782
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Metal–Organic Frameworks (MOFs)-Based Sensors for the Detection of Heavy Metals: A Review

& ORCID Icon

References

  • Ali, H.; Khan, E. What Are Heavy Metals? Long-Standing Controversy over the Scientific Use of the Term ‘Heavy Metals’ – Proposal of a Comprehensive Definition. Toxicol. Environ. Chem. 2018, 100, 6–19. DOI: 10.1080/02772248.2017.1413652.
  • Aboutorabi, L.; Morsali, A.; Tahmasebi, E.; Büyükgüngor, O. Metal–Organic Framework Based on Isonicotinate N-Oxide for Fast and Highly Efficient Aqueous Phase Cr(VI) Adsorption. Inorg. Chem. 2016, 55, 5507–5513. DOI: 10.1021/acs.inorgchem.6b00522.
  • Shamim, M. A.; Zia, H.; Zeeshan, M.; Khan, M. Y.; Shahid, M. Metal Organic Frameworks (MOFs) as a Cutting-Edge Tool for the Selective Detection and Rapid Removal of Heavy Metal Ions from Water: Recent Progress. J. Environ. Chem. Eng. 2022, 10, 106991. DOI: 10.1016/j.jece.2021.106991.
  • Kobielska, P. A.; Howarth, A. J.; Farha, O. K.; Nayak, S. Metal–Organic Frameworks for Heavy Metal Removal from Water. Coord. Chem. Rev. 2018, 358, 92–107. DOI: 10.1016/j.ccr.2017.12.010.
  • Pradeep, T., Anshup. Noble Metal Nanoparticles for Water Purification: A Critical Review. Thin Solid Films 517, 6441–6478, (2009). DOI: 10.1016/j.tsf.2009.03.195.
  • Adriano, D. C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals. Springer: New York, 2001; pp. 61–89. DOI: 10.1007/978-0-387-21510-5_3
  • Abdelhameed, R. M.; Ismail, R. A.; El-Naggar, M.; Zarie, E. S.; Abdelaziz, R.; El Sayed, M. T. Post-Synthetic Modification of MIL-125 with Bis-Quinoline Mannich Bases for Removal of Heavy Metals from Wastewater. Microporous Mesoporous Mater. 2019, 279, 26–36. DOI: 10.1016/j.micromeso.2018.12.018.
  • Lv, R.; Chen, Z.; Fu, X.; Yang, B.; Li, H.; Su, J.; Gu, W.; Liu, X. A Highly Selective and Fast-Response Fluorescent Probe Based on Cd-MOF for the Visual Detection of Al3+ Ion and Quantitative Detection of Fe3+ Ion. J. Solid State Chem. 2018, 259, 67–72. DOI: 10.1016/j.jssc.2017.12.033.
  • Orbell, J. D.; Marzilli, L. G.; Kistenmacher, T. J. Preparation, Hydrogen-1 NMR Spectrum and Structure of Cis-Diamminebis(1-Methylcytosine)Platinum(II) Nitrate-1-Methylcytosine. Cis Steric Effects in Pyrimidine Ring-Bound Cis-Bis(Nucleic Acid Base)Platinum(II) Compounds. J. Am. Chem. Soc. 1981, 103, 5126–5133. DOI: 10.1021/ja00407a029.
  • Cheng, W.; Tang, X.; Zhang, Y.; Wu, D.; Yang, W. Applications of Metal–Organic Framework (MOF)-Based Sensors for Food Safety: Enhancing Mechanisms and Recent Advances. Trends Food Sci. Technol. 2021, 112, 268–282. DOI: 10.1016/j.tifs.2021.04.004.
  • Gul, Z.; Din, N. U.; Khan, E.; Ullah, F.; Nawaz Tahir, M. Synthesis, Molecular Structure, anti-Microbial, anti-Oxidant and Enzyme Inhibition Activities of 2-Amino-6-Methylbenzothiazole and Its Cu(II) and Ag(I) complexes. J. Mol. Struct. 2020, 1199, 126956. DOI: 10.1016/j.molstruc.2019.126956.
  • Wachter, E.; Zamora, A.; Heidary, D. K.; Ruiz, J.; Glazer, E. C. Geometry Matters: Inverse Cytotoxic Relationship for Cis/trans-Ru(ii) Polypyridyl Complexes from Cis/Trans-[PtCl2(NH3)2]. Chem. Commun. (Camb) 2016, 52, 10121–10124. DOI: 10.1039/C6CC04813G.
  • Fang, X.; Zong, B.; Mao, S. Metal–Organic Framework-Based Sensors for Environmental Contaminant Sensing. Nanomicro. Lett. 2018, 10, 64. DOI: 10.1007/s40820-018-0218-0.
  • Kajal, N.; Singh, V.; Gupta, R.; Gautam, S. Metal Organic Frameworks for Electrochemical Sensor Applications: A Review. Environ. Res. 2022, 204, 112320. DOI: 10.1016/j.envres.2021.112320.
  • Sullivan, B. P.; Calvert, J. M.; Meyer, T. J. Cis-Trans Isomerism in (Trpy)(PPh3)RuC12. Comparisons between the Chemical and Physical Properties of a Cis-Trans Isomeric Pair. Inorg. Chem. 1980, 19, 1404–1407. DOI: 10.1021/ic50207a066.
  • Safaei, M.; Foroughi, M. M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A Review on Metal-Organic Frameworks: Synthesis and Applications. TrAC, Trends Anal. Chem. 2019, 118, 401–425. DOI: 10.1016/j.trac.2019.06.007.
  • Wang, B.; Liu, J.-H.; Yu, J.; Lv, J.; Dong, C.; Li, J.-R. Broad Spectrum Detection of Veterinary Drugs with a Highly Stable Metal-Organic Framework. J. Hazard. Mater. 2020, 382, 121018. DOI: 10.1016/j.jhazmat.2019.121018.
  • Al Obeidli, A.; Ben Salah, H.; Al Murisi, M.; Sabouni, R. Recent Advancements in MOFs Synthesis and Their Green Applications. Int. J. Hydrogen Energy 2022, 47, 2561–2593. DOI: 10.1016/j.ijhydene.2021.10.180.
  • Forster, P. M.; Cheetham, A. K. Hybrid Inorganic–Organic Solids: An Emerging Class of Nanoporous Catalysts. Top. Catal. 2003, 24, 79–86. DOI: 10.1023/B:TOCA.0000003079.39312.99.
  • Vinogradova, S. V.; Vinogradova, O. V. Coordination Polymers with Inorganic Main Chains. Russ. Chem. Rev. 1975, 44, 510–521. DOI: 10.1070/RC1975v044n06ABEH002357.
  • Subramanian, S.; Zaworotko, M. J. Porous Solids by Design: [Zn(4,4′-Bpy)2(SiF6)]n·xDMF, a Single Framework Octahedral Coordination Polymer with Large Square Channels. Angew. Chem. Int. Ed. Engl. 1995, 34, 2127–2129. DOI: 10.1002/anie.199521271.
  • Siebert, W. From Sandwich and Triple-Decker to Organometallic Polymers. Russ. Chem. Rev. 1991, 60, 784–791. DOI: 10.1070/RC1991v060n07ABEH001110.
  • Hagrman, P. J.; Hagrman, D.; Zubieta, J. Organic-Inorganic Hybrid Materials: From "Simple" Coordination Polymers to Organodiamine-Templated Molybdenum Oxides. Angew. Chem. Int. Ed. 1999, 38, 2638–2684. ) DOI: 10.1002/(sici)1521-3773(19990917)38:18 < 2638::aid-anie2638 > 3.0.co;2-4.
  • Aoyama, Y. in Design of Organic Solids, Edwin Weber, Ed; Springer: Berlin Heidelberg, 1998, pp. 131–161.
  • Rowsell, J. L. C.; Yaghi, O. M. Metal–Organic Frameworks: A New Class of Porous Materials. Microporous Mesoporous Mater. 2004, 73, 3–14. DOI: 10.1016/j.micromeso.2004.03.034.
  • Sanchez, C.; Soler-Illia, G. J. D. A. A.; Ribot, F.; Lalot, T.; Mayer, C. R.; Cabuil, V. Designed Hybrid Organic − Inorganic Nanocomposites from Functional Nanobuilding Blocks. Chem. Mater. 2001, 13, 3061–3083. DOI: 10.1021/cm011061e.
  • Janiak, C. Engineering Coordination Polymers towards Applications. Dalton Trans. 2003, 2003, 2781–2804. DOI: 10.1039/b305705b.
  • Alonso, G.; Bahamon, D.; Keshavarz, F.; Giménez, X.; Gamallo, P.; Sayós, R. Density Functional Theory-Based Adsorption Isotherms for Pure and Flue Gas Mixtures on Mg-MOF-74. Application in CO2 Capture Swing Adsorption Processes. J. Phys. Chem. C 2018, 122, 3945–3957. DOI: 10.1021/acs.jpcc.8b00938.
  • Liu, J.; Zheng, J.; Barpaga, D.; Sabale, S.; Arey, B.; Derewinski, M. A.; McGrail, B. P.; Motkuri, R. K. A Tunable Bimetallic MOF-74 for Adsorption Chiller Applications. Eur. J. Inorg. Chem. 2018, 2018, 885–889. DOI: 10.1002/ejic.201800042.
  • Xiao, T.; Liu, D. The Most Advanced Synthesis and a Wide Range of Applications of MOF-74 and Its Derivatives. Microporous Mesoporous Mater. 2019, 283, 88–103. DOI: 10.1016/j.micromeso.2019.03.002.
  • Laredo, G. C.; Vega-Merino, P. M.; Ascención Montoya-de la Fuente, J.; Mora-Vallejo, R. J.; Meneses-Ruiz, E.; Jesús Castillo, J.; Zapata-Rendón, B. Comparison of the Metal–Organic Framework MIL-101 (Cr) versus Four Commercial Adsorbents for Nitrogen Compounds Removal in Diesel Feedstocks. Fuel 2016, 180, 284–291. DOI: 10.1016/j.fuel.2016.04.038.
  • Zhao, S.-N.; Wang, G.; Poelman, D.; Van Der Voort, P. Metal Organic Frameworks Based Materials for Heterogeneous Photocatalysis. Molecules (Basel, Switzerland) 2018, 23, 2947. DOI: 10.3390/molecules23112947.
  • Wang, T.; Wang, C. Functional Metallofullerene Materials and Their Applications in Nanomedicine, Magnetics, and Electronics. Small 2019, 15, 1901522. DOI: 10.1002/smll.201901522.
  • Qasem, N. A. A.; Ben-Mansour, R.; Habib, M. A. An Efficient CO2 Adsorptive Storage Using MOF-5 and MOF-177. Appl. Energy 2018, 210, 317–326. DOI: 10.1016/j.apenergy.2017.11.011.
  • Sangeetha, S.; Krishnamurthy, G. Fabrication of MOF-177 for Electrochemical Detection of Toxic $$\Hbox {Pb}^{2+}$$and $$\Hbox {Cd}^{2+}$$Ions. Bull. Mater. Sci. 2020, 43, 29. DOI: 10.1007/s12034-019-1979-x.
  • Brandt, P.; Nuhnen, A.; Lange, M.; Möllmer, J.; Weingart, O.; Janiak, C. Metal–Organic Frameworks with Potential Application for SO2 Separation and Flue Gas Desulfurization. ACS Appl. Mater. Interfaces. 2019, 11, 17350–17358. DOI: 10.1021/acsami.9b00029.
  • Tran, N. T.; Kim, D.; Yoo, K. S.; Kim, J. Synthesis of Cu-Doped MOF-235 for the Degradation of Methylene Blue under Visible Light Irradiation. Bull. Korean Chem. Soc. 2019, 40, 112–117. DOI: 10.1002/bkcs.11650.
  • Duo, H.; Lu, X.; Wang, S.; Wang, L.; Guo, Y.; Liang, X. Synthesis of Magnetic Metal–Organic Framework Composites, Fe3O4-NH2@MOF-235, for the Magnetic Solid-Phase Extraction of Benzoylurea Insecticides from Honey, Fruit Juice and Tap Water Samples. New J. Chem. 2019, 43, 12563–12569. DOI: 10.1039/C9NJ01988J.
  • Asheghhosseini, A.; Zolgharnein, J. Iron Terephthalate Metal–Organic Framework (MOF-235) as an Efficient Adsorbent for Removal of Toluidine Blue Dye from Aqueous Solution Using Box–Behnken Design as Multivariate Optimization Approach. J. Iran. Chem. Soc. 2020, 17, 2663–2673. DOI: 10.1007/s13738-020-01958-3.
  • Monestel, H. G. R.; Amiinu, I. S.; González, A. A.; Pu, Z.; Mousavi, B.; Mu, S. Robust MOF-253-Derived N-Doped Carbon Confinement of Pt Single Nanocrystal Electrocatalysts for Oxygen Evolution Reaction. Chin. J. Catal. 2020, 41, 839–846. (19)63488-1 DOI: 10.1016/S1872-2067.
  • Deng, X.; Albero, J.; Xu, L.; García, H.; Li, Z. Construction of a Stable Ru–Re Hybrid System Based on Multifunctional MOF-253 for Efficient Photocatalytic CO2 Reduction. Inorg. Chem. 2018, 57, 8276–8286. DOI: 10.1021/acs.inorgchem.8b00896.
  • Van Zeeland, R.; Li, X.; Huang, W.; Stanley, L. M. MOF-253-Pd(OAc)2: A Recyclable MOF for Transition-Metal Catalysis in Water. RSC Adv. 2016, 6, 56330–56334. DOI: 10.1039/C6RA12746K.
  • Zheng, B.; Tian, D.; Zhang, L.; Zheng, X.; Liu, C.; Lu, H.; Chen, J.; Maurin, G.; Shi, Q. Investigation of Methane Adsorption in Strained IRMOF-1. J. Phys. Chem. C 2019, 123, 24592–24597. DOI: 10.1021/acs.jpcc.9b06960.
  • Ishak, M. A. I.; Taha, M. F.; Wirzal, M. D. H.; Nordin, M. N.; Abdurrahman, M.; Jumbri, K. Choline-Based Ionic Liquids-Incorporated IRMOF-1 for H2S/CH4 Capture: Insight from Molecular Dynamics Simulation. Processes 2020, 8, 412. DOI: 10.3390/pr8040412.
  • Yuksel, N.; Kose, A.; Fellah, M. F. A DFT Investigation of Hydrogen Adsorption and Storage Properties of Mg Decorated IRMOF-16 Structure. Colloids Surf, A 2022, 641, 128510. DOI: 10.1016/j.colsurfa.2022.128510.
  • Ethiraj, J.; Albanese, E.; Civalleri, B.; Vitillo, J. G.; Bonino, F.; Chavan, S.; Shearer, G. C.; Lillerud, K. P.; Bordiga, S. Carbon Dioxide Adsorption in Amine-Functionalized Mixed-Ligand Metal–Organic Frameworks of UiO-66 Topology. ChemSusChem 2014, 7, 3382–3388. DOI: 10.1002/cssc.201402694.
  • Peterson, G. W.; Moon, S.-Y.; Wagner, G. W.; Hall, M. G.; DeCoste, J. B.; Hupp, J. T.; Farha, O. K. Tailoring the Pore Size and Functionality of UiO-Type Metal–Organic Frameworks for Optimal Nerve Agent Destruction. Inorg. Chem. 2015, 54, 9684–9686. DOI: 10.1021/acs.inorgchem.5b01867.
  • Chavan, S.; Vitillo, J. G.; Gianolio, D.; Zavorotynska, O.; Civalleri, B.; Jakobsen, S.; Nilsen, M. H.; Valenzano, L.; Lamberti, C.; Lillerud, K. P.; et al. H2storage in Isostructural UiO-67 and UiO-66 MOFs. Phys. Chem. Chem. Phys. 2012, 14, 1614–1626. DOI: 10.1039/C1CP23434J.
  • Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. DOI: 10.1021/ja8057953.
  • Guo, F.; Wei, Y.-P.; Wang, S.-Q.; Zhang, X.-Y.; Wang, F.-M.; Sun, W.-Y. Pt Nanoparticles Embedded in Flowerlike NH2-UiO-68 for Enhanced Photocatalytic Carbon Dioxide Reduction. J. Mater. Chem. A 2019, 7, 26490–26495. DOI: 10.1039/C9TA10575A.
  • Rinsant, D.; Andreiadis, E.; Carboni, M.; Meyer, D. Uranium Extraction from Sulfuric Acid Media with Zr-Metal-Organic Frameworks. Mater. Lett. 2019, 253, 285–288. DOI: 10.1016/j.matlet.2019.06.090.
  • Liu, N.; Wang, J.; Wu, J.; Li, Z.; Huang, W.; Zheng, Y.; Lei, J.; Zhang, X.; Tang, L. Magnetic Fe3O4@MIL-53(Fe) Nanocomposites Derived from MIL-53(Fe) for the Photocatalytic Degradation of Ibuprofen under Visible Light Irradiation. Mater. Res. Bull. 2020, 132, 111000. DOI: 10.1016/j.materresbull.2020.111000.
  • Zhang, C.; Hu, W.; Jiang, H.; Chang, J.-K.; Zheng, M.; Wu, Q.-H.; Dong, Q. Electrochemical Performance of MIL-53(Fe)@RGO as an Organic Anode Material for Li-Ion Batteries. Electrochim. Acta 2017, 246, 528–535. DOI: 10.1016/j.electacta.2017.06.059.
  • Kim, S.-Y.; Kang, J. H.; Kim, S.-I.; Bae, Y.-S. Extraordinarily Large and Stable Methane Delivery of MIL-53(Al) under LNG-ANG Conditions. Chem. Eng. J. 2019, 365, 242–248. DOI: 10.1016/j.cej.2019.01.182.
  • Abdelhameed, R. M.; el-Deib, H. R.; El-Dars, F. M. S. E.; Ahmed, H. B.; Emam, H. E. Applicable Strategy for Removing Liquid Fuel Nitrogenated Contaminants Using MIL-53-NH2@Natural Fabric Composites. Ind. Eng. Chem. Res. 2018, 57, 15054–15065. DOI: 10.1021/acs.iecr.8b03936.
  • Emam, H. E.; Ahmed, H. B.; El-Deib, H. R.; El-Dars, F. M. S. E.; Abdelhameed, R. M. Non-Invasive Route for Desulfurization of Fuel Using Infrared-Assisted MIL-53(Al)-NH2 Containing Fabric. J. Colloid Interface Sci. 2019, 556, 193–205. DOI: 10.1016/j.jcis.2019.08.051.
  • Wu, H.; Ma, M.-D.; Gai, W.-Z.; Yang, H.; Zhou, J.-G.; Cheng, Z.; Xu, P.; Deng, Z.-Y. Arsenic Removal from Water by Metal-Organic Framework MIL-88A Microrods. Environ. Sci. Pollut. Res. 2018, 25, 27196–27202. DOI: 10.1007/s11356-018-2751-2.
  • Zango, Z. U.; Jumbri, K.; Sambudi, N. S.; Hanif Abu Bakar, N. H.; Fathihah Abdullah, N. A.; Basheer, C.; Saad, B. Removal of Anthracene in Water by MIL-88(Fe), NH2-MIL-88(Fe), and mixed-MIL-88(Fe) Metal–Organic Frameworks. RSC Adv. 2019, 9, 41490–41501. DOI: 10.1039/C9RA08660A.
  • Nehra, M.; Dilbaghi, N.; Singhal, N. K.; Hassan, A. A.; Kim, K.-H.; Kumar, S. Metal Organic Frameworks MIL-100(Fe) as an Efficient Adsorptive Material for Phosphate Management. Environ. Res. 2019, 169, 229–236. DOI: 10.1016/j.envres.2018.11.013.
  • Duan, C.; Yu, Y.; Yang, P.; Zhang, X.; Li, F.; Li, L.; Xi, H. Engineering New Defects in MIL-100(Fe) via a Mixed-Ligand Approach to Effect Enhanced Volatile Organic Compound Adsorption Capacity. Ind. Eng. Chem. Res. 2020, 59, 774–782. DOI: 10.1021/acs.iecr.9b05751.
  • Yang, J.; Zhu, W.; Qu, W.; Yang, Z.; Wang, J.; Zhang, M.; Li, H. Selenium Functionalized Metal–Organic Framework MIL-101 for Efficient and Permanent Sequestration of Mercury. Environ. Sci. Technol. 2019, 53, 2260–2268. DOI: 10.1021/acs.est.8b06321.
  • Lee, Y.-R.; Yu, K.; Ravi, S.; Ahn, W.-S. Selective Adsorption of Rare Earth Elements over Functionalized Cr-MIL-101. ACS Appl. Mater. Interfaces. 2018, 10, 23918–23927. DOI: 10.1021/acsami.8b07130.
  • Zhao, Y.; Liu, F.; Tan, J.; Li, P.; Wang, Z.; Zhu, K.; Mai, X.; Liu, H.; Wang, X.; Ma, Y.; Guo, Z. Preparation and hydrogen storage of Pd/MIL-101 nanocomposites. J. Alloys Comp. 2019, 772, 186–192. DOI: 10.1016/j.jallcom.2018.09.045.
  • Xie, W.; Wan, F. Basic Ionic Liquid Functionalized Magnetically Responsive Fe3O4@HKUST-1 Composites Used for Biodiesel Production. Fuel 2018, 220, 248–256. DOI: 10.1016/j.fuel.2018.02.014.
  • Tan, P.; Xie, X.-Y.; Liu, X.-Q.; Pan, T.; Gu, C.; Chen, P.-F.; Zhou, J.-Y.; Pan, Y.; Sun, L.-B. Fabrication of Magnetically Responsive HKUST-1/Fe3O4 Composites by Dry Gel Conversion for Deep Desulfurization and Denitrogenation. J. Hazard. Mater. 2017, 321, 344–352. DOI: 10.1016/j.jhazmat.2016.09.026.
  • Wang, Z.; Huang, J.; Mao, J.; Guo, Q.; Chen, Z.; Lai, Y. Metal–Organic Frameworks and Their Derivatives with Graphene Composites: Preparation and Applications in Electrocatalysis and Photocatalysis. J. Mater. Chem. A 2020, 8, 2934–2961. DOI: 10.1039/C9TA12776C.
  • Peralta, D.; Chaplais, G.; Paillaud, J.-L.; Simon-Masseron, A.; Barthelet, K.; Pirngruber, G. D. The Separation of Xylene Isomers by ZIF-8: A Demonstration of the Extraordinary Flexibility of the ZIF-8 Framework. Microporous Mesoporous Mater. 2013, 173, 1–5. DOI: 10.1016/j.micromeso.2013.01.012.
  • Li, X.; Chen, L.; Zhu, D.; Yang, S.; Wu, Z.; He, M.; Zhang, Z.; Chen, Q. Preparation of Hybridizing Zeolitic Imidazolate Frameworks with Carboxymethylcellulose for Adsorption Separation of n-Hexane/3-Methylpentane. Chin. J. Chem. Eng. 2021, 29, 103–109. DOI: 10.1016/j.cjche.2020.05.023.
  • Zhang, F.-M.; Dong, H.; Zhang, X.; Sun, X.-J.; Liu, M.; Yang, D.-D.; Liu, X.; Wei, J.-Z. Postsynthetic Modification of ZIF-90 for Potential Targeted Codelivery of Two Anticancer Drugs. ACS Appl. Mater. Interfaces. 2017, 9, 27332–27337. DOI: 10.1021/acsami.7b08451.
  • Xie, W.; Wan, F. Guanidine Post-Functionalized Crystalline ZIF-90 Frameworks as a Promising Recyclable Catalyst for the Production of Biodiesel via Soybean Oil Transesterification. Energy Convers. Manage. 2019, 198, 111922. DOI: 10.1016/j.enconman.2019.111922.
  • Xiang, H.; Ameen, A.; Shang, J.; Jiao, Y.; Gorgojo, P.; Siperstein, F. R.; Fan, X. Synthesis and Modification of Moisture-Stable Coordination Pillared-Layer Metal-Organic Framework (CPL-MOF) CPL-2 for Ethylene/Ethane Separation. Microporous Mesoporous Mater. 2020, 293, 109784. DOI: 10.1016/j.micromeso.2019.109784.
  • Cadiau, A.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Pillai, R. S.; Shkurenko, A.; Martineau-Corcos, C.; Maurin, G.; Eddaoudi, M. Hydrolytically Stable Fluorinated Metal-Organic Frameworks for Energy-Efficient Dehydration. Science 2017, 356, 731–735. DOI: 10.1126/science.aam8310.
  • Chang, G.; Wen, H.; Li, B.; Zhou, W.; Wang, H.; Alfooty, K.; Bao, Z.; Chen, B. A Fluorinated Metal–Organic Framework for High Methane Storage at Room Temperature. Crystal Growth Design 2016, 16, 3395–3399. DOI: 10.1021/acs.cgd.6b00385.
  • Samanta, S. K.; Moncelet, D.; Vinciguerra, B.; Briken, V.; Isaacs, L. Metal Organic Polyhedra: A Click-and-Clack Approach toward Targeted Delivery. Helv. Chim. Acta 2018, 101, e1800057. DOI: 10.1002/hlca.201800057.
  • Liu, X.; Wang, X.; Bavykina, A. V.; Chu, L.; Shan, M.; Sabetghadam, A.; Miro, H.; Kapteijn, F.; Gascon, J. Molecular-Scale Hybrid Membranes Derived from Metal-Organic Polyhedra for Gas Separation. ACS Appl. Mater. Interfaces. 2018, 10, 21381–21389. DOI: 10.1021/acsami.8b07045.
  • Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New Synthetic Routes towards MOF Production at Scale. Chem. Soc. Rev. 2017, 46, 3453–3480. DOI: 10.1039/c7cs00109f.
  • Jahangiri–Dehaghani, F.; Zare, H. R.; Shekari, Z. Measurement of Aflatoxin M1 in Powder and Pasteurized Milk Samples by Using a Label–Free Electrochemical Aptasensor Based on Platinum Nanoparticles Loaded on Fe–Based Metal–Organic Frameworks. Food Chem. 2020, 310, 125820. DOI: 10.1016/j.foodchem.2019.125820.
  • Kumar, S.; Jain, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Kim, K.-H. Green Synthesis of Metal–Organic Frameworks: A State-of-the-Art Review of Potential Environmental and Medical Applications. Coord. Chem. Rev. 2020, 420, 213407. DOI: 10.1016/j.ccr.2020.213407.
  • Ren, J.; Dyosiba, X.; Musyoka, N. M.; Langmi, H. W.; Mathe, M.; Liao, S. Review on the Current Practices and Efforts towards Pilot-Scale Production of Metal-Organic Frameworks (MOFs). Coord. Chem. Rev. 2017, 352, 187–219. DOI: 10.1016/j.ccr.2017.09.005.
  • Zhang, Y.; Chang, C.-H. Metal–Organic Framework Thin Films: Fabrication, Modification, and Patterning. Processes 2020, 8, 377. DOI: 10.3390/pr8030377.
  • Ameloot, R.; Gobechiya, E.; Uji-I, H.; Martens, J. A.; Hofkens, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Direct Patterning of Oriented Metal–Organic Framework Crystals via Control over Crystallization Kinetics in Clear Precursor Solutions. Adv. Mater. 2010, 22, 2685–2688. DOI: 10.1002/adma.200903867.
  • Safarifard, V.; Morsali, A. Applications of Ultrasound to the Synthesis of Nanoscale Metal–Organic Coordination Polymers. Coord. Chem. Rev. 2015, 292, 1–14. DOI: 10.1016/j.ccr.2015.02.014.
  • Tan, T. L.; Somat, H. B. A.; Latif, M. A. B. M.; Rashid, S. A. One-Pot Solvothermal Synthesis of Zr-Based MOFs with Enhanced Adsorption Capacity for Cu2+ Ions Removal. J. Solid State Chem. 2022, 315, 123429. DOI: 10.1016/j.jssc.2022.123429.
  • Smith, J. A.; Singh-Wilmot, M. A.; Min, Z.; Carter, K. P.; Gilbert, S.; Andrews, M. B.; Ridenour, J. A.; Cahill, C. L.; Ley, A. N.; Holman, K. T. Polymorphism from a 1:1 Ln:BTB Reaction Pot: Solvothermal versus Sonochemical Synthesis of Ln-MOFs. Inorg. Chim. Acta 2023, 546, 121299. DOI: 10.1016/j.ica.2022.121299.
  • Omarova, A.; Baizhan, A.; Baimatova, N.; Kenessov, B.; Kazemian, H. New in Situ Solvothermally Synthesized Metal-Organic Framework MOF-199 Coating for Solid-Phase Microextraction of Volatile Organic Compounds from Air Samples. Microporous Mesoporous Mater. 2021, 328, 111493. DOI: 10.1016/j.micromeso.2021.111493.
  • Jais, F. M.; Ibrahim, S.; Chee, C. Y.; Ismail, Z. Solvothermal Growth of the Bimetal Organic Framework (NiFe-MOF) on Sugarcane Bagasse Hydrochar for the Removal of Dye and Antibiotic. J. Environ. Chem. Eng. 2021, 9, 106367. DOI: 10.1016/j.jece.2021.106367.
  • Choi, I.; Jung, Y. E.; Yoo, S. J.; Kim, J. Y.; Kim, H.-J.; Lee, C. Y.; Jang, J. H. Facile Synthesis of M-MOF-74 (M = Co, Ni, Zn) and Its Application as an ElectroCatalyst for Electrochemical CO2 Conversion and H2 Production. J. Electrochem. Sci. Technol. 2017, 8, 61–68. DOI: 10.5229/JECST.2017.8.1.61.
  • Morales, E. M. C.; Méndez-Rojas, M. A.; Torres-Martínez, L. M.; Garay-Rodríguez, L. F.; López, I.; Uflyand, I. E.; Kharisov, B. I. Ultrafast Synthesis of HKUST-1 Nanoparticles by Solvothermal Method: Properties and Possible Applications. Polyhedron 2021, 210, 115517. DOI: 10.1016/j.poly.2021.115517.
  • Leng, K.; Sun, Y.; Li, X.; Sun, S.; Xu, W. Rapid Synthesis of Metal–Organic Frameworks MIL-101(Cr) without the Addition of Solvent and Hydrofluoric Acid. Crystal Growth Design 2016, 16, 1168–1171. DOI: 10.1021/acs.cgd.5b01696.
  • Pichon, A.; James, S. L. An Array-Based Study of Reactivity under Solvent-Free Mechanochemical Conditions—Insights and Trends. CrystEngComm 2008, 10, 1839–1847. DOI: 10.1039/b810857a.
  • Beldon, P. J.; Fábián, L.; Stein, R. S.; Thirumurugan, A.; Cheetham, A. K.; Friščić, T. Rapid Room-Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry. Angew. Chem. Int. Ed. Engl. 2010, 49, 9640–9643. DOI: 10.1002/anie.201005547.
  • Stolar, T.; Užarević, K. Mechanochemistry: An Efficient and Versatile Toolbox for Synthesis, Transformation, and Functionalization of Porous Metal–Organic Frameworks. CrystEngComm 2020, 22, 4511–4525. DOI: 10.1039/D0CE00091D.
  • Chen, Y.; Wu, H.; Liu, Z.; Sun, X.; Xia, Q.; Li, Z. Liquid-Assisted Mechanochemical Synthesis of Copper Based MOF-505 for the Separation of CO2 over CH4 or N2. Ind. Eng. Chem. Res. 2018, 57, 703–709. DOI: 10.1021/acs.iecr.7b03712.
  • Zhang, S.; Jiao, Z.; Yao, W. A Simple Solvothermal Process for Fabrication of a Metal-Organic Framework with an Iron Oxide Enclosure for the Determination of Organophosphorus Pesticides in Biological Samples. J. Chromatogr. A 2014, 1371, 74–81. DOI: 10.1016/j.chroma.2014.10.088.
  • Tröbs, L.; Wilke, M.; Szczerba, W.; Reinholz, U.; Emmerling, F. Mechanochemical Synthesis and Characterisation of Two New Bismuth Metal Organic Frameworks. CrystEngComm 2014, 16, 5560–5565. DOI: 10.1039/C3CE42633E.
  • Yuan, Y.; Chen, C.; Zheng, C.; Wang, X.; Yang, G.; Wang, Q.; Zhang, Z. Residue of Chlorpyrifos and Cypermethrin in Vegetables and Probabilistic Exposure Assessment for Consumers in Zhejiang Province, China. Food Control 2014, 36, 63–68. DOI: 10.1016/j.foodcont.2013.08.008.
  • Maranescu, B.; Visa, A. Applications of Metal-Organic Frameworks as Drug Delivery Systems. IJMS. 2022, 23, 4458. DOI: 10.3390/ijms23084458.
  • Khan, N. A.; Jhung, S. H. Synthesis of Metal-Organic Frameworks (MOFs) with Microwave or Ultrasound: Rapid Reaction, Phase-Selectivity, and Size Reduction. Coord. Chem. Rev. 2015, 285, 11–23. DOI: 10.1016/j.ccr.2014.10.008.
  • Gedanken, A. Using Sonochemistry for the Fabrication of Nanomaterials. Ultrason. Sonochem. 2004, 11, 47–55. DOI: 10.1016/j.ultsonch.2004.01.037.
  • Son, W.-J.; Kim, J.; Kim, J.; Ahn, W.-S. Sonochemical Synthesis of MOF-5. Chem. Commun. 2008, 2008, 6336–6338. DOI: 10.1039/b814740j.
  • Kim, J.; Yang, S.-T.; Choi, S. B.; Sim, J.; Kim, J.; Ahn, W.-S. Control of Catenation in CuTATB-n Metal–Organic Frameworks by Sonochemical Synthesis and Its Effect on CO2 Adsorption. J. Mater. Chem. 2011, 21, 3070–3076. DOI: 10.1039/c0jm03318a.
  • Yang, D.-A.; Cho, H.-Y.; Kim, J.; Yang, S.-T.; Ahn, W.-S. CO2 Capture and Conversion Using Mg-MOF-74 Prepared by a Sonochemical Method. Energy Environ. Sci. 2012, 5, 6465–6473. DOI: 10.1039/C1EE02234B.
  • Cho, H.-Y.; Kim, J.; Kim, S.-N.; Ahn, W.-S. High Yield 1-L Scale Synthesis of ZIF-8 via a Sonochemical Route. Microporous Mesoporous Mater. 2013, 169, 180–184. DOI: 10.1016/j.micromeso.2012.11.012.
  • Moradi, E.; Rahimi, R.; Safarifard, V. Sonochemically Synthesized Microporous Metal–Organic Framework Representing Unique Selectivity for Detection of Fe3+ Ions. Polyhedron 2019, 159, 251–258. DOI: 10.1016/j.poly.2018.11.062.
  • Tajik, S.; Beitollahi, H.; Jang, H. W.; Shokouhimehr, M. A Simple and Sensitive Approach for the Electrochemical Determination of Amaranth by a Pd/GO Nanomaterial-Modified Screen-Printed Electrode. RSC Adv. 2021, 11, 278–287. DOI: 10.1039/D0RA08723H.
  • Ni, Z.; Masel, R. I. Rapid Production of Metal − Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. J. Am. Chem. Soc. 2006, 128, 12394–12395. DOI: 10.1021/ja0635231.
  • Jhung, S. H.; Lee, J.-H.; Yoon, J. W.; Serre, C.; Férey, G.; Chang, J.-S. Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability. Adv. Mater. 2007, 19, 121–124. DOI: 10.1002/adma.200601604.
  • Seo, Y.-K.; Hundal, G.; Jang, I. T.; Hwang, Y. K.; Jun, C.-H.; Chang, J.-S. Microwave Synthesis of Hybrid Inorganic–Organic Materials Including Porous Cu3(BTC)2 from Cu(II)-Trimesate Mixture. Microporous Mesoporous Mater. 2009, 119, 331–337. DOI: 10.1016/j.micromeso.2008.10.035.
  • Cho, H.-Y.; Yang, D.-A.; Kim, J.; Jeong, S.-Y.; Ahn, W.-S. CO2 Adsorption and Catalytic Application of Co-MOF-74 Synthesized by Microwave Heating. Catal. Today 2012, 185, 35–40. DOI: 10.1016/j.cattod.2011.08.019.
  • Babu, R.; Roshan, R.; Kathalikkattil, A. C.; Kim, D. W.; Park, D.-W. Rapid, Microwave-Assisted Synthesis of Cubic, Three-Dimensional, Highly Porous MOF-205 for Room Temperature CO2 Fixation via Cyclic Carbonate Synthesis. ACS Appl. Mater. Interfaces. 2016, 8, 33723–33731. DOI: 10.1021/acsami.6b12458.
  • Wei, J.-Z.; Gong, F.-X.; Sun, X.-J.; Li, Y.; Zhang, T.; Zhao, X.-J.; Zhang, F.-M. Rapid and Low-Cost Electrochemical Synthesis of UiO-66-NH2 with Enhanced Fluorescence Detection Performance. Inorg. Chem. 2019, 58, 6742–6747. DOI: 10.1021/acs.inorgchem.9b00157.
  • Pirzadeh, K.; Ghoreyshi, A. A.; Rahimnejad, M.; Mohammadi, M. Electrochemical Synthesis, Characterization and Application of a Microstructure Cu3(BTC)2 Metal Organic Framework for CO2 and CH4 Separation. Korean J. Chem. Eng. 2018, 35, 974–983. DOI: 10.1007/s11814-017-0340-6.
  • Wei, J.-Z.; Wang, X.-L.; Sun, X.-J.; Hou, Y.; Zhang, X.; Yang, D.-D.; Dong, H.; Zhang, F.-M. Rapid and Large-Scale Synthesis of IRMOF-3 by Electrochemistry Method with Enhanced Fluorescence Detection Performance for TNP. Inorg. Chem. 2018, 57, 3818–3824. DOI: 10.1021/acs.inorgchem.7b03174.
  • Naseri, M.; Fotouhi, L.; Ehsani, A.; Dehghanpour, S. Facile Electrosynthesis of Nano Flower like Metal-Organic Framework and Its Nanocomposite with Conjugated Polymer as a Novel and Hybrid Electrode Material for Highly Capacitive Pseudocapacitors. J. Colloid Interface Sci. 2016, 484, 314–319. DOI: 10.1016/j.jcis.2016.09.001.
  • Cravillon, J.; Münzer, S.; Lohmeier, S.-J.; Feldhoff, A.; Huber, K.; Wiebcke, M. Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework. Chem. Mater. 2009, 21, 1410–1412. DOI: 10.1021/cm900166h.
  • Getachew, N.; Chebude, Y.; Diaz, I.; Sanchez-Sanchez, M. Room Temperature Synthesis of Metal Organic Framework MOF-2. J. Porous Mater. 2014, 21, 769–773. DOI: 10.1007/s10934-014-9823-6.
  • Murinzi, T. W.; Hosten, E.; Watkins, G. M. Synthesis and Characterization of a Cobalt-2,6-Pyridinedicarboxylate MOF with Potential Application in Electrochemical Sensing. Polyhedron 2017, 137, 188–196. DOI: 10.1016/j.poly.2017.08.030.
  • Huang, L.; Zhang, X.; Han, Y.; Wang, Q.; Fang, Y.; Dong, S. In Situ Synthesis of Ultrathin Metal–Organic Framework Nanosheets: A New Method for 2D Metal-Based Nanoporous Carbon Electrocatalysts. J. Mater. Chem. A 2017, 5, 18610–18617. DOI: 10.1039/C7TA05821G.
  • Majewski, M. B.; Noh, H.; Islamoglu, T.; Farha, O. K. NanoMOFs: Little Crystallites for Substantial Applications. J. Mater. Chem. A 2018, 6, 7338–7350. DOI: 10.1039/C8TA02132E.
  • Daniel, M.; Mathew, G.; Anpo, M.; Neppolian, B. MOF Based Electrochemical Sensors for the Detection of Physiologically Relevant Biomolecules: An Overview. Coord. Chem. Rev. 2022, 468, 214627. DOI: 10.1016/j.ccr.2022.214627.
  • Sosa, J.; Bennett, T.; Nelms, K.; Liu, B.; Tovar, R.; Liu, Y. Metal–Organic Framework Hybrid Materials and Their Applications. Crystals 2018, 8, 325. DOI: 10.3390/cryst8080325.
  • Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112, 933–969. DOI: 10.1021/cr200304e.
  • Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-Jimenez, D. Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for past, Present, and Future. Chem. Mater. 2017, 29, 2618–2625. DOI: 10.1021/acs.chemmater.7b00441.
  • Dybtsev, D. N.; Ponomareva, V. G.; Aliev, S. B.; Chupakhin, A. P.; Gallyamov, M. R.; Moroz, N. K.; Kolesov, B. A.; Kovalenko, K. A.; Shutova, E. S.; Fedin, V. P. High Proton Conductivity and Spectroscopic Investigations of Metal–Organic Framework Materials Impregnated by Strong Acids. ACS Appl. Mater. Interfaces. 2014, 6, 5161–5167. DOI: 10.1021/am500438a.
  • Zhao, M.; Wang, Y.; Ma, Q.; Huang, Y.; Zhang, X.; Ping, J.; Zhang, Z.; Lu, Q.; Yu, Y.; Xu, H.; et al. Ultrathin 2D Metal–Organic Framework Nanosheets. Adv. Mater. 2015, 27, 7372–7378. DOI: 10.1002/adma.201503648.
  • Butova, V. V.; Soldatov, M. A.; Guda, A. A.; Lomachenko, K. A.; Lamberti, C. Metal-Organic Frameworks: Structure, Properties, Methods of Synthesis and Characterization. Russ. Chem. Rev. 2016, 85, 280–307. DOI: 10.1070/RCR4554.
  • Zhu, C.; Peng, Y.; Yang, W. Modification Strategies for Metal-Organic Frameworks Targeting at Membrane-Based Gas Separations. Green Chem. Eng. 2021, 2, 17–26. DOI: 10.1016/j.gce.2020.11.005.
  • Selmani, A.; Kovačević, D.; Bohinc, K. Nanoparticles: From Synthesis to Applications and beyond. Adv. Colloid Interface Sci. 2022, 303, 102640. DOI: 10.1016/j.cis.2022.102640.
  • Wang, Z.; Dong, P.; Sun, Z.; Sun, C.; Bu, H.; Han, J.; Chen, S.; Xie, G. NH2-Ni-MOF Electrocatalysts with Tunable Size/Morphology for Ultrasensitive C-Reactive Protein Detection via an Aptamer Binding Induced DNA Walker–Antibody Sandwich Assay. J. Mater. Chem. B 2018, 6, 2426–2431. DOI: 10.1039/C8TB00373D.
  • Liu, Y.; Zhang, Y.; Chen, J.; Pang, H. Copper Metal–Organic Framework Nanocrystal for Plane Effect Nonenzymatic Electro-Catalytic Activity of Glucose. Nanoscale 2014, 6, 10989–10994. DOI: 10.1039/C4NR03396E.
  • Su, F.; Zhang, S.; Ji, H.; Zhao, H.; Tian, J.-Y.; Liu, C.-S.; Zhang, Z.; Fang, S.; Zhu, X.; Du, M.; et al. Two-Dimensional Zirconium-Based Metal–Organic Framework Nanosheet Composites Embedded with Au Nanoclusters: A Highly Sensitive Electrochemical Aptasensor toward Detecting Cocaine. ACS Sens. 2017, 2, 998–1005. DOI: 10.1021/acssensors.7b00268.
  • Arul, P.; John, S. A. Size Controlled Synthesis of Ni-MOF Using Polyvinylpyrrolidone: New Electrode Material for the Trace Level Determination of Nitrobenzene. Electroanal. Chem. 2018, 829, 168–176. DOI: 10.1016/j.jelechem.2018.10.014.
  • Lopa, N. S.; Rahman, M. M.; Ahmed, F.; Ryu, T.; Lei, J.; Choi, I.; Kim, D. H.; Lee, Y. H.; Kim, W. A Chemically and Electrochemically Stable, Redox-Active and Highly Sensitive Metal Azolate Framework for Non-Enzymatic Electrochemical Detection of Glucose. Electroanal. Chem. 2019, 840, 263–271. DOI: 10.1016/j.jelechem.2019.03.081.
  • Gao, Y.-J.; Sun, H.-Y.; Li, J.-L.; Qi, X.-H.; Du, K.-Z.; Liao, Y.-Y.; Huang, X.-Y.; Feng, M.-L.; Kanatzidis, M. G. Selective Capture of Ba2+, Ni2+, and Co2+ by a Robust Layered Metal Sulfide. Chem. Mater. 2020, 32, 1957–1963. DOI: 10.1021/acs.chemmater.9b04831.
  • Wu, X.-Q.; Ma, J.-G.; Li, H.; Chen, D.-M.; Gu, W.; Yang, G.-M.; Cheng, P. Metal–organic framework biosensor with high stability and selectivity in a bio-mimic environment. Chem. Commun. 2015, 51, 9161–9164. DOI: 10.1039/C5CC02113H.
  • Kolesnik, S. S.; Nosov, V. G.; Kolesnikov, I. E.; Khairullina, E. M.; Tumkin, I. I.; Vidyakina, A. A.; Sysoeva, A. A.; Ryazantsev, M. N.; Panov, M. S.; Khripun, V. D.; et al. Ultrasound-Assisted Synthesis of Luminescent Micro- and Nanocrystalline Eu-Based MOFs as Luminescent Probes for Heavy Metal Ions. Nanomaterials 2021, 11, 2448. DOI: 10.3390/nano11092448.
  • Chen, X.; Zhang, Q. Recent Advances in Mesoporous Metal-Organic Frameworks. Particuology 2019, 45, 20–34. DOI: 10.1016/j.partic.2018.09.007.
  • Yin, X.; Zhang, X. Hierarchical Metal–Organic Frameworks Constructed from Intergrowth for the Adsorption of Light Hydrocarbons. Mater. Chem. Front. 2020, 4, 3057–3062. DOI: 10.1039/D0QM00352B.
  • Li, Q.; Zheng, S.; Du, M.; Pang, H. Ultrathin Nanosheet Metal–Organic Framework@NiO/Ni Nanorod Composites. Chem. Eng. J. 2021, 417, 129201. DOI: 10.1016/j.cej.2021.129201.
  • Zhu, H.; Liu, D. The Synthetic Strategies of Metal–Organic Framework Membranes, Films and 2D MOFs and Their Applications in Devices. J. Mater. Chem. A 2019, 7, 21004–21035. DOI: 10.1039/C9TA05383B.
  • Aijaz, A.; Xu, Q. Catalysis with Metal Nanoparticles Immobilized within the Pores of Metal–Organic Frameworks. J. Phys. Chem. Lett. 2014, 5, 1400–1411. DOI: 10.1021/jz5004044.
  • Buru, C. T.; Li, P.; Mehdi, B. L.; Dohnalkova, A.; Platero-Prats, A. E.; Browning, N. D.; Chapman, K. W.; Hupp, J. T.; Farha, O. K. Adsorption of a Catalytically Accessible Polyoxometalate in a Mesoporous Channel-Type Metal–Organic Framework. Chem. Mater. 2017, 29, 5174–5181. DOI: 10.1021/acs.chemmater.7b00750.
  • Cao, X.; Tan, C.; Sindoro, M.; Zhang, H. Hybrid Micro-/Nano-Structures Derived from Metal–Organic Frameworks: Preparation and Applications in Energy Storage and Conversion. Chem. Soc. Rev. 2017, 46, 2660–2677. DOI: 10.1039/C6CS00426A.
  • Herm, Z. R.; Bloch, E. D.; Long, J. R. Hydrocarbon Separations in Metal–Organic Frameworks. Chem. Mater. 2014, 26, 323–338. DOI: 10.1021/cm402897c.
  • Rojas, S.; Carmona, F. J.; Maldonado, C. R.; Horcajada, P.; Hidalgo, T.; Serre, C.; Navarro, J. A. R.; Barea, E. Nanoscaled Zinc Pyrazolate Metal–Organic Frameworks as Drug-Delivery Systems. Inorg. Chem. 2016, 55, 2650–2663. DOI: 10.1021/acs.inorgchem.6b00045.
  • Liu, Y.; Howarth, A. J.; Hupp, J. T.; Farha, O. K. Selective Photooxidation of a Mustard-Gas Simulant Catalyzed by a Porphyrinic Metal–Organic Framework. Angew. Chem. Int. Ed. Engl. 2015, 54, 9001–9005. DOI: 10.1002/anie.201503741.
  • Jeong, N. C.; Samanta, B.; Lee, C. Y.; Farha, O. K.; Hupp, J. T. Coordination-Chemistry Control of Proton Conductivity in the Iconic Metal–Organic Framework Material HKUST-1. J. Am. Chem. Soc. 2012, 134, 51–54. DOI: 10.1021/ja2110152.
  • Barakat, M. A. New Trends in Removing Heavy Metals from Industrial Wastewater. Arabian J. Chem. 2011, 4, 361–377. DOI: 10.1016/j.arabjc.2010.07.019.
  • Hack, H. 291–333. 2020.
  • Li, Z.; Wang, L.; Qin, L.; Lai, C.; Wang, Z.; Zhou, M.; Xiao, L.; Liu, S.; Zhang, M. Recent Advances in the Application of Water-Stable Metal-Organic Frameworks: Adsorption and Photocatalytic Reduction of Heavy Metal in Water. Chemosphere 2021, 285, 131432. DOI: 10.1016/j.chemosphere.2021.131432.
  • Rai, P. K.; Lee, S. S.; Zhang, M.; Tsang, Y. F.; Kim, K.-H. Heavy Metals in Food Crops: Health Risks, Fate, Mechanisms, and Management. Environ. Int. 2019, 125, 365–385. DOI: 10.1016/j.envint.2019.01.067.
  • Zoroddu, M. A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V. M. The Essential Metals for Humans: A Brief Overview. J. Inorg. Biochem. 2019, 195, 120–129. DOI: 10.1016/j.jinorgbio.2019.03.013.
  • Ali, H.; Khan, E. Bioaccumulation of Non-Essential Hazardous Heavy Metals and Metalloids in Freshwater Fish. Risk to Human Health. Environ. Chem. Lett. 2018, 16, 903–917. DOI: 10.1007/s10311-018-0734-7.
  • Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 1–14. DOI: 10.1155/2019/6730305.
  • Shayegan, H.; Ali, G. A. M.; Safarifard, V. Recent Progress in the Removal of Heavy Metal Ions from Water Using Metal-Organic Frameworks. ChemistrySelect 2020, 5, 124–146. DOI: 10.1002/slct.201904107.
  • Fu, Z.; Xi, S. The Effects of Heavy Metals on Human Metabolism. Toxicol. Mech. Methods. 2020, 30, 167–176. DOI: 10.1080/15376516.2019.1701594.
  • Magkos, F.; Arvaniti, F.; Zampelas, A. Organic Food: Buying More Safety or Just Peace of Mind? A Critical Review of the Literature. Crit. Rev. Food Sci. Nutr. 2006, 46, 23–56. DOI: 10.1080/10408690490911846.
  • Chowdhury, S.; Mazumder, M. A. J.; Al-Attas, O.; Husain, T. Heavy Metals in Drinking Water: Occurrences, Implications, and Future Needs in Developing Countries. Sci. Total Environ. 2016, 569-570, 476–488. DOI: 10.1016/j.scitotenv.2016.06.166.
  • Li, W.; Liu, X-y.; Chu, X-s.; Wang, F.; Dang, Y-y.; Ma, T-h.; Li, J-y.; Wang, C-y. Fast Cr(vi) Wastewater Remediation on a BixOy/CdS Heterostructure under Simulated Solar Light Induction. Environ. Sci. Nano 2021, 8, 3655–3664. DOI: 10.1039/D1EN00801C.
  • Zhu, Z-y.; Li, J-y.; Li, W.; Liu, X-y.; Dang, Y-y.; Ma, T-h.; Wang, C-y. Simulated-sunlight-Driven Cr(vi) Reduction on a Type-II Heterostructured Sb2S3/CdS Photocatalyst. Environ. Sci. Nano 2022, 9, 1738–1747, DOI: 10.1039/D2EN00050D.
  • Lv, M.; Liu, Y.; Geng, J.; Kou, X.; Xin, Z.; Yang, D. Engineering Nanomaterials-Based Biosensors for Food Safety Detection. Biosens. Bioelectron. 2018, 106, 122–128. DOI: 10.1016/j.bios.2018.01.049.
  • Gul, Z.; Khan, S.; Khan, E. Organic Molecules Containing N, S and O Heteroatoms as Sensors for the Detection of Hg(II) Ion; Coordination and Efficiency toward Detection. Crit. Rev. Anal. Chem. 2022. DOI: 10.1080/10408347.2022.2121600.
  • Patel, P. D. (Bio)Sensors for Measurement of Analytes Implicated in Food Safety: A Review. TrAC, Trends Anal. Chem. 2002, 21, 96–115. DOI: 10.1016/S0165-9936.
  • Razavi, S. A. A.; Morsali, A. Metal Ion Detection Using luminescent-MOFs: Principles, Strategies and Roadmap. Coord. Chem. Rev. 2020, 415, 213299. DOI: 10.1016/j.ccr.2020.213299.
  • Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Upconversion Luminescent Materials: Advances and Applications. Chem. Rev. 2015, 115, 395–465. DOI: 10.1021/cr400478f.
  • Han, Y.; Yang, W.; Luo, X.; He, X.; Zhao, H.; Tang, W.; Yue, T.; Li, Z. Carbon Dots Based Ratiometric Fluorescent Sensing Platform for Food Safety. Crit. Rev. Food Sci. Nutr. 2022, 62, 244–260. DOI: 10.1080/10408398.2020.1814197.
  • Yao, C.-X.; Zhao, N.; Liu, J.-C.; Chen, L.-J.; Liu, J.-M.; Fang, G.-Z.; Wang, S. Recent Progress on Luminescent Metal-Organic Framework-Involved Hybrid Materials for Rapid Determination of Contaminants in Environment and Food. Polymers 2020, 12, 691. DOI: 10.3390/polym12030691.
  • Zhao, Y.; Zeng, H.; Wu, K.; Luo, D.; Zhu, X.-W.; Lu, W.; Li, D. A pH-Regulated Ratiometric Luminescence Eu-MOF for Rapid Detection of Toxic Mycotoxin in Moldy Sugarcane. J. Mater. Chem. C 2020, 8, 4385–4391. DOI: 10.1039/D0TC00104J.
  • Du, W.; Zhu, Z.; Bai, Y.-L.; Yang, Z.; Zhu, S.; Xu, J.; Xie, Z.; Fang, J. An Anionic Sod-Type terbium-MOF with Extra-Large Cavities for Effective Anthocyanin Extraction and Methyl Viologen Detection. Chem. Commun. (Camb) 2018, 54, 5972–5975. DOI: 10.1039/C8CC02193G.
  • Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal–Organic Frameworks: Functional Luminescent and Photonic Materials for Sensing Applications. Chem. Soc. Rev. 2017, 46, 3242–3285. DOI: 10.1039/C6CS00930A.
  • Xu, L.; Pan, M.; Fang, G.; Wang, S. Carbon Dots Embedded Metal-Organic Framework@Molecularly Imprinted Nanoparticles for Highly Sensitive and Selective Detection of Quercetin. Sens. Actuators, B 2019, 286, 321–327. DOI: 10.1016/j.snb.2019.01.156.
  • Yam, V. W.-W.; Wong, K. M.-C. Luminescent Metal Complexes of d6, d8 and d10 Transition Metal Centres. Chem. Commun. (Camb) 2011, 47, 11579–11592. DOI: 10.1039/C1CC13767K.
  • Wang, Y.; Wang, S-l.; Xie, T.; Cao, J. Activated Carbon Derived from Waste Tangerine Seed for the High-Performance Adsorption of Carbamate Pesticides from Water and Plant. Bioresour. Technol. 2020, 316, 123929. DOI: 10.1016/j.biortech.2020.123929.
  • Du, J.-L.; Gao, J.-P.; Li, C.-P.; Zhang, X.-Y.; Hou, J.-X.; Jing, X.; Mu, Y.-J.; Li, L.-J. A Stable 3D Cd(ii) Metal–Organic Framework for Highly Sensitive Detection of Cu2+ Ions and Nitroaromatic Explosives. RSC Adv. 2017, 7, 49618–49625. DOI: 10.1039/C7RA08977E.
  • Yang, H.; Qi, D.; Si, X.; Yan, Z.; Guo, L.; Shao, C.; Zhang, W.; Yang, L. One Novel Cd-MOF as a Highly Effective Multi-Functional Luminescent Sensor for the Detection of Fe3+, Hg2+, CrVI, Aspartic Acid and Glutamic Acid in Aqueous Solution. J. Solid State Chem. 2022, 310, 123008. DOI: 10.1016/j.jssc.2022.123008.
  • Li, F.-F.; Zhu, M.-L.; Lu, L.-P. A Luminescent Cd(II)-Based Metal − Organic Framework for Detection of Fe(III) Ions in Aqueous Solution. J. Solid State Chem. 2018, 261, 31–36. DOI: 10.1016/j.jssc.2018.02.006.
  • Guo, X.-Y.; Dong, Z.-P.; Zhao, F.; Liu, Z.-L.; Wang, Y.-Q. Zinc(ii)–Organic Framework as a Multi-Responsive Photoluminescence Sensor for Efficient and Recyclable Detection of Pesticide 2,6-Dichloro-4-Nitroaniline, Fe(Iii) and Cr(vi). New J. Chem. 2019, 43, 2353–2361. DOI: 10.1039/C8NJ05647A.
  • Zhang, L.; Wang, J.; Du, T.; Zhang, W.; Zhu, W.; Yang, C.; Yue, T.; Sun, J.; Li, T.; Wang, J. NH2-MIL-53(Al) Metal–Organic Framework as the Smart Platform for Simultaneous High-Performance Detection and Removal of Hg2+. Inorg. Chem. 2019, 58, 12573–12581. DOI: 10.1021/acs.inorgchem.9b01242.
  • Weng, H.; Yan, B. Lanthanide Coordination Polymers for Multi-Color Luminescence and Sensing of Fe3+. Inorg. Chem. Commun. 2016, 63, 11–15. DOI: 10.1016/j.inoche.2015.11.013.
  • Chandra Rao, P.; Mandal, S. Europium-Based Metal–Organic Framework as a Dual Luminescence Sensor for the Selective Detection of the Phosphate Anion and Fe3+ Ion in Aqueous Media. Inorg. Chem. 2018, 57, 11855–11858. DOI: 10.1021/acs.inorgchem.8b02017.
  • Zhang, X.; Wang, Z.-J.; Chen, S.-G.; Shi, Z.-Z.; Chen, J.-X.; Zheng, H.-G. Cd-Based Metal–Organic Frameworks from Solvothermal Reactions Involving in Situ Aldimine Condensation and the Highly Sensitive Detection of Fe3+ Ions. Dalton Trans. 2017, 46, 2332–2338. DOI: 10.1039/C6DT04675D.
  • Yao, C.; Xu, Y.; Xia, Z. A Carbon Dot-Encapsulated UiO-Type Metal Organic Framework as a Multifunctional Fluorescent Sensor for Temperature, Metal Ion and pH Detection. J. Mater. Chem. C 2018, 6, 4396–4399. DOI: 10.1039/C8TC01018H.
  • Li, P.-C.; Zhang, L.; Yang, M.; Zhang, K.-L. A Novel Luminescent 1D→2D Polyrotaxane Zn(II)-Organic Framework Showing Dual Responsive Fluorescence Sensing for Fe3+ Cation and Cr(VI) Anions in Aqueous Medium. J. Lumin. 2019, 207, 351–360. DOI: 10.1016/j.jlumin.2018.11.039.
  • Chen, D.-M.; Zhang, N.-N.; Liu, C.-S.; Du, M. Template-Directed Synthesis of a Luminescent Tb-MOF Material for Highly Selective Fe3+ and Al3+ Ion Detection and VOC Vapor Sensing. J. Mater. Chem. C 2017, 5, 2311–2317. DOI: 10.1039/C6TC05349A.
  • Xu, N.; Zhang, Q.; Hou, B.; Cheng, Q.; Zhang, G. A Novel Magnesium Metal–Organic Framework as a Multiresponsive Luminescent Sensor for Fe(III) Ions, Pesticides, and Antibiotics with High Selectivity and Sensitivity. Inorg. Chem. 2018, 57, 13330–13340. DOI: 10.1021/acs.inorgchem.8b01903.
  • Lv, R.; Li, H.; Su, J.; Fu, X.; Yang, B.; Gu, W.; Liu, X. Zinc Metal–Organic Framework for Selective Detection and Differentiation of Fe(III) and Cr(VI) Ions in Aqueous Solution. Inorg. Chem. 2017, 56, 12348–12356. DOI: 10.1021/acs.inorgchem.7b01822.
  • Zhou, Y.; Chen, H.-H.; Yan, B. An Eu3+ Post-Functionalized Nanosized Metal–Organic Framework for Cation Exchange-Based Fe3+-Sensing in an Aqueous Environment. J. Mater. Chem. A 2014, 2, 13691–13697. DOI: 10.1039/C4TA01297F.
  • Ding, B.; Liu, S. X.; Cheng, Y.; Guo, C.; Wu, X. X.; Guo, J. H.; Liu, Y. Y.; Li, Y. Heterometallic Alkaline Earth–Lanthanide BaII–LaIII Microporous Metal–Organic Framework as Bifunctional Luminescent Probes of Al3+ and MnO4. Inorg. Chem. 2016, 55, 4391–4402. – DOI: 10.1021/acs.inorgchem.6b00111.
  • Razavi, S. A. A.; Masoomi, M. Y.; Morsali, A. Morphology-Dependent Sensing Performance of Dihydro-Tetrazine Functionalized MOF toward Al(III). Ultrason. Sonochem. 2018, 41, 17–26. DOI: 10.1016/j.ultsonch.2017.09.009.
  • Pankajakshan, A.; Kuznetsov, D.; Mandal, S. Ultrasensitive Detection of Hg(II) Ions in Aqueous Medium Using Zinc-Based Metal–Organic Framework. Inorg. Chem. 2019, 58, 1377–1381. DOI: 10.1021/acs.inorgchem.8b02898.
  • Yang, J.; Wang, Z.; Li, Y.; Zhuang, Q.; Zhao, W.; Gu, J. Porphyrinic MOFs for Reversible Fluorescent and Colorimetric Sensing of Mercury(ii) Ions in Aqueous Phase. RSC Adv. 2016, 6, 69807–69814. DOI: 10.1039/C6RA13766K.
  • Razavi, S. A. A.; Masoomi, M. Y.; Morsali, A. Double Solvent Sensing Method for Improving Sensitivity and Accuracy of Hg(II) Detection Based on Different Signal Transduction of a Tetrazine-Functionalized Pillared Metal–Organic Framework. Inorg. Chem. 2017, 56, 9646–9652. DOI: 10.1021/acs.inorgchem.7b01155.
  • Wang, Z.-J.; Han, L.-J.; Gao, X.-J.; Zheng, H.-G. Three Cd(II) MOFs with Different Functional Groups: Selective CO2 Capture and Metal Ions Detection. Inorg. Chem. 2018, 57, 5232–5239. DOI: 10.1021/acs.inorgchem.8b00272.
  • Wu, P.; Liu, Y.; Liu, Y.; Wang, J.; Li, Y.; Liu, W.; Wang, J. Cadmium-Based Metal–Organic Framework as a Highly Selective and Sensitive Ratiometric Luminescent Sensor for Mercury(II). Inorg. Chem. 2015, 54, 11046–11048. DOI: 10.1021/acs.inorgchem.5b01758.
  • Li, L.; Shen, S.; Lin, R.; Bai, Y.; Liu, H. Rapid and Specific Luminescence Sensing of Cu(ii) Ions with a Porphyrinic Metal–Organic Framework. Chem. Commun. (Camb) 2017, 53, 9986–9989. DOI: 10.1039/C7CC04250G.
  • Zhang, H.; Fan, R.; Chen, W.; Fan, J.; Dong, Y.; Song, Y.; Du, X.; Wang, P.; Yang, Y. 3D Lanthanide Metal–Organic Frameworks Based on Mono-, Tri-, and Heterometallic Tetranuclear Clusters as Highly Selective and Sensitive Luminescent Sensor for Fe3+ and Cu2+ Ions. Crystal Growth Design 2016, 16, 5429–5440. DOI: 10.1021/acs.cgd.6b00903.
  • Hu, C.-J.; Yu, L.; Dong, W.-W.; Wu, Y.-P.; Li, D.-S.; Zhao, J. A Water Stable CdII-Based Metal-Organic Framework as a Multifunctional Sensor for Selective Detection of Cu2+ and Cr2O72– Ions. Z Anorg. Allg. Chem. 2019,DOI: 10.1002/zaac.201800442.
  • Liang, J.-Y.; Li, G.-P.; Gao, R.-C.; Bai, N.-N.; Tong, W.-Q.; Hou, L.; Wang, Y.-Y. Four New 3D Metal–Organic Frameworks Constructed by a V-Shaped Tetracarboxylates Ligand: Selective CO2 Sorption and Luminescent Sensing. Crystal Growth Design 2017, 17, 6733–6740. DOI: 10.1021/acs.cgd.7b01335.
  • Jia, X.-X.; Yao, R.-X.; Zhang, F.-Q.; Zhang, X.-M. A Fluorescent Anionic MOF with Zn4(Trz)2 Chain for Highly Selective Visual Sensing of Contaminants: Cr(III) Ion and TNP. Inorg. Chem. 2017, 56, 2690–2696. DOI: 10.1021/acs.inorgchem.6b02872.
  • Guo, X.-Y.; Zhao, F.; Liu, J.-J.; Liu, Z.-L.; Wang, Y.-Q. An Ultrastable Zinc(ii)–Organic Framework as a Recyclable Multi-Responsive Luminescent Sensor for Cr(Iii), Cr(vi) and 4-Nitrophenol in the Aqueous Phase with High Selectivity and Sensitivity. J. Mater. Chem. A 2017, 5, 20035–20043. DOI: 10.1039/C7TA05896A.
  • Sun, Z.; Yang, M.; Ma, Y.; Li, L. Multi-Responsive Luminescent Sensors Based on Two-Dimensional Lanthanide–Metal Organic Frameworks for Highly Selective and Sensitive Detection of Cr(III) and Cr(VI) Ions and Benzaldehyde. Crystal Growth Design 2017, 17, 4326–4335. DOI: 10.1021/acs.cgd.7b00638.
  • Zeng, Z.; Fang, X.; Miao, W.; Liu, Y.; Maiyalagan, T.; Mao, S. Electrochemically Sensing of Trichloroacetic Acid with Iron(II) Phthalocyanine and Zn-Based Metal Organic Framework Nanocomposites. ACS Sens. 2019, 4, 1934–1941. DOI: 10.1021/acssensors.9b00894.
  • Wang, X.; Lu, X.; Wu, L.; Chen, J. 3D Metal-Organic Framework as Highly Efficient Biosensing Platform for Ultrasensitive and Rapid Detection of Bisphenol A. Biosens. Bioelectron. 2015, 65, 295–301. DOI: 10.1016/j.bios.2014.10.010.
  • Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors (Basel) 2008, 8, 1400–1458. DOI: 10.3390/s80314000.
  • Labib, M.; Sargent, E. H.; Kelley, S. O. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem. Rev. 2016, 116, 9001–9090. DOI: 10.1021/acs.chemrev.6b00220.
  • Chen, X.; Wang, Y.; Zhang, Y.; Chen, Z.; Liu, Y.; Li, Z.; Li, J. Sensitive Electrochemical Aptamer Biosensor for Dynamic Cell Surface N-Glycan Evaluation Featuring Multivalent Recognition and Signal Amplification on a Dendrimer–Graphene Electrode Interface. Anal. Chem. 2014, 86, 4278–4286. DOI: 10.1021/ac404070m.
  • Xinxin, J.; Chengjun, Z.; Chunju, Z.; Jianping, L. The Electrochemical Sensors Based on MOF and Their Applications. Prog. Chem. 2017, 29, 1206.
  • Xu, H.; Yuan, H.; Yu, J.; Lin, S. Study on the Competitive Adsorption and Correlational Mechanism for Heavy Metal Ions Using the Carboxylated Magnetic Iron Oxide Nanoparticles (MNPs-COOH) as Efficient Adsorbents. Appl. Surf. Sci. 2019, 473, 960–966. DOI: 10.1016/j.apsusc.2018.12.006.
  • Liu, C.-S.; Sun, C.-X.; Tian, J.-Y.; Wang, Z.-W.; Ji, H.-F.; Song, Y.-P.; Zhang, S.; Zhang, Z.-H.; He, L.-H.; Du, M. Highly Stable Aluminum-Based Metal-Organic Frameworks as Biosensing Platforms for Assessment of Food Safety. Biosens. Bioelectron. 2017, 91, 804–810. DOI: 10.1016/j.bios.2017.01.059.
  • Cao, Y.; Wang, L.; Shen, C.; Wang, C.; Hu, X.; Wang, G. An Electrochemical Sensor on the Hierarchically Porous Cu-BTC MOF Platform for Glyphosate Determination. Sens. Actuators, B 2019, 283, 487–494. DOI: 10.1016/j.snb.2018.12.064.
  • Song, D.; Jiang, X.; Li, Y.; Lu, X.; Luan, S.; Wang, Y.; Li, Y.; Gao, F. Metal − Organic Frameworks-Derived MnO2/Mn3O4 Microcuboids with Hierarchically Ordered Nanosheets and Ti3C2 MXene/Au NPs Composites for Electrochemical Pesticide Detection. J. Hazard. Mater. 2019, 373, 367–376. DOI: 10.1016/j.jhazmat.2019.03.083.
  • Zhou, Y.; Li, X.; Pan, Z.; Ye, B.; Xu, M. Determination of Malachite Green in Fish by a Modified MOF-Based Electrochemical Sensor. Food Anal. Methods 2019, 12, 1246–1254. DOI: 10.1007/s12161-019-01459-x.
  • Wang, Y.; Wang, L.; Huang, W.; Zhang, T.; Hu, X.; Perman, J. A.; Ma, S. A Metal–Organic Framework and Conducting Polymer Based Electrochemical Sensor for High Performance Cadmium Ion Detection. J. Mater. Chem. A 2017, 5, 8385–8393. DOI: 10.1039/C7TA01066D.
  • Wang, Y.; Wu, Y.; Xie, J.; Hu, X. Metal–Organic Framework Modified Carbon Paste Electrode for Lead Sensor. Sens. Actuators, B 2013, 177, 1161–1166. DOI: 10.1016/j.snb.2012.12.048.
  • Jin, J.-C.; Wu, J.; Yang, G.-P.; Wu, Y.-L.; Wang, Y.-Y. A Microporous Anionic Metal–Organic Framework for a Highly Selective and Sensitive Electrochemical Sensor of Cu2+ Ions. Chem. Commun. (Camb) 2016, 52, 8475–8478. DOI: 10.1039/C6CC03063G.
  • Singh, S.; Numan, A.; Zhan, Y.; Singh, V.; Van Hung, T.; Nam, N. D. A Novel Highly Efficient and Ultrasensitive Electrochemical Detection of Toxic Mercury (II) Ions in Canned Tuna Fish and Tap Water Based on a Copper Metal-Organic Framework. J. Hazard. Mater. 2020, 399, 123042. DOI: 10.1016/j.jhazmat.2020.123042.
  • Wang, F.-F.; Liu, C.; Yang, J.; Xu, H.-L.; Pei, W.-Y.; Ma, J.-F. A Sulfur-Containing Capsule-Based Metal-Organic electrochemical sensor for Super-Sensitive capture and detection of multiple Heavy-Metal ions. 2020, Chem. Eng. J. 438, 135639.
  • Dong, J.; Zhang, D.; Li, C.; Bai, T.; Jin, H.; Suo, Z. A Sensitive Electrochemical Sensor Based on PtNPs@Cu-MOF Signal Probe and DNA Walker Signal Amplification for Pb2+ Detection. Bioelectrochemistry 2022, 146, 108134. DOI: 10.1016/j.bioelechem.2022.108134.
  • Niu, B.; Zhu, M.; Guo, H.; Ying, S.; Huang, X. Simple Fabrication of a Hexagonal Prisms with Hexagonal Pyramid Tips V2O5@MOF(V, Co) and Its Application as Electrochemical Sensor for Pb2+. Inorg. Chem. Commun. 2021, 133, 108966. DOI: 10.1016/j.inoche.2021.108966.
  • Guo, H.; Zheng, Z.; Zhang, Y.; Lin, H.; Xu, Q. Highly Selective Detection of Pb2+ by a Nanoscale Ni-Based Metal–Organic Framework Fabricated through One-Pot Hydrothermal Reaction. Sens. Actuators, B 2017, 248, 430–436. DOI: 10.1016/j.snb.2017.03.147.
  • Ye, W.; Li, Y.; Wang, J.; Li, B.; Cui, Y.; Yang, Y.; Qian, G. Electrochemical Detection of Trace Heavy Metal Ions Using a Ln-MOF Modified Glass Carbon Electrode. J. Solid State Chem. 2020, 281, 121032. DOI: 10.1016/j.jssc.2019.121032.
  • Wang, D.; Ke, Y.; Guo, D.; Guo, H.; Chen, J.; Weng, W. Facile Fabrication of Cauliflower-like MIL-100(Cr) and Its Simultaneous Determination of Cd2+, Pb2+, Cu2+ and Hg2+ from Aqueous Solution. Sens. Actuators, B 2015, 216, 504–510. DOI: 10.1016/j.snb.2015.04.054.
  • Duan, S.; Huang, Y. Electrochemical Sensor Using NH2-MIL-88(Fe)-rGO Composite for Trace Cd2+, Pb2+, and Cu2+ Detection. Electroanal. Chem. 2017, 807, 253–260. DOI: 10.1016/j.jelechem.2017.11.051.
  • Cai, F.; Wang, Q.; Chen, X.; Qiu, W.; Zhan, F.; Gao, F.; Wang, Q. Selective Binding of Pb2+ with Manganese-Terephthalic Acid MOF/SWCNTs: Theoretical Modeling, Experimental Study and Electroanalytical Application. Biosens. Bioelectron. 2017, 98, 310–316. DOI: 10.1016/j.bios.2017.07.007.
  • Lu, M.; Deng, Y.; Luo, Y.; Lv, J.; Li, T.; Xu, J.; Chen, S.-W.; Wang, J. Graphene Aerogel–Metal–Organic Framework-Based Electrochemical Method for Simultaneous Detection of Multiple Heavy-Metal Ions. Anal. Chem. 2019, 91, 888–895. DOI: 10.1021/acs.analchem.8b03764.
  • Oliveira, V. H.; Rechotnek, F.; da Silva, E. P.; Marques, V. d S.; Rubira, A. F.; Silva, R.; Lourenço, S. A.; Muniz, E. C. A Sensitive Electrochemical Sensor for Pb2+ Ions Based on ZnO Nanofibers Functionalized by L-Cysteine. J. Mol. Liq. 2020, 309, 113041. DOI: 10.1016/j.molliq.2020.113041.
  • Gaudin, V. Electrochemical Biosensors, Ali A. Ensafi, Ed. Elsevier: Amsterdam, Netherlands, 2019; pp. 307–365.
  • Hu, X.; Zhang, H.; Chen, S.; Yuan, R.; You, J. A Signal-on Electrochemiluminescence Sensor for Clenbuterol Detection Based on Zinc-Based Metal-Organic Framework–Reduced Graphene Oxide–CdTe Quantum Dot Hybrids. Anal. Bioanal. Chem. 2018, 410, 7881–7890. DOI: 10.1007/s00216-018-1404-0.
  • Richter, M. M. Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003–3036. DOI: 10.1021/cr020373d.
  • Feng, D.; Wu, Y.; Tan, X.; Chen, Q.; Yan, J.; Liu, M.; Ai, C.; Luo, Y.; Du, F.; Liu, S.; Han, H. Sensitive Detection of Melamine by an Electrochemiluminescence Sensor Based on Tris(Bipyridine)Ruthenium(II)-Functionalized Metal-Organic Frameworks. Sens. Actuators, B 2018, 265, 378–386. DOI: 10.1016/j.snb.2018.03.046.
  • Li, L.; Chen, B.; Luo, L.; Liu, X.; Bi, X.; You, T. Sensitive and Selective Detection of Hg2+ in Tap and Canal Water via Self-Enhanced ECL Aptasensor Based on NH2–Ru@SiO2-NGQDs. Talanta 2021, 222, 121579. DOI: 10.1016/j.talanta.2020.121579.
  • Chen, M.; Gan, N.; Zhou, Y.; Li, T.; Xu, Q.; Cao, Y.; Chen, Y. A Novel Aptamer- Metal Ions- Nanoscale MOF Based Electrochemical Biocodes for Multiple Antibiotics Detection and Signal Amplification. Sens. Actuators, B 2017, 242, 1201–1209. DOI: 10.1016/j.snb.2016.08.185.
  • Xiao-Wei, H.; Xiao-Bo, Z.; Ji-Yong, S.; Zhi-Hua, L.; Jie-Wen, Z. Colorimetric Sensor Arrays Based on Chemo-Responsive Dyes for Food Odor Visualization. Trends Food Sci. Technol. 2018, 81, 90–107. DOI: 10.1016/j.tifs.2018.09.001.
  • Duan, N.; Yang, W.; Wu, S.; Zou, Y.; Wang, Z. A Visual and Sensitive Detection of Escherichia coli Based on Aptamer and Peroxidase-like Mimics of Copper-Metal Organic Framework Nanoparticles. Food Anal. Methods 2020, 13, 1433–1441. DOI: 10.1007/s12161-020-01765-9.
  • Huang, L.; Sun, D.-W.; Pu, H.; Wei, Q. Development of Nanozymes for Food Quality and Safety Detection: Principles and Recent Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1496–1513. DOI: 10.1111/1541-4337.12485.
  • Shahat, A.; Elsalam, S. A.; Herrero-Martínez, J. M.; Simó-Alfonso, E. F.; Ramis-Ramos, G. Optical Recognition and Removal of Hg(II) Using a New Self-Chemosensor Based on a Modified Amino-Functionalized Al-MOF. Sens. Actuators, B 2017, 253, 164–172. DOI: 10.1016/j.snb.2017.06.125.
  • Wang, Z.; Yang, J.; Li, Y.; Zhuang, Q.; Gu, J. Zr-Based MOFs Integrated with a Chromophoric Ruthenium Complex for Specific and Reversible Hg2+ Sensing. Dalton Trans. 2018, 47, 5570–5574. DOI: 10.1039/C8DT00569A.
  • Shahat, A.; Hassan, H. M. A.; Azzazy, H. M. E. Optical Metal-Organic Framework Sensor for Selective Discrimination of Some Toxic Metal Ions in Water. Anal. Chim. Acta. 2013, 793, 90–98. DOI: 10.1016/j.aca.2013.07.012.
  • Radwan, A.; El-Sewify, I. M.; Shahat, A.; Azzazy, H. M. E.; Khalil, M. M. H.; El-Shahat, M. F. Multiuse Al-MOF Chemosensors for Visual Detection and Removal of Mercury Ions in Water and Skin-Whitening Cosmetics. ACS Sustain.Chem. Eng. 2020, 8, 15097–15107. DOI: 10.1021/acssuschemeng.0c03592.
  • Basaleh, A. S.; Sheta, S. M. Novel Advanced Nanomaterial Based on Ferrous Metal–Organic Framework and Its Application as Chemosensors for Mercury in Environmental and Biological Samples. Anal. Bioanal. Chem. 2020, 412, 3153–3165. DOI: 10.1007/s00216-020-02566-z.
  • Khalil, M. M. H.; Shahat, A.; Radwan, A.; El-Shahat, M. F. Colorimetric Determination of Cu(II) Ions in Biological Samples Using Metal-Organic Framework as Scaffold. Sens. Actuators, B 2016, 233, 272–280. DOI: 10.1016/j.snb.2016.04.079.
  • Wang, J.; Fan, Y.; Lee, H-w.; Yi, C.; Cheng, C.; Zhao, X.; Yang, M. Ultrasmall Metal–Organic Framework Zn-MOF-74 Nanodots: Size-Controlled Synthesis and Application for Highly Selective Colorimetric Sensing of Iron(III) in Aqueous Solution. ACS Appl. Nano Mater. 2018, 1, 3747–3753. DOI: 10.1021/acsanm.8b01083.
  • Kulandaivel, S.; Lo, W.-C.; Lin, C.-H.; Yeh, Y.-C. Cu-PyC MOF with Oxidoreductase-like Catalytic Activity Boosting Colorimetric Detection of Cr(VI) on Paper. Anal. Chim. Acta. 2022, 1227, 340335. DOI: 10.1016/j.aca.2022.340335.
  • Choi, J.; Kim, J.-H.; Oh, J.-W.; Nam, J.-M. Surface-Enhanced Raman Scattering-Based Detection of Hazardous Chemicals in Various Phases and Matrices with Plasmonic Nanostructures. Nanoscale 2019, 11, 20379–20391. DOI: 10.1039/C9NR07439B.
  • Hu, Y.; Liao, J.; Wang, D.; Li, G. Fabrication of Gold Nanoparticle-Embedded Metal–Organic Framework for Highly Sensitive Surface-Enhanced Raman Scattering Detection. Anal. Chem. 2014, 86, 3955–3963. DOI: 10.1021/ac5002355.
  • Jiang, Z.; Gao, P.; Yang, L.; Huang, C.; Li, Y. Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal–Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine. Anal. Chem. 2015, 87, 12177–12182. DOI: 10.1021/acs.analchem.5b03058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.