm302828d.
  • Sanaullah, I.; Imran, M.; Riaz, S.; Amin, T.; Khan, I. U.; Zahoor, R.; Shahid, A.; Naseem, S. Microwave Assisted Synthesis of Fe3O4 Stabilized ZrO2 Nanoparticles – Free Radical Scavenging, Radiolabeling and Biodistribution in Rabbits. Life Sci. 2021, 271, 119070. DOI: 10.1016/j.lfs.2021.119070.
  • Zhang, Z.; Pan, Z.; Zhao, Y.; Li, X.; Wang, Q.; Wang, S. Oxidative Degradation of Methylene Blue by H2O2 Catalyzed by Magnetic Fe3O4 Nanoparticles. J. Fujian Normal Univ. 2015, 31, 9–55.
  • Majidi, S.; Sehrig, F. Z.; Farkhani, S. M.; Goloujeh, M. S.; Akbarzadeh, A. Current Methods for Synthesis of Magnetic Nanoparticles. Artif. Cells Nanomed. Biotechnol. 2016, 44, 722–734. DOI: 10.3109/21691401.2014.982802.
  • Wang, D.; Ma, Q.; Yang, P. Synthesis of Fe3O4 Nanoparticles with Tunable and Uniform Size through Simple Thermal Decomposition. J. Nanosci. Nanotechnol. 2012, 12, 6432–6438. DOI: 10.1166/jnn.2012.6439.
  • Petrov, D. A.; Ivantsov, R. D.; Zharkov, S. M.; Velikanov, D. A.; Molokeev, M. S.; Lin, C. R.; Tso, C. T.; Hsu, H. S.; Tseng, Y. T.; Lin, E. S.; Edelman, I. S. Magnetic and Magneto-Optical Properties of Fe3O4 Nanoparticles Modified with Ag. J. Magn. Magn. Mater. 2020, 493, 165692. DOI: 10.1016/j.jmmm.2019.165692.
  • Wang, G.; Mao, M.; Yu, K. Preparation, Surface Modification and Characterization of Magnetic Ferric Oxide Nanoparticles. J. Hubei Univ. Sci. Technol. 2022, 36, 466–470.
  • Wu, W.; He, Q.; Jiang, C. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Res. Lett. 2008, 3, 397–415. DOI: 10.1007/s11671-008-9174-9.
  • Chen, Y.-H.; Liu, Y.-Y.; Lin, R.-H.; Yen, F.-S. Photocatalytic Degradation of p-Phenylenediamine with TiO2-Coated Magnetic PMMA Microspheres in an Aqueous Solution. J. Hazard. Mater. 2009, 163, 973–981. DOI: 10.1016/j.jhazmat.2008.07.097.
  • Tai, Y.; Wang, L.; Gao, J.; Amer, W. A.; Ding, W.; Yu, H. Synthesis of Fe3O4@Poly(Methylmethacrylate-co-Divinylbenzene) Magnetic Porous Microspheres and Their Application in the Separation of Phenol from Aqueous Solutions. J. Colloid Interface Sci. 2011, 360, 731–738. DOI: 10.1016/j.jcis.2011.04.096.
  • Chin, A. B.; Yaacob, I. I. Synthesis and Characterization of Magnetic Iron Oxide Nanoparticles via w/o Microemulsion and Massart’s Procedure. J. Mater. Process. Technol. 2007, 191, 235–237. DOI: 10.1016/j.jmatprotec.2007.03.011.
  • Liang, Y.-J.; Zhang, Y.; Guo, Z.; Xie, J.; Bai, T.; Zou, J.; Gu, N. Ultrafast Preparation of Monodisperse Fe3O4 Nanoparticles by Microwave‐Assisted Thermal Decomposition. Chemistry 2016, 22, 11807–11815. DOI: 10.1002/chem.201601434.
  • Chen, X.; Huang, Q.; Ruan, S.; Luo, F.; You, R.; Feng, S.; Zhu, L.; Wu, Y.; Lu, Y. Self-Calibration SERS Sensor with “Core-Satellite” Structure for Detection of Hyaluronidase Activity. Anal. Chim. Acta 2022, 1227, 340302. DOI: 10.1016/j.aca.2022.340302.
  • Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Monodisperse Magnetic Single-Crystal Ferrite Microspheres. †Angew. Chem. 2005, 117, 2842–2845. DOI: 10.1002/ange.200462551.
  • Wang, J.; Sun, J.; Sun, Q.; Chen, Q. One-Step Hydrothermal Process to Prepare Highly Crystalline Fe3O4 Nanoparticles with Improved Magnetic Properties. Mater. Res. Bull. 2003, 38, 1113–1118. DOI: 10.1016/S0025-5408(03)00129-6.
  • Gholamian, F.; Shabanian, M.; Shahrokh, M. Magnetic and Thermal Properties of Novel Poly(Ether-Amide)/Fe3O4 Nanocomposite Containing Phosphine Oxide Group. J. Clust. Sci. 2013, 24, 177–188. DOI: 10.1007/s10876-012-0541-4.
  • Pinkas, J.; Reichlova, V.; Zboril, R.; Moravec, Z.; Bezdicka, P.; Matejkova, J. Sonochemical Synthesis of Amorphous Nanoscopic Iron(III) Oxide from Fe(acac)3. Ultrason. Sonochem. 2008, 15, 257–264. DOI: 10.1016/j.ultsonch.2007.03.009.
  • Ghanbari, D.; Salavati-Niasari, M.; Ghasemi-Kooch, M. A Sonochemical Method for Synthesis of Fe3O4 Nanoparticles and Thermal Stable PVA-Based Magnetic Nanocomposite. J. Ind. Eng. Chem. 2014, 20, 3970–3974. DOI: 10.1016/j.jiec.2013.12.098.
  • Ashokkumar, M.; Lee, J.; Kentish, S.; Grieser, F. Bubbles in an Acoustic Field: An Overview. Ultrason. Sonochem. 2007, 14, 470–475. DOI: 10.1016/j.ultsonch.2006.09.016.
  • Mantovan, R.; Vangelista, S.; Cocco, S.; Lamperti, A.; Salicio, O. Chemical Vapor Deposition of Polycrystalline Fe3O4 Thin Films by Using the Cyclohexadiene Iron Tricarbonyl Liquid Precursor. J. Appl. Phys. 2012, 111, 07B107. DOI: 10.1063/1.3683082.
  • Liu, L.; He, Z.; Zhao, Y.; Sun, J.; Tong, G. Modulation of the Composition and Surface Morphology of Expanded Graphite/Fe/Fe3O4 Composites for Plasmon Resonance-Enhanced Microwave Absorption. J. Alloys Compd. 2018, 765, 1218–1227. DOI: 10.1016/j.jallcom.2018.04.212.
  • Fujii, E.; Torri, H. Low-Temperature Preparation and Properties of Spinel-Type Iron Oxide Films by ECR Plasma-Enhanced Metalorganic Chemical Vapor Deposition. Jpn. J. Appl. Phys. 1993, 32, L1527. DOI: 10.1143/jjap.32.l1527.
  • Ren, M.; Li, F.; Wang, B.; Wei, J.; Yu, Q. Preparation and Electromagnetic Wave Absorption Properties of Carbon Nanotubes Loaded Fe3O4 Composites. J. Magn. Magn. Mater. 2020, 513, 167259. DOI: 10.1016/j.jmmm.2020.167259.
  • Pita, M.; Abad, J. M.; Vaz-Dominguez, C.; Briones, C.; Mateo-Martí, E.; Martín-Gago, J. A.; del Puerto Morales, M.; Fernández, V. M. Synthesis of Cobalt Ferrite Core/Metallic Shell Nanoparticles for the Development of a Specific PNA/DNA Biosensor. J. Colloid Interface Sci. 2008, 321, 484–492. DOI: 10.1016/j.jcis.2008.02.010.
  • Li, Z. H.; Bai, J. H.; Zhang, X.; Lv, J. M.; Fan, C. S.; Zhao, Y. M.; Wu, Z. L.; Xu, H. J. Facile Synthesis of Au Nanoparticle-Coated Fe3O4 Magnetic Composite Nanospheres and Their Application in SERS Detection of Malachite Green. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 241, 118532. DOI: 10.1016/j.saa.2020.118532.
  • Du, J.; Xu, J.; Sun, Z.; Jing, C. Au Nanoparticles Grafted on Fe3O4 as Effective SERS Substrates for Label-Free Detection of the 16 EPA Priority Polycyclic Aromatic Hydrocarbons. Anal. Chim. Acta 2016, 915, 81–89. DOI: 10.1016/j.aca.2016.02.009.
  • Pinheiro, P. C.; Fateixa, S.; Daniel-da-Silva, A. L.; Trindade, T. An Integrated Approach for Trace Detection of Pollutants in Water Using Polyelectrolyte Functionalized Magneto-Plasmonic Nanosorbents. Sci. Rep. 2019, 9, 19647. DOI: 10.1038/s41598-019-56168-6.
  • Guo, Q.-H.; Zhang, C.-J.; Wei, C.; Xu, M.-M.; Yuan, Y.-X.; Gu, R.-A.; Yao, J.-L. Controlling Dynamic SERS Hot Spots on a Monolayer Film of Fe3O4@Au Nanoparticles by a Magnetic Field. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 152, 336–342. DOI: 10.1016/j.saa.2015.07.092.
  • Ye, M.; Wei, Z.; Hu, F.; Wang, J.; Ge, G.; Hu, Z.; Shao, M.; Lee, S.-T.; Liu, J. Fast Assembling Microarrays of Superparamagnetic Fe3O4@Au Nanoparticle Clusters as Reproducible Substrates for Surface-Enhanced Raman Scattering†. Nanoscale 2015, 7, 13427–13437. DOI: 10.1039/c5nr02491a.
  • Aarthi, A.; Umadevi, M.; Parimaladevi, R.; Sathe, G. V. Detection and Degradation of Leachate in Groundwater Using Ag Modified Fe3O4 Nanoparticle as Sensor. J. Mol. Liq. 2018, 252, 97–102. DOI: 10.1016/j.molliq.2017.12.103.
  • Xu, Y.; Yan, X.; Fang, W.; Daniele, S.; Zhang, J.; Wang, L. SERS Self-Monitoring of Ag-Catalyzed Reaction by Magnetically Separable Mesoporous Fe3O4@Ag@mSiO2. Micropor. Mesopor. Mater. 2018, 263, 113–119. DOI: 10.1016/j.micromeso.2017.12.013.
  • Xie, Y.; Chen, T.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Rapid SERS Detection of Acid Orange II and Brilliant Blue in Food by Using Fe3O4@Au Core-Shell Substrate. Food Chem. 2019, 270, 173–180. DOI: 10.1016/j.foodchem.2018.07.065.
  • Kulpa-Greszta, M.; Tomaszewska, A.; Michalicha, A.; Sikora, D.; Dziedzic, A.; Wojnarowska-Nowak, R.; Belcarz, A.; Pązik, R. Alternating Magnetic Field and NIR Energy Conversion on Magneto-Plasmonic Fe3O4@APTES–Ag Heterostructures with SERS Detection Capability and Antimicrobial Activity. RSC Adv. 2022, 12, 27396–27410. DOI: 10.1039/d2ra05207e.
  • Zhao, X.-Y.; Wang, G.; Hong, M. Hybrid Structures of Fe3O4 and Ag Nanoparticles on Si Nanopillar Arrays Substrate for SERS Applications. Mater. Chem. Phys. 2018, 214, 377–382. DOI: 10.1016/j.matchemphys.2018.04.082.
  • Nguyen, T. T.; Mammeri, F.; Ammar, S.; Nguyen, T. B. N.; Nguyen, T. N.; Nghiem, T. H. L.; Thuy, N. T.; Ho, T. A. Preparation of Fe3O4-Ag Nanocomposites with Silver Petals for SERS Application. Nanomaterials 2021, 11, 1288. DOI: 10.3390/nano11051288.
  • Michałowska, A.; Kudelski, A. The First Silver-Based Plasmonic Nanomaterial for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy with Magnetic Properties. Molecules 2022, 27, 3081. DOI: 10.3390/molecules27103081.
  • Luo, X.; Qiao, L.; Xia, Z.; Yu, J.; Wang, X.; Huang, J.; Shu, C.; Wu, C.; He, Y. Shape- and Size-Dependent Refractive Index Sensing and SERS Performance of Gold Nanoplates. Langmuir 2022, 38, 6454–6463. DOI: 10.1021/acs.langmuir.2c00663.
  • Cai, W.; Wang, X.; Yan, Y. Controllable Fabrication and Sensitive Detection Based on SERS Substrates with Au Nanocubes Coated Fe3O4. Mater. Res. Bull. 2014, 52, 1–5. DOI: 10.1016/j.materresbull.2013.12.046.
  • Wang, B.; Liu, Y.; Zhang, Y.; Guo, Z.; Zhang, H.; Xin, J. H.; Zhang, L. Bioinspired Superhydrophobic Fe3O4@Polydopamine@Ag Hybrid Nanoparticles for Liquid Marble and Oil Spill. Adv. Mater. Interfaces 2015, 2, 1500234. DOI: 10.1002/admi.201500234.
  • Zheng, H.; Zou, B.; Chen, L.; Wang, Y.; Zhang, X.; Zhou, S. Gel-Assisted Synthesis of Oleate-Modified Fe3O4@Ag Composite Microspheres as Magnetic SERS Probe for Thiram Detection. CrystEngComm 2015, 17, 6393–6398. DOI: 10.1039/C5CE01017A.
  • Lin, C.; Li, L.; Feng, J.; Zhang, Y.; Guo, H.; Lin, X.; Li, R. A Novel Apt-SERS Platform for the Determination of Cardiac Troponin I Based on Coral-like Silver-Modified Magnetic Substrate and BCA Method. Anal. Chim. Acta 2022, 1225, 340253. DOI: 10.1016/j.aca.2022.340253.
  • Lv, M.; Sun, D.; Pu, H.; Zhu, H. A Core-Shell-Satellite Structured Fe3O4@MIL-100(Fe)@Ag SERS Substrate with Adsorption, Detection, Degradation and Recovery Functionalities for Selective Detection of Cationic Dyes. Microchem. J. 2022, 183, 108137. DOI: 10.1016/j.microc.2022.108137.
  • Ranc, V.; Žižka, R.; Chaloupková, Z.; Ševčík, J.; Zbořil, R. Imaging of Growth Factors on a Human Tooth Root Canal by Surface-Enhanced Raman Spectroscopy. Anal. Bioanal. Chem. 2018, 410, 7113–7120. DOI: 10.1007/s00216-018-1311-4.
  • Chen, M.; Luo, W.; Zhang, Z.; Zhu, F.; Liao, S.; Yang, H.; Chen, X. Sensitive Surface Enhanced Raman Spectroscopy (SERS) Detection of Methotrexate by Core-Shell-Satellite Magnetic Microspheres. Talanta 2017, 171, 152–158. DOI: 10.1016/j.talanta.2017.04.072.
  • Li, D.-S.; Liu, B.; Wang, Y.-F.; Liu, W.-L.; Ren, M.-M.; Kong, F.-G.; Wang, S.-J.; Yue, K.; Meng, Q. Magnetic Ferroferric Oxide/Phenolic Resin/Silver Core–Shell Nanocomposite as Recyclable Substrates for Enhancing Surface-Enhanced Raman Scattering. J. Sol-Gel Sci. Technol. 2019, 92, 124–133. DOI: 10.1007/s10971-019-05093-1.
  • Kim, K.; Choi, J.-Y.; Lee, H. B.; Shin, K. S. Silanization of Ag-Deposited Magnetite Particles: An Efficient Route to Fabricate Magnetic Nanoparticle-Based Raman Barcode Materials. ACS Appl. Mater. Interfaces 2010, 2, 1872–1878. DOI: 10.1021/am1002074.
  • Balzerova, A.; Fargasova, A.; Markova, Z.; Ranc, V.; Zboril, R. Magnetically-Assisted Surface Enhanced Raman Spectroscopy (MA-SERS) for Label-Free Determination of Human Immunoglobulin G (IgG) in Blood Using Fe3O4@Ag Nanocomposite. Anal. Chem. 2014, 86, 11107–11114. DOI: 10.1021/ac503347h.
  • Pang, Y.; Wang, C.; Wang, J.; Sun, Z.; Xiao, R.; Wang, S. Fe3O4@Ag Magnetic Nanoparticles for microRNA Capture and Duplex-Specific Nuclease Signal Amplification Based SERS Detection in Cancer Cells. Biosens. Bioelectron. 2016, 79, 574–580. DOI: 10.1016/j.bios.2015.12.052.
  • Pang, Y.; Wang, C.; Xiao, R.; Sun, Z. Dual‐Selective and Dual‐Enhanced SERS Nanoprobes Strategy for Circulating Hepatocellular Carcinoma Cells Detection. Chemistry 2018, 24, 7060–7067. DOI: 10.1002/chem.201801133.
  • Wang, C.; Wang, C.; Wang, X.; Wang, K.; Zhu, Y.; Rong, Z.; Wang, W.; Xiao, R.; Wang, S. Magnetic SERS Strip for Sensitive and Simultaneous Detection of Respiratory Viruses. ACS Appl. Mater. Interfaces 2019, 11, 19495–19505. DOI: 10.1021/acsami.9b03920.
  • Wang, C.; Li, P.; Wang, J.; Rong, Z.; Pang, Y.; Xu, J.; Dong, P.; Xiao, R.; Wang, S. Polyethylenimine-Interlayered Core–Shell–Satellite 3D Magnetic Microspheres as Versatile SERS Substrates. Nanoscale 2015, 7, 18694–18707. DOI: 10.1039/c5nr04977f.
  • Guo, H.; Zhao, A.; Wang, R.; Wang, D.; Wang, L.; Gao, Q.; Sun, H.; Li, L.; He, Q. Generalized Green Synthesis of Fe3O4/Ag Composites with Excellent SERS Activity and Their Application in Fungicide Detection. J. Nanopart. Res. 2015, 17, 494. DOI: 10.1007/s11051-015-3286-9.
  • Yang, L.; Bao, Z.; Wu, Y.; Liu, J. Clean and Reproducible SERS Substrates for High Sensitive Detection by Solid Phase Synthesis and Fabrication of Ag-Coated Fe3O4 Microspheres. J. Raman Spectrosc. 2012, 43, 848–856. DOI: 10.1002/jrs.3106.
  • Bao, Z. Y.; Dai, J.; Yuan Lei, D.; Wu, Y. Maximizing Surface-Enhanced Raman Scattering Sensitivity of Surfactant-Free Ag-Fe3O4 Nanocomposites through Optimization of Silver Nanoparticle Density and Magnetic Self-Assembly. J. Appl. Phys. 2013, 114, 124305. DOI: 10.1063/1.4823732.
  • Hou, X.; Zhang, X.; Fang, Y.; Chen, S.; Zhou, Q. Surface-Enhanced Raman Scattering of C60 on co-Modified Substrate of Fe3O4 and Au Nanoparticles. Chem. Phys. 2010, 372, 1–5. DOI: 10.1016/j.chemphys.2010.04.036.
  • Li, P.; Ge, M.; Cao, C.; Lin, D.; Yang, L. High-Affinity Fe3O4/Au Probe with Synergetic Effect of Surface Plasmon Resonance and Charge Transfer Enabling Improved SERS Sensing of Dopamine in Biofluids. Analyst 2019, 144, 4526–4533. DOI: 10.1039/c9an00665f.
  • Deng, X.; Lin, K.; Chen, X.; Guo, Q.; Yao, P. Preparation of Magnetic Fe3O4/Au Composites for Extraction of Benzo[a]Pyrene from Aqueous Solution. Chem. Eng. J 2013, 225, 656–663. DOI: 10.1016/j.cej.2013.04.004.
  • Zhang, S.-Y.; Liu, J.-W.; Zhang, C.-L.; Yu, S.-H. Co-Assembled Thin Films of Ag Nanowires and Functional Nanoparticles at the Liquid–Liquid Interface by Shaking. Nanoscale 2013, 5, 4223–4229. DOI: 10.1039/c3nr33856h.
  • Zhai, Y.; Zhai, J.; Wang, Y.; Guo, S.; Ren, W.; Dong, S. Fabrication of Iron Oxide Core/Gold Shell Submicrometer Spheres with Nanoscale Surface Roughness for Efficient Surface-Enhanced Raman Scattering. J. Phys. Chem. C 2009, 113, 7009–7014. DOI: 10.1021/jp810561q.
  • Li, F.; Yu, Z.; Zhao, L.; Xue, T. Synthesis and Application of Homogeneous Fe3O4 Core/Au Shell Nanoparticles with Strong SERS Effect. RSC Adv. 2016, 6, 10352–10357. DOI: 10.1039/C5RA27875A.
  • Ge, M.; Wei, C.; Xu, M.; Fang, C.; Yuan, Y.; Gu, R.; Yao, J. Ultra-Sensitive Magnetic Immunoassay of HE4 Based on Surface Enhanced Raman Spectroscopy. Anal. Methods 2015, 7, 6489–6495. DOI: 10.1039/C5AY00977D.
  • Zhou, Z.; Xiao, R.; Cheng, S.; Wang, S.; Shi, L.; Wang, C.; Qi, K.; Wang, S. A Universal SERS-Label Immunoassay for Pathogen Bacteria Detection Based on Fe3O4@Au-Aptamer Separation and Antibody-Protein a Orientation Recognition. Anal. Chim. Acta 2021, 1160, 338421. DOI: 10.1016/j.aca.2021.338421.
  • Han, D.; Li, B.; Chen, Y.; Wu, T.; Kou, Y.; Xue, X.; Chen, L.; Liu, Y.; Duan, Q. Facile Synthesis of Fe3O4@Au Core–Shell Nanocomposite as a Recyclable Magnetic Surface Enhanced Raman Scattering Substrate for Thiram Detection. Nanotechnology 2019, 30, 465703. DOI: 10.1088/1361-6528/ab3a84.
  • He, H.; Sun, D.-W.; Pu, H.; Huang, L. Bridging Fe3O4@Au Nanoflowers and Au@Ag Nanospheres with Aptamer for Ultrasensitive SERS Detection of Aflatoxin B1. Food Chem. 2020, 324, 126832. DOI: 10.1016/j.foodchem.2020.126832.
  • Wang, C.; Wang, J.; Li, M.; Qu, X.; Zhang, K.; Rong, Z.; Xiao, R.; Wang, S. A Rapid SERS Method for Label-Free Bacteria Detection Using Polyethylenimine-Modified Au-Coated Magnetic Microspheres and Au@Ag Nanoparticles†. Analyst 2016, 141, 6226–6238. DOI: 10.1039/c6an01105e.
  • Hu, Y.; Sun, Y. Stable Magnetic Hot Spots for Simultaneous Concentration and Ultrasensitive Surface-Enhanced Raman Scattering Detection of Solution Analytes. J. Phys. Chem. C 2012, 116, 13329–13335. DOI: 10.1021/jp303775m.
  • Shen, W.; Wang, C.; Yang, X.; Wang, C.; Zhou, Z.; Liu, X.; Xiao, R.; Gu, B.; Wang, S. Synthesis of Raspberry-like Nanogapped Fe3O4@Au Nanocomposites for SERS-Based Lateral Flow Detection of Multiple Tumor Biomarkers. J. Mater. Chem. C 2020, 8, 12854–12864. DOI: 10.1039/D0TC03129A.
  • Tang, X.; Dong, R.; Yang, L.; Liu, J. Fabrication of Au Nanorod-Coated Fe3O4 microspheres as SERS Substrate for Pesticide Analysis by Near-Infrared Excitation. J. Raman Spectrosc. 2015, 46, 470–475. DOI: 10.1002/jrs.4658.
  • Wang, Y.; Sun, J.; Zhao, P.; Yi, H.; Yuan, H.; Yang, M.; Sun, B.; Che, F. Rapid Magnetic Separation: An Immunoassay Platform for the SERS-Based Detection of Subarachnoid Hemorrhage Biomarkers. Front. Chem. 2022, 10, 2296–2646. DOI: 10.3389/fchem.2022.1002351.
  • Duan, N.; Shen, M.; Wu, S.; Zhao, C.; Ma, X.; Wang, Z. Graphene Oxide Wrapped Fe3O4@Au Nanostructures as Substrates for Aptamer-Based Detection of Vibrio parahaemolyticus by Surface-Enhanced Raman Spectroscopy. Microchim. Acta 2017, 184, 2653–2660. DOI: 10.1007/s00604-017-2298-9.
  • Medetalibeyoglu, H.; Kotan, G.; Atar, N.; Yola, M. L. A Novel Sandwich-Type SERS Immunosensor for Selective and Sensitive Carcinoembryonic Antigen (CEA) Detection. Anal. Chim. Acta 2020, 1139, 100–110. DOI: 10.1016/j.aca.2020.09.034.
  • Wheeler, D. A.; Adams, S. A.; López-Luke, T.; Torres-Castro, A.; Zhang, J. Z. Magnetic Fe3O4‐Au Core‐Shell Nanostructures for Surface Enhanced Raman Scattering. Ann. Phys. 2012, 524, 670–679. DOI: 10.1002/andp.201200161.
  • Li, J.; Liang, P.; Zhao, T.; Guo, G.; Zhu, J.; Wen, C.; Zeng, J. Colorimetric and Raman Dual-Mode Lateral Flow Immunoassay Detection of SARS-CoV-2 N Protein Antibody Based on Ag Nanoparticles with Ultrathin Au Shell Assembled onto Fe3O4 Nanoparticles. Anal. Bioanal. Chem. 2023, 415, 545–554. DOI: 10.1007/s00216-022-04437-1.
  • Sun, H.-L.; Xu, M.-M.; Guo, Q.-H.; Yuan, Y.-X.; Shen, L.-M.; Gu, R.-A.; Yao, J.-L. Surface Enhanced Raman Spectroscopic Studies on Magnetic Fe3O4@AuAg Alloy Core–Shell Nanoparticles. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2013, 114, 579–585. DOI: 10.1016/j.saa.2013.05.098.
  • Zeng, Y.; Pei, J.-J.; Wang, L.-H.; Shen, A.-G.; Hu, J.-M. A Sensitive Sequential ‘on/Off’ SERS Assay for Heparin with Wider Detection Window and Higher Reliability Based on the Reversed Surface Charge Changes of Functionalized Au@Ag Nanoparticles. Biosens. Bioelectron. 2015, 66, 55–61. DOI: 10.1016/j.bios.2014.10.068.
  • Fu, G.; He, H.; Chai, Z.; Chen, H.; Kong, J.; Wang, Y.; Jiang, Y. Enhanced Lysozyme Imprinting over Nanoparticles Functionalized with Carboxyl Groups for Noncovalent Template Sorption. Anal. Chem. 2011, 83, 1431–1436. DOI: 10.1021/ac1029924.
  • Hao, Y.; Gao, R.; Liu, D.; Zhang, B.; Tang, Y.; Guo, Z. Preparation of Biocompatible Molecularly Imprinted Shell on Superparamagnetic Iron Oxide Nanoparticles for Selective Depletion of Bovine Hemoglobin in Biological Sample. J. Colloid Interface Sci. 2016, 470, 100–107. DOI: 10.1016/j.jcis.2016.02.051.
  • Yuan, X.; Tan, Y.; Wei, X.; Li, J. Chiral Determination of Cinchonine Using an Electrochemiluminescent Sensor with Molecularly Imprinted Membrane on the Surfaces of Magnetic Particles. Luminescence 2017, 32, 1116–1122. DOI: 10.1002/bio.3297.
  • Zhang, P.; Chen, G.; Wang, Z.; Ma, J.; Jia, Q. Design and Synthesis of Fe3O4@Au@Cyclodextrin-Molecularly Imprinted Polymers Labeled with SERS Nanotags for Ultrasensitive Detection of Transferrin. Sens. Actuators B Chem. 2022, 361, 131669. DOI: 10.1016/j.snb.2022.131669.
  • He, Y.; Li, L.; Li, X.; Zhang, J. Preparation of Magnetic Molecularly Imprinted Polymer Fe3O4@SiO2@Ag-MIPs and Its Identification and SERS Detection of Ofloxacin. Chem. Lett. 2020, 49, 713–716. DOI: 10.1246/cl.200145.
  • Wu, F.; Zhang, Z.; Liu, W.; Liu, Y.; Chen, X.; Liao, P.; Han, Q.; Song, L.; Chen, H.; Liu, W. Facile Synthesis of Core-Shell Structured Magnetic Fe3O4@ SiO2@Au Molecularly Imprinted Polymers for High Effective Extraction and Determination of 4-Methylmethcathinone in Human Urine Samples. e-Polymers 2022, 22, 488–504. DOI: 10.1515/epoly-2022-0034.
  • Qing, H.; Xin, S.; Wanying, Z.; Chunhong, Z.; Xuemin, Z.; Huijun, J. Magnetic Sensing Film Based on Fe3O4@Au-GSH Molecularly Imprinted Polymers for the Electrochemical Detection of Estradiol. Biosens. Bioelectron. 2016, 79, 180–186. DOI: 10.1016/J.BIOS.2015.12.017.
  • Zhang, L.-M.; Wei, X.-P.; Wei, Y.-X.; Li, J.-P.; Zeng, Y. Determination of Trace Gibberellin A3 by Magnetic Self-Assembly Molecularly Imprinted Electrochemical Sensor. Chin. J. Anal. Chem. 2014, 42, 1580–1585. DOI: 10.1016/S1872-2040(14)60780-5.
  • Ma, R-t.; Sun, X-y.; Ha, W.; Chen, J.; Shi, Y-p Improved Surface Imprinting Based on a Simplified Mass-Transfer Process for the Selective Extraction of IgG. J. Mater. Chem. B 2017, 5, 7512–7518. DOI: 10.1039/c7tb01519d.
  • Li, Y.; Chen, Y.; Huang, L.; Lou, B.; Chen, G. Creating BHb-Imprinted Magnetic Nanoparticles with Multiple Binding Sites. Analyst 2017, 142, 302–309. DOI: 10.1039/c6an02121b.
  • Li, Y.; Hong, M.; Miaomiao, N.; Bin, Q.; Lin, Z.; Cai, Z.; Chen, G. Novel Composites of Multifunctional Fe3O4@Au Nanofibers for Highly Efficient Glycoprotein Imprinting. J. Mater. Chem. B 2013, 1, 1044–1051. DOI: 10.1039/c2tb00149g.
  • Wang, X.; Li, J.; Chen, L. Advanced Techniques and Strategies for the Preparation of Molecularly Imprinted Materials. Sci. Bull. 2019, 13, 16.
  • Huang, S.; Xu, J.; Zheng, J.; Zhu, F.; Xie, L.; Ouyang, G. Synthesis and Application of Magnetic Molecularly Imprinted Polymers in Sample Preparation. Anal. Bioanal. Chem. 2018, 410, 3991–4014. DOI: 10.1007/s00216-018-1013-y.
  • Liu, Z. Molecular Imprinting: Hot Spots and Trends. Sci. Bull. 2019, 13, 2.
  • Chen, W.; Liu, X.; Wang, W.; Yin, G. Magnetic Fe3O4 Nanorings for Protein Adsorption and Detection. Mater. Res. Express 2018, 5, 125402. DOI: 10.1088/2053-1591/aae16c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.