149
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants in Seawater. Part 3: Chromatographic- and Mass Spectrometric-Based Methodologies

, &

References

  • Kinani, S.; Roumiguières, A.; Bouchonnet, S. A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants (CPOs) in Seawater. Part 1: Chlorine Chemistry in Seawater and Its Consequences in Terms of Biocidal Effectiveness and Environmental Impact. Crit. Rev. Anal. Chem. 2022, 3, 1–14. DOI: 10.1080/10408347.2022.2139590.
  • Rajagopal, S.; Van der Velde, G.; Van der Gaag, M.; Jenner, H. A. How Effective is Intermittent Chlorination to Control Adult Mussel Fouling in Cooling Water Systems? Water Res. 2003, 37, 329–338. DOI: 10.1016/s0043-1354(02)00270-1.
  • Rajala, P.; Bomberg, M.; Huttunen-Saarivirta, E.; Priha, O.; Tausa, M.; Carpén, L. Influence of Chlorination and Choice of Materials on Fouling in Cooling Water System under Brackish Seawater Conditions. Materials 2016, 9, 475–495. DOI: 10.3390/ma9060475.
  • Kinani, A.; Kinani, S.; Richard, B.; Lorthioy, M.; Bouchonnet, S. Formation and Determination of Organohalogen by-Products in Water – Part I. Discussing the Parameters Influencing the Formation of Organohalogen by-Products and the Relevance of Estimating Their Concentration Using the AOX (Adsorbable Organic Halide) Method. Trends Anal. Chem. 2016, 85, 273–280. DOI: 10.1016/j.trac.2016.06.008.
  • Paull, B.; Barron, L. Using Ion Chromatography to Monitor Haloacetic Acids in Drinking Water: A Review of Current Technologies. J. Chromatogr. A 2004, 1046, 1–9. DOI: 10.1016/j.chroma.2004.06.081.
  • Rittmann, B. E.; Huck, P. M.; Bouwer, E. J. Biological Treatment of Public Water Supplies. Crit. Rev. Environ. Control 1989, 19, 119–184. DOI: 10.1080/10643388909388362.
  • Prasse, C.; Stalter, D.; Schulte-Oehlmann, U.; Oehlmann, J.; Ternes, T. A. Spoilt for Choice: A Critical Review on the Chemical and Biological Assessment of Current Wastewater Treatment Technologies. Water Res. 2015, 87, 237–270. DOI: 10.1016/j.watres.2015.09.023.
  • Schmalz, C.; Frimmel, F. H.; Zwiener, C. Trichloramine in Swimming pools - Formation and Mass Transfer. Water Res. 2011, 45, 2681–2690. DOI: 10.1016/j.watres.2011.02.024.
  • Zimmer-Faust, A. G.; Ambrose, R. F.; Tamburri, M. N. Evaluation of Approaches to Quantify Total Residual Oxidants in Ballast Water Management Systems Employing Chlorine for Disinfection. Water Sci. Technol. 2014, 70, 1585–1593. DOI: 10.2166/wst.2014.394.
  • Nguyen, T.; Roddick, F. A.; Fan, L. Biofouling of Water Treatment Membranes: A Review of the Underlying Causes, Monitoring Techniques and Control Measures. Membranes (Basel) 2012, 2, 804–840. DOI: 10.3390/membranes2040804.
  • Rajagopal, S. Chlorination and Biofouling Control in Industrial Cooling Water Systems. In. Operational and Environmental Consequences of Large Industrial Cooling Water Systems; Rajagopal, S., Jenner, H. A., Venugopalan V.P., Eds.; Springer: New York, 2012; pp. 163–182.
  • BREF, European IPPC. Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems. https://eippcb.jrc.ec.europa.eu/sites/default/files/2019-11/cvs_bref_1201.pdf. 2003 (accessed Jun 18, 2020).
  • Kinani, S.; Roumiguières, A.; Bouchonnet, S. A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants (CPOs) in Seawater. Part 2: Sampling, Sample Preparation and Non-Chromatographic and Mass Spectrometric-Based Methods. Crit. Rev. Anal. Chem. 2020, 26, 1–20. DOI: 10.1080/10408347.2020.2135984.
  • Ge, H.; Wallace, G. G.; O'Halloran, R. A. J. Determination of Trace Amounts of Chloramines by Liquid Chromatographic Separation and Amperometric Detection. Anal. Chim. Acta 1990, 237, 149–153. DOI: 10.1016/S0003-2670(00)83912-4.
  • Furness-Green, S. M.; Inskeep, T. R.; Starke, J. J.; Ping, L.; Greenleaf-Schumann, H. R.; Goyne, T. E. High-Performance Liquid Chromatographic Analysis of Amino Acid- and Peptide-Derived Chloramines. J. Chromatogr. Sci. 1998, 36, 227–236. DOI: 10.1093/chromsci/36.5.227.
  • Tachikawa, M.; Aburada, T.; Tezuka, M.; Sawamura, R. Occurrence and Production of Chloramines in the Chlorination of Creatinine in Aqueous Solution. Water Res. 2005, 39, 371–379. DOI: 10.1016/j.watres.2004.09.029
  • Takats, Z.; Koch, K. J.; Cooks, R. G. Organic Chloramines Analysis and Free Chlorine Quantification by Electrospray and Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry. Anal. Chem. 2001, 73, 4522–4529. DOI: 10.1021/ac010338r
  • Fayyad, M. K.; Al-Sheikh, A. M. Determination of N-Chloramines in as-Samra Chlorinated Wastewater and Their Effect on the Disinfection Process. Water Res. 2001, 35, 1304–1310. DOI: 10.1016/s0043-1354(00)00393-6
  • Pla-Tolós, J.; Moliner-Martínez, Y.; Molins-Legua, C.; Herráez-Hernández, R.; Verdú-Andrés, J.; Campíns-Falcó, P. Selective and Sensitive Method Based on Capillary Liquid Chromatography with in-Tube Solid Phase Microextraction for Determination of Monochloramine in Water. J. Chromatogr. A 2015, 1388, 17–23. DOI: 10.1016/j.chroma.2015.02.024
  • Huang, G.; Jiang, P.; Li, X.-F. Mass Spectrometry Identification of N-Chlorinated Dipeptides in Drinking Water. Anal. Chem. 2017, 89, 4204–4209. DOI: 10.1021/acs.analchem.7b00228
  • Weng, S. C.; Li, J.; Wood, K. V.; Kenttämaa, H. I.; Williams, P. E.; Amundson, L. M.; Blatchley, E. R. UV-Induced Effects on Chlorination of Creatinine. Water Res. 2013, 47, 4948–4956. DOI: 10.1016/j.watres.2013.05.034
  • Zhang, T.; Xu, B.; Wang, A.; Cui, C. Degradation Kinetics of Organic Chloramines and Formation of Disinfection by-Products during Chlorination of Creatinine. Chemosphere 2018, 195, 673–682. DOI: 10.1016/j.chemosphere.2017.12.113
  • Yu, Y.; Reckhow, D. A. Formation and Occurrence of N-Chloro-2,2-Dichloroacetamide, a Previously Overlooked Nitrogenous Disinfection Byproduct in Chlorinated Drinking Waters. Environ. Sci. Technol. 2017, 51, 1488–1497. DOI: 10.1021/acs.est.6b04218
  • Thomas, E. L.; Grisham, M. B.; Jefferson, M. M. Preparation and Characterization of Chloramines. Methods Enzymol. 1986, 132, 569–585.
  • Bedner, M.; MacCrehan, W. A.; Helz, G. R. Improving the Recoveries of Unstable N-Chloramines Determined by Liquid Chromatography-Postcolumn Electrochemical Detection. J. Chromatogr. Sci. 2002, 40, 447–455. DOI: 10.1093/chromsci/40.8.447
  • Gagnon, G. A.; Baribeau, H.; Rutledge, S. O.; Dumancic, R.; Oehmen, A.; Chauret, C.; Andrews, S. Disinfectant Efficacy in Distribution Systems: A Pilot-Scale Assessment. J. Water Suppl. Res. Technol. Aqua 2008, 57, 507–518. DOI: 10.2166/aqua.2008.103.
  • MacCrehan, W. A.; Jensen, J. S.; Helz, A. R. Detection of Sewage Organic Chlorination Products That Are Resistant to Dechlorination with Sulfite. Environ. Sci. Technol. 1998, 32, 3640–3645. DOI: 10.1021/es980101l.
  • Yoon, J.; Jensen, J. N. Chlorine Transfer from Inorganic Monochloramine in Chlorinated Wastewater. Water Environ. Res. 1995, 67, 842–847. DOI: 10.2175/106143095X131772.
  • Chehab, R.; Coulomb, B.; Boudenne, J.-L.; Robert-Peillard, F. Development of an Automated System for the Analysis of Inorganic Chloramines in Swimming Pools via Multi-Syringe Chromatography and Photometric Detection with ABTS. Talanta 2020, 207, 120322. DOI: 10.1016/j.talanta.2019.120322
  • Lukasewycz, M. T.; Bieringer, C. M.; Liukkonen, R. J.; Fitzsimmons, M. E.; Corcoran, H. F.; Lin, S.; Carlson, R. M. Analysis of Inorganic and Organic Chloramines: Derivatization with 2-Mercaptobenzothiazole. Environ. Sci. Technol. 1989, 23, 196–199. DOI: 10.1021/es00179a010.
  • Scully, F. E.; Yang, J. P.; Mazina, K.; Daniel, F. B. Derivatization of Organic and Inorganic N-Chloramines for High Performance Liquid Chromatography Analysis of Chlorinated Water. Environ. Sci. Technol. 1984, 18, 787–792. DOI: 10.1021/es00128a012.
  • Chapman, A. L. P.; Skaff, O.; Senthilmohan, R.; Kettle, A. J.; Davies, M. J. Hypobromous Acid and Bromamine Production by Neutrophils and Modulation by Superoxide. Biochem. J. 2009, 417, 773–781. DOI: 10.1042/BJ20071563
  • Nejdl, L.; Sochor, J.; Zitka, O.; Cernei, N.; Ruttkay-Nedecky, B.; Kopel, P.; Babula, P.; Adam, V.; Hubalek, J.; Kizek, R. Spectrometric and Chromatographic Study of Reactive Oxidants Hypochlorous and Hypobromous Acids and Their Interactions with Taurine. Chromatographia 2013, 76, 363–373. DOI: 10.1007/s10337-012-2354-x.
  • Kinani, S.; Layousse, S.; Richard, B.; Kinani, A.; Bouchonnet, S.; Thoma, A.; Sacher, F. Selective and Trace Determination of Monochloramine in River Water by Chemical Derivatization and Liquid Chromatography/Tandem Mass Spectrometry Analysis. Talanta 2015, 140, 189–197. DOI: 10.1016/j.talanta.2015.03.043
  • Shin, H.-S. Simple and Simultaneous Determination of Free Chlorine, Free Bromine and Ozone in Water by LC. Chroma. 2010, 71, 647–651. DOI: 10.1365/s10337-010-1527-8.
  • Kim, H.-J.; Shin, H.-S. Ultra-Trace Determination of Bromate in Mineral Water and Table Salt by Liquid Chromatography-Tandem Mass Spectrometry. Talanta 2012, 99, 677–682. DOI: 10.1016/j.talanta.2012.06.076
  • Lu, P.; Lin, K.; Huang, X.; Yuan, D. A Sensitive Method for the Determination of Ultratrace Levels of Reactive Bromine Species in Water Using LC-MS/MS. Talanta 2019, 199, 567–572. DOI: 10.1016/j.talanta.2019.03.020
  • Amiri, F.; Andrews, S. Development of a Size Exclusion Chromatography-Electrochemical Detection Method for the Analysis of Total Organic and Inorganic Chloramines. J. Chromatogr. Sci. 2008, 46, 591–595. DOI: 10.1093/chromsci/46.7.591
  • Abdighahroudi, M. S.; Schmidt, T. C.; Lutze, H. V. Determination of Free Chlorine Based on Ion Chromatography-Application of Glycine as a Selective Scavenger. Anal. Bioanal. Chem. 2020, 412, 7713–7722. DOI: 10.1007/s00216-020-02885-1
  • Jung, S.-H.; Yeon, J.-W.; Kang, Y.; Song, K. Determination of Triiodide Ion Concentration Using UV-Visible Spectrophotometry. Asian J. Chem. 2014, 26, 4084–4086. DOI: 10.14233/ajchem.2014.17720.
  • Yoon, J.; Jensen, J. N. Analysis of Organic and Inorganic Monochloramine by HPLC. In Proc. 1992 Water Qual. Technol. Conf.; American Water Works Assoc.: Toronto, Ontario, Canada, 1993; pp. 475–488.
  • Scully Jr., F. E.; Mazina, K. E.; Ringhand, H. P.; Chess, E. K.; Campbell, J. A.; Johnson, J. D. Identification of Organic N-Chloramines in Vitro in Stomach Fluid from the Rat after Chlorination. Chem. Res. Toxicol. 1990, 3, 301–306. DOI: 10.1021/tx00016a005
  • Harp, D. L. Specificity Determination of Inorganic Monochloramine in Chlorinated Wastewaters. Water Environ. Res. 2000, 72, 706–713. DOI: 10.2175/106143000X138328.
  • Lee, W.; Westerhoff, P.; Yang, X.; Shang, C. Comparison of Colorimetric and Membrane Introduction Mass Spectrometry Techniques for Chloramine Analysis. Water Res. 2007, 41, 3097–3102. DOI: 10.1016/j.watres.2007.04.032
  • Tao, H. Z.; Chen, L.; Li, X.; Yang, Y. L.; Li, G. B. Salicylate-Spectrophotometric Determination of Inorganic Monochloramine. Anal. Chim. Acta, 2008, 615, 184–190. DOI: 10.1016/j.aca.2008.04.005
  • Kinani, S.; Richard, B.; Souissi, Y.; Bouchonnet, S. Analysis of Inorganic Chloramines in Water. Trends Anal. Chem. 2012, 33, 55–67. DOI: 10.1016/j.trac.2011.10.006.
  • Criquet, J.; Rodriguez, E. M.; Allard, S.; Wellauer, S.; Salhi, E.; Joll, C. A.; von Gunten, U. Reaction of Bromine and Chlorine with Phenolic Compounds and Natural Organic Matter Extracts – Electrophilic Aromatic Substitution and Oxidation. Water Res. 2015, 85, 476–486. DOI: 10.1016/j.watres.2015.08.051
  • Conyers, B.; Walker, E.; Scully, F. E.; Marbury, G. D. N-Chloroaldimines. 4. Identification in a Chlorinated Municipal Wastewater by Gas Chromatography/Mass Spectrometry. Environ. Sci. Technol. 1993, 27, 720–724. DOI: 10.1021/es00041a016.
  • Freuze, I.; Brosillon, S.; Laplanche, A.; Tozza, D.; Cavard, J. Effect of Chlorination on the Formation of Odorous Disinfection by-Products. Water Res. 2005, 39, 2636–2642. DOI: 10.1016/j.watres.2005.04.026
  • Brosillon, S.; Lemasle, M.; Renault, E.; Tozza, D.; Heim, V.; Laplanche, A. Analysis and Occurrence of Odorous Disinfection by-Products from Chlorination of Amino Acids in Three Different Drinking Water Treatment Plants and Corresponding Distribution Networks. Chemoshpere 2009, 77, 1035–1042. DOI: 10.1016/j.chemosphere.2009.09.031
  • How, Z. T.; Linge, K. L.; Busetti, F.; Joll, C. A. Formation of Odorous and Hazardous by-Products from the Chlorination of Amino Acids. Water Res. 2018, 146, 10–18. DOI: 10.1016/j.watres.2018.08.072
  • Kosaka, K.; Seki, K.; Kimura, N.; Kobayashi, Y.; Asami, M. Determination of Trichloramine in Drinking Water Using Headspace Gas Chromatography/Mass Spectrometry. Water Sci. Technol.: Water Supply 2010, 10, 23–29. DOI: 10.2166/ws.2010.042.
  • Tanaka, K.; Fukase, K.; Hayashi, H. Determination of Trichloramine and Dichloramine in Drinking Water by a Head-Space Gas Chromatograph Mass Spectrometer. Technical Note, 2011. https://www.city.osaka.lg.jp/suido/cmsfiles/contents/0000245/245226/i-5.pdf.
  • Clark, D. R.; Fileman, T. W.; Joint, I. Determination of Ammonium Regeneration Rates in the Oligotrophic Ocean by Gas Chromatography/Mass Spectrometry. Mar. Chem. 2006, 98, 121–130. DOI: 10.1016/j.marchem.2005.08.006.
  • Magnuson, M. L. Determination of Bromate at Parts-per-Trillion Levels by Gas Chromatography-Mass Spectrometry with Negative Chemical Ionization. Anal. Chim. Acta 1998, 377, 53–60. DOI: 10.1016/S0003-2670(98)00558-3.
  • Maros, L.; Kaldy, M.; Igaz, S. Simultaneous Determination of Bromide and Iodide as Acetone Derivatives by Gas Chromatography and Electron Capture Detection in Natural Waters and Biological Fluids. Anal. Chem. 1989, 61, 733–735. DOI: 10.1021/ac00182a018
  • Sarudi, I.; Szabó, A. Determination of Total Chlorine in Drinking Waters by Gas Chromatography. Anal. Lett. 2003, 36, 853–859. DOI: 10.1081/AL-120018804.
  • Wakigawa, K.; Gohda, A.; Fukushima, S.; Mori, T.; Niidome, T.; Katayama, Y. Rapid and Selective Determination of Free Chlorine in Aqueous Solution Using Electrophilic Addition to Styrene by Gas Chromatography/Mass Spectrometry. Talanta 2013, 103, 81–85. DOI: 10.1016/j.talanta.2012.10.011
  • Nyman, P. J.; Canas, B. J.; Joe, F. L.; Diachenko, G. W. Screening Method for the Gas Chromatographic/Mass Spectrometric Determination of Microgram/Litre Levels of Bromate in Bottled Water. Food Addit. Contam. 1996, 13, 623–631. DOI: 10.1080/02652039609374447
  • Ellis, J.; Brown, P. L. Determination of Residual Chlorine by Derivatization with 2,6-Dimethylphenol and Gas Chromatographic Separation. Anal. Chim. Acta 1981, 124, 431–436. DOI: 10.1016/S0003-2670(01)93593-7.
  • Qiang, Z.; Jiang, Y.; Ben, W.; Adams, C.; Dong, H. Monitoring Free Chlorine and Free Bromine in Aquarium Seawater Treated by Ozone. Anal. Methods 2012, 4, 3646–3652. DOI: 10.1039/c2ay25806d.
  • Shin, H.-S.; Oh-Shin, Y.-S.; Kim, J.; Ryu, J.-K. Trace Level Determination of Iodide, Iodine and Iodate by Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 1996, 732, 327–333. DOI: 10.1016/0021-9673(95)01281-8.
  • Mishra, S.; Gosain, S.; Jain, A.; Verma, K. K. Determination of Bromide in Fumigated and Natural Samples by Conversion into Bromophenols Followed by Gas Chromatography-Mass Spectrometry. Anal. Chim. Acta 2001, 439, 115–123. DOI: 10.1016/S0003-2670(01)01027-3.
  • Shin, H.-S. Sensitive Determination of Bromate in Ozonated and Chlorinated Water, and Sea Water by Gas Chromatography-Mass Spectrometry after Derivatization. J. Chromatogr. A 2012, 1223, 136–141. DOI: 10.1016/j.chroma.2011.12.059
  • Reddy-Noone, K.; Jain, A.; Verma, K. K. Liquid-Phase Microextraction-Gas Chromatography-Mass Spectrometry for the Determination of Bromate, Iodate, Bromide and Iodide in High-Chloride Matrix. J. Chromatogr. A 2007, 1148, 145–151. DOI: 10.1016/j.chroma.2007.03.027
  • Lim, H.-H.; Shin, H.-S. Sensitive and Robotic Determination of Bromate in Sea Water and Drinking Deep-Sea Water by Headspace Solid-Phase Micro Extraction and Gas Chromatography-Mass Spectrometry. Anal. Chim. Acta 2012, 741, 32–37. DOI: 10.1016/j.aca.2012.06.046
  • Dias, R. P.; Schammel, M. H.; Reber, K. P.; Sivey, J. D. Applications of 1,3,5-Trimethoxybenzene as a Derivatizing Agent for Quantifying Free Chlorine, Free Bromine, Bromamines, and Bromide in Aqueous Systems. Anal. Methods 2019, 11, 5521–5532. DOI: 10.1039/C9AY01443H.
  • How, Z. T.; Kristiana, I.; Busetti, F.; Linge, K. L.; Joll, C. A. Organic Chloramines in Chlorine-Based Disinfected Water Systems: A Critical Review. J. Environ. Sci. (China) 2017, 58, 2–18. DOI: 10.1016/j.jes.2017.05.025
  • Campbell, J. A.; Weimer, W. C.; Chess, E. K.; Scully, F. E. Study of the Reaction of Diazomethane with Dansylated Amino Acid Derivatives by Gas Chromatography/Mass Spectrometry. Biol. Mass Spectrom. 1990, 19, 520–522. DOI: 10.1002/bms.1200190810.
  • Roumiguières, A.; Bouchonnet, S.; Kinani, S. Is It Possible to Measure Monobromamine Using Colorimetric Methods Based on the Berthelot Reaction, Like for Monochloramine? Analytica 2020, 1, 1–11. DOI: 10.3390/analytica1010001.
  • Savickas, P. J.; LaPack, M. A.; Tou, J. C. Hollow Fiber Membrane Probes for the In Situ Spectrometric Monitoring of Nitrogen Trichloride Formation during Wastewater Treatment. Anal. Chem. 1989, 61, 2332–2336. DOI: 10.1021/ac00195a026.
  • Shang, C.; Blatchley, E. R. Differentiation and Quantification of Free Chlorine and Inorganic Chloramines in Aqueous Solution by MIMS. Environ. Sci. Technol. 1999, 33, 2218–2223. DOI: 10.1021/es9812103.
  • Pope, P. G. Haloacetic Acid Formation During Chloramination: Role of Environmental Conditions, Kinetics, and Haloamine Chemistry. PhD Thesis, The University of Texas, Austin, Texas, 2006.
  • Li, J.; Blatchley III, E. R. Volatile Disinfection Byproduct Formation Resulting from Chlorination of Organic-Nitrogen Precursors in Swimming Pools. Environ. Sci. Technol. 2007, 41, 6732–6739. DOI: 10.1021/es070871+
  • Yang, X.; Shang, C. Chlorination Byproduct Formation in the Presence of Humic Acid, Model Nitrogenous Organic Compounds, Ammonia, and Bromide. Environ. Sci. Technol. 2004, 38, 4995–5001. DOI: 10.1021/es049580g
  • Weaver, W. A.; Li, J.; Wen, Y.; Johnston, J.; Blatchley, M. R.; Blatchley III, E. R. Volatile Disinfection By-Products Analysis from Chlorinated Indoor Swimming Pools. Water Res. 2009, 43, 3308–3318. DOI: 10.1016/j.watres.2009.04.035
  • Riter, L. S.; Charles, L.; Turowski, M.; Cooks, R. G. External Interface for Trap-and Release Membrane Introduction Mass Spectrometry Applied to the Detection of Inorganic Chloramines and Chlorobenzenes in Water. Rapid Commun. Mass Spectrom. 2001, 15, 2290–2295. DOI: 10.1002/rcm.489
  • Gazda, M.; Dejarme, L. E.; Choudhury, T. K.; Cooks, R. G.; Margerum, D. W. Mass-Spectrometric Evidence for the Formation of Bromochloramine and N-bromo-N-Chlormethylamine in Aqueous Solution. Environ. Sci. Technol. 1993, 27, 557–561. DOI: 10.1021/es00040a015.
  • Louarn, E.; Hamrouni, A.; Colbeau-Justin, C.; Bruschi, L.; Lemaire, J.; Heninger, M.; Mestdagh, H. Characterization of a Membrane Inlet Interfaced with a Compact Chemical Ionization FT-ICR for Real-Time and Quantitative VOC Analysis in Water. Int. J. Mass Spectrom. 2013, 353, 26–35. DOI: 10.1016/j.ijms.2013.07.001.
  • Hu, W.; Lauritsen, F. R.; Allard, S. Identification and Quantification of Chloramines, Bromamines and Bromochloramine by Membrane Introduction Mass Spectrometry (MIMS). Sci. Total Environ. 2021, 751, 142303. DOI: 10.1016/j.scitotenv.2020.142303
  • Kotiaho, T.; Hayward, M. J.; Cooks, R. G. Direct Determination of Chlorination Products of Organic Amines Using Membrane Introduction Mass Spectrometry. Anal. Chem. 1991, 63, 1794–1801. DOI: 10.1021/ac00017a025.
  • Roumiguières, A.; Bouchonnet, S.; Kinani, S. Challenges and Opportunities for On-Line Monitoring of Chlorine-Produced Oxidants in Seawater Using Portable Membrane-Introduction Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry. Anal. Bioanal. Chem. 2021, 413, 885–900. DOI: 10.1007/s00216-020-03043-3.
  • Soltermann, F.; Widler, T.; Canonica, S.; von Gunten, U. Comparison of a Novel Extraction-Based Colorimetric (ABTS) Method with Membrane Introduction Mass Spectrometry (MIMS): Trichloramine Dynamics in Pool Water. Water Res. 2014, 58, 258–268. DOI: 10.1016/j.watres.2014.03.059
  • Mensah, A. T.; Berne, F.; Allard, S.; Soreau, S.; Gallard, S. Kinetic Modelling of the Bromine-Ammonia System: Formation and Decomposition of Bromamines. Water Res. 2022, 224, 119058. DOI: 10.1016/j.watres.2022.119058
  • Allard, S.; Hu, W.; Le Menn, J.-B.; Cadee, K.; Gallard, H.; Croue, J.-P. Method Development for Quantification of Bromochloramine Using Membrane Introduction Mass Spectrometry. Environ. Sci. Technol. 2018, 52, 7805–7812. DOI: 10.1021/acs.est.8b00889
  • Mensah, A. T.; Allard, S.; Berne, F.; Soreau, S.; Gallard, S. Brominated Trihalamines in Chlorinated Seawaters: Quantification of Tribromamine and Identification of Bromochloramines by Membrane Introduction Mass Spectrometry. Sci. Total Environ. 2022, 830, 154667. DOI: 10.1016/j.scitotenv.2022.154667
  • Kotiaho, T.; Lister, A. K.; Hayward, M. J.; Cooks, R. G. On-Line Monitoring of Chloramine Reactions by Membrane Introduction Mass Spectrometry. Talanta 1991, 38, 195–200. DOI: 10.1016/0039-9140(91)80129-n
  • Donnermair, M. M.; Blatchley, E. R. Disinfection Efficacy of Organic Chloramines. Water Res. 2003, 37, 1557–1570. DOI: 10.1016/S0043-1354(02)00522-5
  • Yang, X.; Shang, C. Quantification of Aqueous Cyanogen Chloride and Cyanogen Bromide in Environmental Samples by MIMS. Water Res. 2005, 39, 1709–1718. DOI: 10.1016/j.watres.2005.01.030
  • Yang, X.; Shang, C.; Westerhoff, P. Factors Affecting Formation of Haloacetonitriles, Haloketones, Chloropicrin and Cyanogen Halides during Chloramination. Water Res. 2007, 41, 1193–1200. DOI: 10.1016/j.watres.2006.12.004.
  • Spahr, S.; Cirpka, O. A.; von Gunten, U.; Hofstetter, T. B. Formation of N-Nitrosodimethylamine during Chloramination of Secondary and Tertiary Amines: Role of Molecular Oxygen and Radical Intermediates. Environ. Sci. Technol. 2017, 51, 280–290. DOI: 10.1021/acs.est.6b04780.
  • Roumiguières, A.; Kinani, S.; Bouchonnet, S. Tracking Monochloramine Decomposition in MIMS Analysis. Sensors 2019, 20, 247–258. DOI: 10.3390/s20010247.
  • Kristensen, G. H.; Klausen, M. M.; Hansen, V. A.; Lauritsen, F. R. On-Line Monitoring of the Dynamics of Trihalomethane Concentrations in a Warm Public Swimming Pool Using an Unsupervised Membrane Inlet Mass Spectrometry System with Off-Site Real-Time Surveillance. Rapid Commun. Mass Spectrom. 2010, 24, 30–34. DOI: 10.1002/rcm.4360
  • Hansen, K. F.; Gylling, S.; Lauritsen, F. R. Time- and Concentration-Dependent Relative Peak Intensities Observed in Electron Impact Membrane Inlet Mass Spectra. Int. J. Mass Spectrom. Ion Processes 1996, 152, 143–155. DOI: 10.1016/0168-1176(95)04338-1.
  • Hu, W.; Allard, S. Kinetic and Mechanistic Study of the Effect of Cu(II) on Monochloramine Stability in Bromide-Containing Waters. Chem. Eng. J. 2023, 459, 141595. DOI: 10.1016/j.cej.2023.141595.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.