254
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Current Trends of Analytical Techniques for Bioactive Terpenoids: A Review

, , &

References

  • Zhang, C.; Hong, K. Production of Terpenoids by Synthetic Biology Approaches. Front. Bioeng. Biotechnol. 2020, 8, 347. DOI: 10.3389/fbioe.2020.00347.
  • Connolly, J. D.; Hill, R. A. Dictionary of Terpenoids: Chapman & Hall, 1991.
  • Croteau, R.; Kutchan, T. M.; Lewis, N. G. Natural Products (Secondary Metabolites). Physiol. Mol. Biol. Plants 2000, 24, 1250–1319.
  • Huang, M.; Lu, J.-J.; Huang, M. Q.; Bao, J. L.; Chen, X. P.; Wang, Y. T. Terpenoids: Natural Products for Cancer Therapy. Expert Opin. Investig. Drugs. 2012, 21, 1801–1818. DOI: 10.1517/13543784.2012.727395.
  • Bano, S. Chemistry of Natural Products, Terpenoids. Natl. Sci. Digit. Libr Niscair 2007, 3, 1–21.
  • Vranová, E.; Coman, D.; Gruissem, W. Network Analysis of the MVA and MEP Pathways for Isoprenoid Synthesis. Annu. Rev. Plant Biol. 2013, 64, 665–700. DOI: 10.1146/annurev-arplant-050312-120116.
  • Unsicker, S. B.; Kunert, G.; Gershenzon, J. Protective Perfumes: The Role of Vegetative Volatiles in Plant Defense against Herbivores. Curr. Opin. Plant Biol. 2009, 12, 479–485. DOI: 10.1016/j.pbi.2009.04.001.
  • Abbas, F.; Ke, Y.; Yu, R.; Yue, Y.; Amanullah, S.; Jahangir, M. M.; Fan, Y. Volatile Terpenoids: Multiple Functions, Biosynthesis, Modulation and Manipulation by Genetic Engineering. Planta 2017, 246, 803–816. DOI: 10.1007/s00425-017-2749-x.
  • Croteau, R.; Johnson, M. A. Biosynthesis of Terpenoid Wood Extractives. In Biosynthesis and Biodegradation of Wood Components. 1985, pp 379–439
  • Ludwiczuk, A.; Skalicka-Woźniak, K.; Georgiev, M. Terpenoids. In Pharmacognosy; Elsevier: London, 2017, pp 233–266. DOI: 10.1016/B978-0-12-802104-0.00011-1.
  • Abdallah, I. I.; Quax, W. J. A Glimpse into the Biosynthesis of Terpenoids. KLS. 2017, 3, 81–98. DOI: 10.18502/kls.v3i5.981.
  • Grover, P.; Mehta, L.; Malhotra, A.; Kapoor, G.; Nagarajan, K.; Kumar, P.; et al. Exploring the Multitarget Potential of Iridoids: Advances and Applications. Curr. Top. Med. Chem. 2022, 23(5), 371–388.
  • Lanzotti, V. Diterpenes for Therapeutic Use. In Natural Products. Springer-Verlag: Berlin, 2013. DOI: 10.1007/978-3-642-22144-6_192.
  • Proshkina, E.; Plyusnin, S.; Babak, T.; Lashmanova, E.; Maganova, F.; Koval, L.; Platonova, E.; Shaposhnikov, M.; Moskalev, A. Terpenoids as Potential Geroprotectors. Antioxidants 2020, 9, 529. DOI: 10.3390/antiox9060529.
  • Hillier, S. G.; Lathe, R. Terpenes, Hormones and Life: Isoprene Rule Revisited. J. Endocrinol. 2019, 242, R9–R22. DOI: 10.1530/JOE-19-0084.
  • Harborne, A. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis. Springer Science & Business Media: London, 1998.
  • Perry, A.; Rasmussen, H.; Johnson, E. J. Xanthophyll (Lutein, Zeaxanthin) Content in Fruits, Vegetables and Corn and Egg Products. J. Food Compos. Anal 2009, 22, 9–15. DOI: 10.1016/j.jfca.2008.07.006.
  • Kabera, J. N.; Semana, E.; Mussa, A. R.; He, X. Plant Secondary Metabolites: Biosynthesis, Classification, Function and Pharmacological Properties. J. Pharm. Pharmacol. 2014, 2, 377–392.
  • Jahangeer, M.; Fatima, R.; Ashiq, M.; Basharat, A.; Qamar, S. A.; Bilal, M.; Iqbal, H. M. Therapeutic and Biomedical Potentialities of Terpenoids—A Review. J. Pure Appl. Microbiol. 2021, 15, 471–483. DOI: 10.22207/JPAM.15.2.04.
  • Bergman, M. E.; Davis, B.; Phillips, M. A. Medically Useful Plant Terpenoids: Biosynthesis, Occurrence, and Mechanism of Action. Molecules 2019, 24, 3961. DOI: 10.3390/molecules24213961.
  • Dellas, N.; Thomas, S. T.; Manning, G.; Noel, J. P. Discovery of a Metabolic Alternative to the Classical Mevalonate Pathway. Elife. 2013, 2, e00672. DOI: 10.7554/eLife.00672.
  • Nagegowda, D. A. Plant Volatile Terpenoid Metabolism: Biosynthetic Genes, Transcriptional Regulation and Subcellular Compartmentation. FEBS Lett. 2010, 584, 2965–2973. DOI: 10.1016/j.febslet.2010.05.045.
  • Nagegowda, D. A.; Gupta, P. Advances in Biosynthesis, Regulation, and Metabolic Engineering of Plant Specialized Terpenoids. Plant Sci. 2020, 294, 110457. DOI: 10.1016/j.plantsci.2020.110457.
  • Joyard, J.; Ferro, M.; Masselon, C.; Seigneurin-Berny, D.; Salvi, D.; Garin, J.; Rolland, N. Chloroplast Proteomics and the Compartmentation of Plastidial Isoprenoid Biosynthetic Pathways. Mol. Plant. 2009, 2, 1154–1180. DOI: 10.1093/mp/ssp088.
  • Estévez, J. M.; Cantero, A.; Reindl, A.; Reichler, S.; León, P. 1-Deoxy-D-Xylulose-5-Phosphate Synthase, a Limiting Enzyme for Plastidic Isoprenoid Biosynthesis in Plants. J. Biol. Chem. 2001, 276, 22901–22909. DOI: 10.1074/jbc.M100854200.
  • Jäger, W.; Höferl, M. Metabolism of Terpenoids in Animal Models and Humans. In Handbook of Essential Oils. Taylor and Francis: Boca Raton, 2020, pp 275–301.
  • Kohlert, C.; Van Rensen, I.; März, R.; Schindler, G.; Graefe, E.; Veit, M. Bioavailability and Pharmacokinetics of Natural Volatile Terpenes in Animals and Humans. Planta Med. 2000, 66, 495–505. DOI: 10.1055/s-2000-8616.
  • Carpena, M.; Nuñez-Estevez, B.; Soria-Lopez, A.; Garcia-Oliveira, P.; Prieto, M. A. Essential Oils and Their Application on Active Packaging Systems: A Review. Resources 2021, 10, 7. DOI: 10.3390/resources10010007.
  • Masyita, A.; Mustika Sari, R.; Dwi Astuti, A.; Yasir, B.; Rahma Rumata, N.; Emran, T. B.; Nainu, F.; Simal-Gandara, J. Terpenes and Terpenoids as Main Bioactive Compounds of Essential Oils, Their Roles in Human Health and Potential Application as Natural Food Preservatives. Food Chem. X 2022, 13, 100217. DOI: 10.1016/j.fochx.2022.100217.
  • Calfapietra, C.; Fares, S.; Manes, F.; Morani, A.; Sgrigna, G.; Loreto, F. Role of Biogenic Volatile Organic Compounds (BVOC) Emitted by Urban Trees on Ozone Concentration in Cities: A Review. Environ. Pollut. 2013, 183, 71–80. DOI: 10.1016/j.envpol.2013.03.012.
  • Laothawornkitkul, J.; Taylor, J. E.; Paul, N. D.; Hewitt, C. N. Biogenic Volatile Organic Compounds in the Earth System. New Phytol. 2009, 183, 27–51. DOI: 10.1111/j.1469-8137.2009.02859.x.
  • Raut, J. S.; Karuppayil, S. M. A Status Review on the Medicinal Properties of Essential Oils. Ind. Crops Prod. 2014, 62, 250–264. DOI: 10.1016/j.indcrop.2014.05.055.
  • Rodríguez-Llorente, D.; Cañada-Barcala, A.; Álvarez-Torrellas, S.; Águeda, V. I.; García, J.; Larriba, M. A Review of the Use of Eutectic Solvents, Terpenes and Terpenoids in Liquid–Liquid Extraction Processes. Processes 2020, 8, 1220. DOI: 10.3390/pr8101220.
  • Piñeiro, Z.; Palma, M.; Barroso, C. G. Determination of Terpenoids in Wines by Solid Phase Extraction and Gas Chromatography. Anal. Chim. Acta 2004, 513, 209–214. DOI: 10.1016/j.aca.2003.12.044.
  • Jiang, Z.; Kempinski, C.; Chappell, J. Extraction and Analysis of Terpenes/Terpenoids. Curr. Protoc. Plant Biol. 2016, 1, 345–358. DOI: 10.1002/cppb.20024.
  • Carsanba, E.; Pintado, M.; Oliveira, C. Fermentation Strategies for Production of Pharmaceutical Terpenoids in Engineered Yeast. Pharmaceuticals 2021, 14, 295. DOI: 10.3390/ph14040295.
  • Kishimoto, T.; Wanikawa, A.; Kagami, N.; Kawatsura, K. Analysis of Hop-Derived Terpenoids in Beer and Evaluation of Their Behavior Using the Stir Bar − Sorptive Extraction Method with GC-MS. J. Agric. Food Chem. 2005, 53, 4701–4707. DOI: 10.1021/jf050072f.
  • Liu, H.; Tan, H.; Wang, W.; Zhang, W.; Chen, Y.; Li, S.; Liu, Z.; Li, H.; Zhang, W. Cytorhizophins a and B, Benzophenone-Hemiterpene Adducts from the Endophytic Fungus Cytospora Rhizophorae. Org. Chem. Front. 2019, 6, 591–596. DOI: 10.1039/C8QO01306C.
  • Zhang, T. X. T. G. X. Rapid Quantitative Determination of Isoprene Monomer in Living Taraxacum Kok-Saghyz by Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry. 中国炼油与石油化工. 2020, 22, 30.
  • Delgado-Altamirano, R.; López-Palma, R.; Monzote, L.; Delgado-Domínguez, J.; Becker, I.; Rivero-Cruz, J.; Esturau-Escofet, N.; Vázquez-Landaverde, P.; Rojas-Molina, A. Chemical Constituents with Leishmanicidal Activity from a Pink-Yellow Cultivar of Lantana Camara Var. Aculeata (L.) Collected in Central Mexico. IJMS. 2019, 20, 872. DOI: 10.3390/ijms20040872.
  • Peng, Y.; Mouat, A. P.; Hu, Y.; Li, M.; McDonald, B. C.; Kaiser, J. Source Appointment of Volatile Organic Compounds and Evaluation of Anthropogenic Monoterpene Emission Estimates in Atlanta, Georgia. Atmos. Environ 2022, 288, 119324. DOI: 10.1016/j.atmosenv.2022.119324.
  • Mochizuki, T.; Ikeda, F.; Sawakami, K.; Tani, A. Monoterpene Emissions and the Geranyl Diphosphate Content of Acer and Fagaceae Species. J. For. Res 2020, 25, 339–346. DOI: 10.1080/13416979.2020.1779425.
  • Sarkar, C.; Guenther, A. B.; Park, J.-H.; Seco, R.; Alves, E.; Batalha, S.; Santana, R.; Kim, S.; Smith, J.; Tóta, J.; et al. PTR-TOF-MS Eddy Covariance Measurements of Isoprene and Monoterpene Fluxes from an Eastern Amazonian Rainforest. Atmos. Chem. Phys. 2020, 20, 7179–7191. DOI: 10.5194/acp-20-7179-2020.
  • Purser, G.; Heal, M. R.; White, S.; Morison, J. I.; Drewer, J. Differences in Isoprene and Monoterpene Emissions from Cold-Tolerant Eucalypt Species Grown in the UK. Atmos. Pollut. Res. 2020, 11, 2011–2021. DOI: 10.1016/j.apr.2020.07.022.
  • Vettikkat, L.; Sinha, V.; Datta, S.; Kumar, A.; Hakkim, H.; Yadav, P.; Sinha, B. Significant Emissions of Dimethyl Sulfide and Monoterpenes by Big-Leaf Mahogany Trees: Discovery of a Missing Dimethyl Sulfide Source to the Atmospheric Environment. Atmos. Chem. Phys. 2020, 20, 375–389. DOI: 10.5194/acp-20-375-2020.
  • Chen, J.; Bi, H.; Yu, X.; Fu, Y.; Liao, W. Influence of Physiological and Environmental Factors on the Diurnal Variation in Emissions of Biogenic Volatile Compounds from Pinus Tabuliformis. J Environ Sci (China) 2019, 81, 102–118. DOI: 10.1016/j.jes.2019.01.020.
  • Irshad, S.; Khatoon, S. A Validated HPTLC Method for the Simultaneous Determination of Seasonal Alterations of Two Antihypertensive Monoterpenoid Indole Alkaloids in Rauvolfia Species from Northern India. S. Afr. J. Bot. 2021, 142, 193–200. DOI: 10.1016/j.sajb.2021.06.027.
  • Hamad, W. S.; Al-Khesraji, T. O., editors. 2021 Estimation of Some Active Compounds in Members from Cynareae Tribe (Asteraceae) Growing in Central and Northern Iraq. IOP Conference Series: Materials Science and Engineering; IOP Publishing. DOI: 10.1088/1757-899X/1058/1/012084.
  • Kanemoto, M.; Matsunami, K.; Otsuka, H.; Shinzato, T.; Ishigaki, C.; Takeda, Y. Chlorine-Containing Iridoid and Iridoid Glucoside, and Other Glucosides from Leaves of Myoporum Bontioides. Phytochemistry 2008, 69, 2517–2522. DOI: 10.1016/j.phytochem.2008.07.002.
  • Abdullah, F. O.; Hussain, F. H.; Sardar, A. S.; Gilardoni, G.; Tosi, S.; Vidari, G. Iridoids Isolation from a Phytochemical Study of the Medicinal Plant Teucrium Parviflorum Collected in Iraqi Kurdistan. Molecules 2022, 27, 5963. DOI: 10.3390/molecules27185963.
  • Silva, J. R. A.; Amaral, A. C. F.; Silveira, C. V.; Rezende, C. M.; Pinto, A. C. Quantitative Determination by HPLC of Iridoids in the Bark and Latex of Himatanthus Sucuuba. Acta Amaz. 2007, 37, 119–122. DOI: 10.1590/S0044-59672007000100014.
  • Jensen, S. R.; Gotfredsen, C. H.; Grayer, R. J. Unusual Iridoid Glycosides in Veronica Sects. Hebe and Labiatoides. Biochem. Syst. Ecol. 2008, 36, 207–215. DOI: 10.1016/j.bse.2007.09.011.
  • Kirmizibekmez, H.; Ariburnu, E.; Masullo, M.; Festa, M.; Capasso, A.; Yesilada, E.; Piacente, S. Iridoid, Phenylethanoid and Flavonoid Glycosides from Sideritis Trojana. Fitoterapia 2012, 83, 130–136. DOI: 10.1016/j.fitote.2011.10.003.
  • Liang, J.; He, J.; Zhu, S.; Zhao, W.; Zhang, Y.; Ito, Y.; Sun, W. Preparative Isolation and Purification of Iridoid Glycosides from Fructus Corni by High-Speed Countercurrent Chromatography. J. Liq. Chromatogr. Relat. Technol. 2013, 36, 983–999. DOI: 10.1080/10826076.2012.683914.
  • Yue, H.-L.; Zhao, X.-H.; Wang, Q.-L.; Tao, Y.-D. Separation and Purification of Water-Soluble Iridoid Glucosides by High Speed Counter-Current Chromatography Combined with Macroporous Resin Column Separation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 936, 57–62. DOI: 10.1016/j.jchromb.2013.08.007.
  • Dawood, M.; Snyder, J. C. Can Spectrophotometry Be Used to Quantify Zingiberene Sesquiterpenoids in Tomato Leaflet Extracts? Agriculture 2021, 11, 1037. DOI: 10.3390/agriculture11111037.
  • Nagaoka, T.; Goto, K.; Watanabe, A.; Sakata, Y.; Yoshihara, T. Sesquiterpenoids in Root Exudates of Solanum Aethiopicum. Z Naturforsch. C J. Biosci. 2001, 56, 707–713. DOI: 10.1515/znc-2001-9-1007.
  • Yuan, J.-Z.; Yang, Y.-L.; Li, W.; Yang, L.; Dai, H.-F.; Mándi, A.; Cai, C.-H.; Chen, H.-Q.; Dong, W.-H.; Kurtán, T.; et al. Zizaane-Type Sesquiterpenoids and Their Rearranged Derivatives from Agarwood of an Aquilaria Plant. Molecules 2021, 27, 198. DOI: 10.3390/molecules27010198.
  • Muhammad, I.; Luo, W.; Shoaib, R. M.; Li, G.-L.; Shams Ul Hassan, S.; Yang, Z.-H.; Xiao, X.; Tu, G.-L.; Yan, S.-K.; Ma, X.-P.; et al. Guaiane-Type Sesquiterpenoids from Cinnamomum Migao HW Li: And Their anti-Inflammatory Activities. Phytochemistry 2021, 190, 112850. DOI: 10.1016/j.phytochem.2021.112850.
  • Guo, R.; Duan, Z.-K.; Li, Q.; Yao, G.-D.; Song, S.-J.; Huang, X.-X. Guide Isolation of Guaiane-Type Sesquiterpenoids from Daphne Tangutica Maxim. And Their anti-Inflammatory Activities. Phytochemistry 2023, 206, 113523. DOI: 10.1016/j.phytochem.2022.113523.
  • Wenyu, D.; Qian, Y.; Huimin, X.; Liaobin, D. Drimane-Type Sesquiterpenoids from Fungi. Chin. J. Nat. Med. 2022, 20, 737–748. DOI: 10.1016/S1875-5364(22)60190-0.
  • Tian, J.-L.; Shu, C.; Zhang, Y.; Cui, H.-J.; Xie, X.; Ran, X.-L.; Chen, T.-S.; Zang, Z.-H.; Liu, J.-G.; Li, B.; et al. A “Green” Homogenate Extraction Coupled with UHPLC-MS for the Rapid Determination of Diterpenoids in Croton Crassifolius. Molecules 2019, 24, 694. DOI: 10.3390/molecules24040694.
  • Saxena, S.; Jain, D. C.; Gupta, M. M.; Bhakuni, R. S.; Mishra, H. O.; Sharma, R. P. High‐Performance Thin‐Layer Chromatographic Analysis of Hepatoprotective Diterpenoids from Andrographis Paniculata. Phytochem. Anal. 2000, 11, 34–36. DOI: 10.1002/(SICI)1099-1565(200001/02)11:1%3C34::AID-PCA487%3E3.0.CO;2-V.
  • Misra, H.; Soni, M.; Mehta, D.; Mehta, B.; Jain, D. An Improved HPTLC-UV Method for Rapid Estimation of Andrographolide in Andrographis Paniculata (Burm F.) Nees. InPharm Communique 2009, 2, 51–54.
  • Pholphana, N.; Rangkadilok, N.; Saehun, J.; Ritruechai, S.; Satayavivad, J. Changes in the Contents of Four Active Diterpenoids at Different Growth Stages in Andrographis Paniculata (Burm. f.) Nees (Chuanxinlian). Chin. Med. 2013, 8, 2. DOI: 10.1186/1749-8546-8-2.
  • Liu, M.; Sun, W.; Shen, L.; Hao, X.; Al Anbari, W. H.; Lin, S.; Li, H.; Gao, W.; Wang, J.; Hu, Z.; et al. Bipolaricins a–I, Ophiobolin-Type Tetracyclic Sesterterpenes from a Phytopathogenic Bipolaris sp. Fungus. J. Nat. Prod. 2019, 82, 2897–2906. DOI: 10.1021/acs.jnatprod.9b00744.
  • Wang, J.-P.; Shu, Y.; Hu, J.-T.; Liu, R.; Cai, X.-Y.; Sun, C.-T.; Gan, D.; Zhou, D.-J.; Mei, R.-F.; Ding, H.; et al. Roquefornine A, a Sesterterpenoid with a 5/6/5/5/6-Fused Ring Ystem from the funFgus Penicillium Roqueforti YJ-14. Org. Chem. Front. 2020, 7, 1463–1468. DOI: 10.1039/D0QO00301H.
  • Wang, J.-P.; Shu, Y.; Liu, R.; Gan, J.-L.; Deng, S.-P.; Cai, X.-Y.; Hu, J.-T.; Cai, L.; Ding, Z.-T. Bioactive Sesterterpenoids from the Fungus Penicillium Roqueforti YJ-14. Phytochemistry 2021, 187, 112762. DOI: 10.1016/j.phytochem.2021.112762.
  • Vilkickyte, G.; Raudone, L. Optimization, Validation and Application of HPLC-PDA Methods for Quantification of Triterpenoids in Vaccinium Vitis-Idaea L. Molecules 2021, 26, 1645. DOI: 10.3390/molecules26061645.
  • Falev, D. I.; Kosyakov, D. S.; Ul’yanovskii, N. V.; Ovchinnikov, D. V. Rapid Simultaneous Determination of Pentacyclic Triterpenoids by Mixed-Mode Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2020, 1609, 460458. DOI: 10.1016/j.chroma.2019.460458.
  • Taddeo, V.; Castillo, U.; Martínez, M.; Menjivar, J.; Jiménez, I.; Núñez, M.; Bazzocchi, I. Development and Validation of an HPLC-PDA Method for Biologically Active Quinonemethide Triterpenoids Isolated from Maytenus Chiapensis. Medicines 2019, 6, 36. DOI: 10.3390/medicines6010036.
  • Chen, W.; Zheng, Y.; Yan, L.; Yuan, M.; Ouyang, L.; Li, J.; et al. Validated UHPLC–MS/MS Ethod for Simultaneous Determination of Four Triterpene Saponins from Akebia Trifoliata Xtract in Rat Plasma and Its Application to a Pharmacokinetic Study. Biomed. Chromatogr. 2019, 33, e4585. DOI: 10.1002/bmc.4585.
  • Wang, Z.; Chang, Y.; Cao, F.; Yang, C.; Wang, Z.; Kuang, H. Simultaneous Determination of Six Triterpenoid Saponins in Beagle Dog Plasma by UPLC-MS/MS and Its Pplication to a Harmacokinetic Study after Ral Administration of the Extract of the Eleutherococcus Senticosus (Rupr. & Maxim.) Maxim. leaves. Acta Chromatogr. 2022. DOI: 10.1556/1326.2022.01011.
  • Lee, H. W.; Zhang, H.; Liang, X.; Ong, C. N. Simultaneous Determination of Carotenoids, Tocopherols and Phylloquinone in 12 Brassicaceae Vegetables. Lwt. 2020, 130, 109649. DOI: 10.1016/j.lwt.2020.109649.
  • Alsaggaf, W. T. Rapid Determination of Lutein in Fresh and Commercial Food Samples Using Paper Spray Ionization Mass Spectrometry. LWT 2022, 155, 112915. DOI: 10.1016/j.lwt.2021.112915.
  • Pavelková, P.; Krmela, A.; Schulzová, V. Determination of Carotenoids in Flowers and Food Supplements by HPLC-DAD. Acta Chimica Slovaca 2020, 13, 6–12. DOI: 10.2478/acs-2020-0002.
  • Mess, A.; Vietzke, J.-P.; Rapp, C.; Francke, W. Qualitative Analysis of Tackifier Resins in Pressure Sensitive Adhesives Using Direct Analysis in Real Time Time-of-Flight Mass Spectrometry. Anal. Chem. 2011, 83, 7323–7330. DOI: 10.1021/ac2011608.
  • Barrueso-Martínez, M. L.; del Pilar Ferrándiz-Gómez, T.; Romero-Sánchez, M. D.; Martín-Martínez, J. M. Characterization of EVA-Based Adhesives Containing Different Amounts of Rosin Ester or Polyterpene Tackifier. J. Adhes. 2003, 79, 805–824. DOI: 10.1080/00218460309547.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.