235
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Progress in Screening of Mycotoxins in Foods and Other Commodities Using MXenes-Based Nanomaterials

, , , , , , , & show all

References

  • Xing, X.; Yao, L.; Yan, C.; Xu, Z.; Xu, J.; Liu, G.; Yao, B.; Chen, W. Recent Progress of Personal Glucose Meters Integrated Methods in Food Safety Hazards Detection. Crit. Rev. Food Sci. Nutr. 2022, 62, 7413–7426. DOI: 10.1080/10408398.2021.1913990.
  • Lin, Y.; Zhou, Q.; Tang, D. Dopamine-Loaded Liposomes for in-Situ Amplified Photoelectrochemical Immunoassay of AFB1 to Enhance Photocurrent of Mn2+-Doped Zn3 (OH) 2V2O7 Nanobelts. Anal. Chem. 2017, 89, 11803–11810. DOI: 10.1021/acs.analchem.7b03451.
  • Karimzadeh, Z.; Mahmoudpour, M.; Guardia, M. D. L.; Ezzati Nazhad Dolatabadi, J.; Jouyban, A. Aptamer-Functionalized Metal Organic Frameworks as an Emerging Nanoprobe in the Food Safety Field: Promising Development Opportunities and Translational Challenges. TrAC Trends Anal. Chem. 2022, 152, 116622. DOI: 10.1016/j.trac.2022.116622.
  • Hou, Y.; Jia, B.; Sheng, P.; Liao, X.; Shi, L.; Fang, L.; Zhou, L.; Kong, W. Aptasensors for Mycotoxins in Foods: Recent Advances and Future Trends. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2032–2073. DOI: 10.1111/1541-4337.12858.
  • Adunphatcharaphon, S.; Elliott, C. T.; Sooksimuang, T.; Charlermroj, R.; Petchkongkaew, A.; Karoonuthaisiri, N. The Evolution of Multiplex Detection of Mycotoxins Using Immunoassay Platform Technologies. J. Hazard. Mater. 2022, 432, 128706. DOI: 10.1016/j.jhazmat.2022.128706.
  • Mahmoudpour, M.; Ezzati Nazhad Dolatabadi, J.; Torbati, M.; Pirpour Tazehkand, A.; Homayouni-Rad, A.; de la Guardia, M. Nanomaterials and New Biorecognition Molecules Based Surface Plasmon Resonance Biosensors for Mycotoxin Detection. Biosens. Bioelectron. 2019, 143, 111603. DOI: 10.1016/j.bios.2019.111603.
  • Mao, L.; Liu, H.; Yao, L.; Wen, W.; Chen, M.-M.; Zhang, X.; Wang, S. Construction of a Dual-Functional CuO/BiOCl Heterojunction for High-Efficiently Photoelectrochemical Biosensing and Photoelectrocatalytic Degradation of Aflatoxin B1. Chem. Eng. J. 2022, 429, 132297. DOI: 10.1016/j.cej.2021.132297.
  • Guo, X.; Qiao, Q.; Zhang, M.; Fauconnier, M.-L. Nuclease Triggered “Signal-On” and Amplified Fluorescent Sensing of Fumonisin B1 Incorporating Graphene Oxide and Specific Aptamer. IJMS. 2022, 23, 9024. DOI: 10.3390/ijms23169024.
  • Xiong, Z.; Wang, Q.; Xie, Y.; Li, N.; Yun, W.; Yang, L. Simultaneous Detection of Aflatoxin B1 and Ochratoxin a in Food Samples by Dual DNA Tweezers Nanomachine. Food Chem. 2021, 338, 128122. DOI: 10.1016/j.foodchem.2020.128122.
  • Ahmadi, S. F.; Hojjatoleslamy, M.; Kiani, H.; Molavi, H. Monitoring of Aflatoxin M1 in Milk Using a Novel Electrochemical Aptasensor Based on Reduced Graphene Oxide and Gold Nanoparticles. Food Chem. 2022, 373, 131321. DOI: 10.1016/j.foodchem.2021.131321.
  • Zhou, Q.; Tang, D. Recent Advances in Photoelectrochemical Biosensors for Analysis of Mycotoxins in Food. TrAC, Trends Anal. Chem. 2020, 124, 115814. DOI: 10.1016/j.trac.2020.115814.
  • Mousavi, M. M.; Arefhosseini, S.; Alizadeh Nabili, A. A.; Mahmoudpour, M.; Nemati, M. Development of an Ultrasound‐Assisted Emulsification Microextraction Method for the Determination of Chlorpyrifos and Organochlorine Pesticide Residues in Honey Samples Using Gas Chromatography with Mass Spectrometry. J. Sep. Sci. 2016, 39, 2815–2822. DOI: 10.1002/jssc.201600197.
  • Mahmoudpour, M.; Mohtadinia, J.; Ansarin, M.; Nemati, M. Dispersive Liquid–Liquid Microextraction for HPLC-UV Determination of PAHs in Milk. J. AOAC Int. 2016, 99, 527–533. DOI: 10.5740/jaoacint.15-0169.
  • Nolan, P.; Auer, S.; Spehar, A.; Elliott, C. T.; Campbell, K. Current Trends in Rapid Tests for Mycotoxins. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2019, 36, 800–814. DOI: 10.1080/19440049.2019.1595171.
  • Qu, L.-L.; Jia, Q.; Liu, C.; Wang, W.; Duan, L.; Yang, G.; Han, C.-Q.; Li, H. Thin Layer Chromatography Combined with Surface-Enhanced Raman Spectroscopy for Rapid Sensing Aflatoxins. J. Chromatogr. A 2018, 1579, 115–120. DOI: 10.1016/j.chroma.2018.10.024.
  • Hasan, M. R.; Ahommed, M. S.; Daizy, M.; Bacchu, M. S.; Ali, M. R.; Al-Mamun, M. R.; Saad Aly, M. A.; Khan, M. Z. H.; Hossain, S. I. Recent Development in Electrochemical Biosensors for Cancer Biomarkers Detection. Biosens. Bioelectron. X 2021, 8, 100075. DOI: 10.1016/j.biosx.2021.100075.
  • Khan, M. Z. H.; Hasan, M. R.; Hossain, S. I.; Ahommed, M. S.; Daizy, M. Ultrasensitive Detection of Pathogenic Viruses with Electrochemical Biosensor: State of the Art. Biosens. Bioelectron. 2020, 166, 112431. DOI: 10.1016/j.bios.2020.112431.
  • Ali, M. R.; Bacchu, M. S.; Das, S.; Akter, S.; Rahman, M. M.; Saad Aly, M. A.; Khan, M. Z. H. Label Free Flexible Electrochemical DNA Biosensor for Selective Detection of Shigella flexneri in Real Food Samples. Talanta 2023, 253, 123909. DOI: 10.1016/j.talanta.2022.123909.
  • Karimzadeh, Z.; Mahmoudpour, M.; Rahimpour, E.; Jouyban, A. Nanomaterial Based PVA Nanocomposite Hydrogels for Biomedical Sensing: Advances toward Designing the Ideal Flexible/Wearable Nanoprobes. Adv. Colloid Interface Sci. 2022, 305, 102705. DOI: 10.1016/j.cis.2022.102705.
  • Mahmoudpour, M.; Ding, S.; Lyu, Z.; Ebrahimi, G.; Du, D.; Ezzati Nazhad Dolatabadi, J.; Torbati, M.; Lin, Y. Aptamer Functionalized Nanomaterials for Biomedical Applications: Recent Advances and New Horizons. Nano Today 2021, 39, 101177. DOI: 10.1016/j.nantod.2021.101177.
  • Mahmoudpour, M.; Karimzadeh, Z.; Ebrahimi, G.; Hasanzadeh, M.; Ezzati Nazhad Dolatabadi, J. Synergizing Functional Nanomaterials with Aptamers Based on Electrochemical Strategies for Pesticide Detection: Current Status and Perspectives. Crit. Rev. Anal. Chem. 2022, 52, 1818–1845. DOI: 10.1080/10408347.2021.1919987.
  • Li, Q.; Meng, J.; Li, Z. Recent Progress on Schottky Sensors Based on Two-Dimensional Transition Metal Dichalcogenides. J. Mater. Chem. A 2022, 10, 8107–8128. DOI: 10.1039/D2TA00075J.
  • Lin, H.; Chen, Y.; Shi, J. Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Adv. Sci. (Weinh) 2018, 5, 1800518. DOI: 10.1002/advs.201800518.
  • Mahmoudpour, M.; Jouyban, A.; Soleymani, J.; Rahimi, M. Rational Design of Smart Nano-Platforms Based on Antifouling-Nanomaterials toward Multifunctional Bioanalysis. Adv. Colloid Interface Sci. 2022, 302, 102637. DOI: 10.1016/j.cis.2022.102637.
  • Wang, F.; Yang, C.; Duan, M.; Tang, Y.; Zhu, J. TiO2 Nanoparticle Modified Organ-like Ti3C2 MXene Nanocomposite Encapsulating Hemoglobin for a Mediator-Free Biosensor with Excellent Performances. Biosens. Bioelectron. 2015, 74, 1022–1028. DOI: 10.1016/j.bios.2015.08.004.
  • Deshmukh, K.; Kovářík, T.; Pasha, S. K. State of the Art Recent Progress in Two Dimensional MXenes Based Gas Sensors and Biosensors: A Comprehensive Review. Coord. Chem. Rev. 2020, 424, 213514. DOI: 10.1016/j.ccr.2020.213514.
  • Zhang, J.; Li, Y.; Duan, S.; He, F. Highly Electrically Conductive Two-Dimensional Ti3C2 Mxenes-Based 16S rDNA Electrochemical Sensor for Detecting Mycobacterium tuberculosis. Anal. Chim. Acta. 2020, 1123, 9–17. DOI: 10.1016/j.aca.2020.05.013.
  • Zhang, D.; Yu, S.; Wang, X.; Huang, J.; Pan, W.; Zhang, J.; Meteku, B. E.; Zeng, J. UV Illumination-Enhanced Ultrasensitive Ammonia Gas Sensor Based on (001) TiO2/MXene Heterostructure for Food Spoilage Detection. J. Hazard. Mater. 2022, 423, 127160. DOI: 10.1016/j.jhazmat.2021.127160.
  • Zahra, Q. U. A.; Ullah, S.; Shahzad, F.; Qiu, B.; Fang, X.; Ammar, A.; Luo, Z.; Abbas Zaidi, S. MXene-Based Aptasensors: Advances, Challenges, and Prospects. Prog. Mater. Sci. 2022, 129, :100967. DOI: 10.1016/j.pmatsci.2022.100967.
  • Liu, R.; Jiang, L.; Yu, Z.; Jing, X.; Liang, X.; Wang, D.; Yang, B.; Lu, C.; Zhou, W.; Jin, S. MXene (Ti3C2Tx)-Ag Nanocomplex as Efficient and Quantitative SERS Biosensor Platform by in-Situ PDDA Electrostatic Self-Assembly Synthesis Strategy. Sens. Actuators, B 2021, 333, 129581. DOI: 10.1016/j.snb.2021.129581.
  • Wen, X.-H.; Zhao, X.-F.; Wang, X.-H.; Wang, Y.; Guo, J.-C.; Zhou, H.-G.; Zuo, C.-T.; Lu, H.-L. Fe3O4/MXene Nanosphere-Based Microfluidic Chip for the Accurate Diagnosis of Alzheimer’s Disease. ACS Appl. Nano Mater. 2022, 5, 15925–15933. DOI: 10.1021/acsanm.2c04187.
  • Mahmoudpour, M.; Torbati, M.; Mousavi, M.-M.; de la Guardia, M.; Dolatabadi, J. E. N. Nanomaterial-Based Molecularly Imprinted Polymers for Pesticides Detection: Recent Trends and Future Prospects. TrAC, Trends Anal. Chem. 2020, 129, 115943. DOI: 10.1016/j.trac.2020.115943.
  • Lee, M.-H.; Liu, K.-H.; Thomas, J. L.; Chen, C.-Y.; Chen, C.-Y.; Yang, C.-H.; Lin, H.-Y. Doping of MXenes Enhances the Electrochemical Response of Peptide-Imprinted Conductive Polymers for the Recognition of C-Reactive Protein. Biosens. Bioelectron. 2022, 200, 113930. DOI: 10.1016/j.bios.2021.113930.
  • Zhang, B.; Chen, Q.; Liu, D.; Fang, F.; Mu, M.; Xie, Y.; Kuang, Y.; Wang, J.; Fang, G. Heterogeneous Sensitization from Nanoporous Gold and Titanium Carbide (MXene) Combining with Molecularly Imprinted Polymers for Highly Sensitive and Specific Sensing Detection of Thiabendazole. Sens. Actuators, B 2022, 367, 132159. DOI: 10.1016/j.snb.2022.132159.
  • Wang, O.; Jia, X.; Liu, J.; Sun, M.; Wu, J. Rapid and Simple Preparation of an MXene/Polypyrrole-Based Bacteria Imprinted Sensor for Ultrasensitive Salmonella Detection. Electroanal. Chem. 2022, 918, 116513. DOI: 10.1016/j.jelechem.2022.116513.
  • Zhang, C.; Wang, X.; Wei, W.; Hu, X.; Wu, Y.; Lv, N.; Dong, S.; Shen, L. Recent Advances in the Synthesis and Energy Applications of 2D MXenes. ChemElectroChem 2021, 8, 3804–3826. DOI: 10.1002/celc.202100482.
  • Sohan, A.; Banoth, P.; Aleksandrova, M.; Nirmala Grace, A.; Kollu, P. Review on MXene Synthesis, Properties, and Recent Research Exploring Electrode Architecture for Supercapacitor Applications. Int. J. Energy Res. 2021, 45, 19746–19771. DOI: 10.1002/er.7068.
  • Salim, O.; Mahmoud, K.; Pant, K.; Joshi, R. Introduction to MXenes: Synthesis and Characteristics. Mater. Today Chem. 2019, 14, 100191. DOI: 10.1016/j.mtchem.2019.08.010.
  • Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. DOI: 10.1002/adma.201102306.
  • Ng, V. M. H.; Huang, H.; Zhou, K.; Lee, P. S.; Que, W.; Xu, J. Z.; Kong, L. B. Recent Progress in Layered Transition Metal Carbides and/or Nitrides (MXenes) and Their Composites: Synthesis and Applications. J. Mater. Chem. A 2017, 5, 3039–3068. DOI: 10.1039/C6TA06772G.
  • Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969. DOI: 10.1021/ja405735d.
  • Halim, J.; Kota, S.; Lukatskaya, M. R.; Naguib, M.; Zhao, M.-Q.; Moon, E. J.; Pitock, J.; Nanda, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W. Synthesis and Characterization of 2D Molybdenum Carbide (MXene). Adv. Funct. Mater. 2016, 26, 3118–3127. DOI: 10.1002/adfm.201505328.
  • Jing, Z.; Wang, H.; Feng, X.; Xiao, B.; Ding, Y.; Wu, K.; Cheng, Y. Superior Thermoelectric Performance of Ordered Double Transition Metal MXenes: Cr2TiC2T2 (T= − OH or − F). J. Phys. Chem. Lett. 2019, 10, 5721–5728. DOI: 10.1021/acs.jpclett.9b01827.
  • Aghamohammadi, H.; Heidarpour, A.; Jamshidi, R. The Phase and Morphological Evolution of Ti3SiC2 MAX Phase Powder after HF Treatment. Ceram. Int. 2018, 44, 17992–18000. DOI: 10.1016/j.ceramint.2018.06.278.
  • Qing, Y.; Zhou, W.; Luo, F.; Zhu, D. Titanium Carbide (MXene) Nanosheets as Promising Microwave Absorbers. Ceram. Int. 2016, 42, 16412–16416. DOI: 10.1016/j.ceramint.2016.07.150.
  • Ghidiu, M.; Lukatskaya, M. R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M. W. Conductive Two-Dimensional Titanium Carbide ‘Clay’with High Volumetric Capacitance. Nature 2014, 516, 78–81. DOI: 10.1038/nature13970.
  • Wang, L.; Zhang, H.; Wang, B.; Shen, C.; Zhang, C.; Hu, Q.; Zhou, A.; Liu, B. Synthesis and Electrochemical Performance of Ti 3 C 2 T x with Hydrothermal Process. Electron. Mater. Lett. 2016, 12, 702–710. DOI: 10.1007/s13391-016-6088-z.
  • Öper, M.; Yorulmaz, U.; Sevik, C.; Ay, F.; Kosku Perkgöz, N. Controlled CVD Growth of Ultrathin M o 2 C (MXene) Flakes. J. Appl. Phys. 2022, 131, 25304. DOI: 10.1063/5.0067970.
  • Cai, Y.; Shen, J.; Ge, G.; Zhang, Y.; Jin, W.; Huang, W.; Shao, J.; Yang, J.; Dong, X. Stretchable Ti3C2T x MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range. ACS Nano. 2018, 12, 56–62. DOI: 10.1021/acsnano.7b06251.
  • Cheng, Y.; Zhang, Y.; Li, Y.; Dai, J.; Song, Y. Hierarchical Ni 2 P/Cr 2 CT x (MXene) Composites with Oxidized Surface Groups as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. J. Mater. Chem. A 2019, 7, 9324–9334. DOI: 10.1039/C9TA00008A.
  • Geng, D.; Zhao, X.; Chen, Z.; Sun, W.; Fu, W.; Chen, J.; Liu, W.; Zhou, W.; Loh, K. P. Direct Synthesis of Large‐Area 2D Mo2C on in Situ Grown Graphene. Adv. Mater. 2017, 29, 1700072. DOI: 10.1002/adma.201700072.
  • Mathis, T. S.; Maleski, K.; Goad, A.; Sarycheva, A.; Anayee, M.; Foucher, A. C.; Hantanasirisakul, K.; Shuck, C. E.; Stach.; Gogotsi Y. Modified MAX Phase Synthesis for Environmentally Stable and Highly Conductive Ti3C2 MXene. ACS Nano. 2021, 15, 6420–6429. DOI: 10.1021/acsnano.0c08357.
  • Alwarappan, S.; Nesakumar, N.; Sun, D.; Hu, T. Y.; Li, C.-Z. 2D Metal Carbides and Nitrides (MXenes) for Sensors and Biosensors. Biosens. Bioelectron. 2022, 205, 113943. DOI: 10.1016/j.bios.2021.113943.
  • Riazi, H.; Taghizadeh, G.; Soroush, M. MXene-Based Nanocomposite Sensors. ACS Omega. 2021, 6, 11103–11112. DOI: 10.1021/acsomega.0c05828.
  • Yang, P.; Guo, X.; Zhang, J.; Chen, C.; Gan, Y.; Xie, W.; Du, Y.; Wu, Z. Picomolar Thrombin Detection by Orchestration of Triple Signal Amplification Strategy with Hierarchically Porous Ti3C2Tx MXene Electrode Material-Catalytic Hairpin Assembly Reaction-Metallic Nanoprobes. Biosens. Bioelectron. 2022, 208, 114228. DOI: 10.1016/j.bios.2022.114228.
  • Long, Y.; Tao, Y.; Shang, T.; Yang, H.; Sun, Z.; Chen, W.; Yang, Q. H. Roles of Metal Ions in MXene Synthesis, Processing and Applications: A Perspective. Adv. Sci. 2022, 9, 2200296. DOI: 10.1002/advs.202200296.
  • Xia, Y.; Li, G.; Zhu, Y.; He, Q.; Hu, C. Facile Preparation of Metal-Free Graphitic-like Carbon Nitride/Graphene Oxide Composite for Simultaneous Determination of Uric Acid and Dopamine. Microchem. J. 2023, 190, 108726. DOI: 10.1016/j.microc.2023.108726.
  • Li, G.; Qi, X.; Wu, J.; Xu, L.; Wan, X.; Liu, Y.; Chen, Y.; Li, Q. Ultrasensitive, Label-Free Voltammetric Determination of Norfloxacin Based on Molecularly Imprinted Polymers and Au Nanoparticle-Functionalized Black Phosphorus Nanosheet Nanocomposite. J. Hazard. Mater. 2022, 436, 129107. DOI: 10.1016/j.jhazmat.2022.129107.
  • Li, G.; Wu, J.; Qi, X.; Wan, X.; Liu, Y.; Chen, Y.; Xu, L. Molecularly Imprinted Polypyrrole Film-Coated Poly (3, 4-Ethylenedioxythiophene): Polystyrene Sulfonate-Functionalized Black Phosphorene for the Selective and Robust Detection of Norfloxacin. Mater. Today Chem. 2022, 26, 101043. DOI: 10.1016/j.mtchem.2022.101043.
  • Li, G.; Qi, X.; Zhang, G.; Wang, S.; Li, K.; Wu, J.; Wan, X.; Liu, Y.; Li, Q. Low-Cost Voltammetric Sensors for Robust Determination of Toxic Cd (II) and Pb (II) in Environment and Food Based on Shuttle-like α-Fe2O3 Nanoparticles Decorated β-Bi2O3 Microspheres. Microchem. J. 2022, 179, 107515. DOI: 10.1016/j.microc.2022.107515.
  • Li, Q.; Wu, J.-T.; Liu, Y.; Qi, X.-M.; Jin, H.-G.; Yang, C.; Liu, J.; Li, G.-L.; He, Q.-G. Recent Advances in Black Phosphorus-Based Electrochemical Sensors: A Review. Anal. Chim. Acta. 2021, 1170, 338480. DOI: 10.1016/j.aca.2021.338480.
  • Li, F.; Ni, B.; Zheng, Y.; Huang, Y.; Li, G. A Simple and Efficient Voltammetric Sensor for Dopamine Determination Based on ZnO Nanorods/Electro-Reduced Graphene Oxide Composite. Surf. Interfaces 2021, 26, 101375. DOI: 10.1016/j.surfin.2021.101375.
  • Shahzad, F.; Zaidi, S. A.; Naqvi, R. A. 2D Transition Metal Carbides (MXene) for Electrochemical Sensing: A Review. Crit. Rev. Anal. Chem. 2022, 52, 848–864. DOI: 10.1080/10408347.2020.1836470.
  • Mathew, M.; Rout, C. S. Electrochemical Biosensors Based on Ti3C2Tx MXene: Future Perspectives for on-Site Analysis. Curr. Opin. Electrochem. 2021, 30, 100782. DOI: 10.1016/j.coelec.2021.100782.
  • Zhang, W.; Chen, J.; Liu, S.; Hu, F.; Wang, X.; Huang, H.; Yao, M. Atomic-Scale Investigation of Electronic Properties and Na Storage Performance of Ti3C2Tx-MXene Bilayers with Various Terminations. Appl. Surf. Sci. 2021, 567, 150735. DOI: 10.1016/j.apsusc.2021.150735.
  • Tang, Q.; Zhou, Z.; Shen, P. Are MXenes Promising Anode Materials for Li Ion Batteries? Computational Studies on Electronic Properties and Li Storage Capability of Ti3C2 and Ti3C2X2 (X = F, OH) Monolayer. J. Am. Chem. Soc. 2012, 134, 16909–16916. DOI: 10.1021/ja308463r.
  • Uzun, S.; Seyedin, S.; Stoltzfus, A. L.; Levitt, A. S.; Alhabeb, M.; Anayee, M.; Strobel, C. J.; Razal, J. M.; Dion, G.; Gogotsi, Y. Knittable and Washable Multifunctional MXene‐Coated Cellulose Yarns. Adv. Funct. Mater. 2019, 29, 1905015. DOI: 10.1002/adfm.201905015.
  • Mathew, M.; Radhakrishnan, S.; Vaidyanathan, A.; Chakraborty, B.; Rout, C. S. Flexible and Wearable Electrochemical Biosensors Based on Two-Dimensional Materials: Recent Developments. Anal. Bioanal. Chem. 2021, 413, 727–762. DOI: 10.1007/s00216-020-03002-y.
  • Zhang, Y. Z.; Wang, Y.; Jiang, Q.; El‐Demellawi, J. K.; Kim, H.; Alshareef, H. N. MXene Printing and Patterned Coating for Device Applications. Adv. Mater. 2020, 32, 1908486. DOI: 10.1002/adma.201908486.
  • Huang, W.; Hu, L.; Tang, Y.; Xie, Z.; Zhang, H. Recent Advances in Functional 2D MXene‐Based Nanostructures for Next‐Generation Devices. Adv. Funct. Mater. 2020, 30, 2005223. DOI: 10.1002/adfm.202005223.
  • Fang, D.; Zhao, D.; Zhang, S.; Huang, Y.; Dai, H.; Lin, Y. Black Phosphorus Quantum Dots Functionalized MXenes as the Enhanced Dual-Mode Probe for Exosomes Sensing. Sens. Actuators, B 2020, 305, 127544. DOI: 10.1016/j.snb.2019.127544.
  • Jiang, H.; Sun, B.; Jin, Y.; Feng, J.; Zhu, H.; Wang, L.; Zhang, S.; Yang, Z. A Disposable Multiplexed Chip for the Simultaneous Quantification of Key Parameters in Water Quality Monitoring. ACS Sens. 2020, 5, 3013–3018. DOI: 10.1021/acssensors.0c00775.
  • Bai, Y.; Zhou, K.; Srikanth, N.; Pang, J. H.; He, X.; Wang, R. Dependence of Elastic and Optical Properties on Surface Terminated Groups in Two-Dimensional MXene Monolayers: A First-Principles Study. RSC Adv. 2016, 6, 35731–35739. DOI: 10.1039/C6RA03090D.
  • Hantanasirisakul, K.; Gogotsi, Y. Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes). Adv. Mater. 2018, 30, 1804779. DOI: 10.1002/adma.201804779.
  • Mostafaei, A.; Abbasnejad, M. Computational Studies on the Structural, Electronic and Optical Properties of M2CT2 (M = Y, Sc and T = F, Cl) MXene Monolayer. J. Alloys Compd. 2021, 857, 157982. DOI: 10.1016/j.jallcom.2020.157982.
  • Deysher, G.; Shuck, C. E.; Hantanasirisakul, K.; Frey, N. C.; Foucher, A. C.; Maleski, K.; Sarycheva, A.; Shenoy, V. B.; Stach, E. A.; Anasori, B.; Gogotsi, Y. Synthesis of Mo4VAlC4 MAX Phase and Two-Dimensional Mo4VC4 MXene with Five Atomic Layers of Transition Metals. ACS Nano. 2020, 14, 204–217. DOI: 10.1021/acsnano.9b07708.
  • Maleski, K.; Ren, C. E.; Zhao, M.-Q.; Anasori, B.; Gogotsi, Y. Size-Dependent Physical and Electrochemical Properties of Two-Dimensional MXene Flakes. ACS Appl. Mater. Interfaces. 2018, 10, 24491–24498. DOI: 10.1021/acsami.8b04662.
  • Wu, Z.; Sun, D.-W.; Pu, H.; Wei, Q. A Dual Signal-on Biosensor Based on Dual-Gated Locked Mesoporous Silica Nanoparticles for the Detection of Aflatoxin B1. Talanta 2023, 253, 124027. DOI: 10.1016/j.talanta.2022.124027.
  • Wang, Q.; Li, S.; Zhang, Y.; Wang, S.; Guo, J.; Wang, J. A Highly Sensitive Photothermal Immunochromatographic Sensor for Detection of Aflatoxin B1 Based on Cu2-xSe-Au Nanoparticles. Food Chem. 2023, 401, 134065. DOI: 10.1016/j.foodchem.2022.134065.
  • Li, J.; Yan, H.; Tan, X.; Lu, Z.; Han, H. Cauliflower-Inspired 3D SERS Substrate for Multiple Mycotoxins Detection. Anal. Chem. 2019, 91, 3885–3892. DOI: 10.1021/acs.analchem.8b04622.
  • Rushing, B. R.; Selim, M. I. Aflatoxin B1: A Review on Metabolism, Toxicity, Occurrence in Food, Occupational Exposure, and Detoxification Methods. Food Chem. Toxicol. 2019, 124, 81–100. DOI: 10.1016/j.fct.2018.11.047.
  • Jayan, H.; Pu, H.; Sun, D.-W. Recent Developments in Raman Spectral Analysis of Microbial Single Cells: Techniques and Applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 4294–4308. DOI: 10.1080/10408398.2021.1945534.
  • Hu, B.; Pu, H.; Sun, D.-W. Multifunctional Cellulose Based Substrates for SERS Smart Sensing: Principles, Applications and Emerging Trends for Food Safety Detection. Trends Food Sci. Technol. 2021, 110, 304–320. DOI: 10.1016/j.tifs.2021.02.005.
  • Zhu, J.; Ha, E.; Zhao, G.; Zhou, Y.; Huang, D.; Yue, G.; Hu, L.; Sun, N.; Wang, Y.; Lee, L. Y. S.; et al. Recent Advance in MXenes: A Promising 2D Material for Catalysis, Sensor and Chemical Adsorption. Coord. Chem. Rev. 2017, 352, 306–327. DOI: 10.1016/j.ccr.2017.09.012.
  • Satheeshkumar, E.; Makaryan, T.; Melikyan, A.; Minassian, H.; Gogotsi, Y.; Yoshimura, M. One-Step Solution Processing of Ag, Au and Pd@ MXene Hybrids for SERS. Sci. Rep. 2016, 6, 32049. DOI: 10.1038/srep32049.
  • Wu, Z.; Sun, D.-W.; Pu, H.; Wei, Q.; Lin, X. Ti3C2Tx MXenes Loaded with Au Nanoparticle Dimers as a Surface-Enhanced Raman Scattering Aptasensor for AFB1 Detection. Food Chem. 2022, 372, 131293. DOI: 10.1016/j.foodchem.2021.131293.
  • Shen, J.; Liu, J.; Yang, S.; Yao, X.; Fa, H.; Mei, Y.; Hou, C. A Novel Electrochemical Aptasensor for Sensitive and Selective Detection of Aflatoxin B1 Based on PDA/MXene/MWCNTs/NiCo 2 O 4 Nanocomposite. 2022.
  • Sheng, A.; Wang, P.; Yang, J.; Tang, L.; Chen, F.; Zhang, J. MXene Coupled with CRISPR-Cas12a for Analysis of Endotoxin and Bacteria. Anal. Chem. 2021, 93, 4676–4681. DOI: 10.1021/acs.analchem.1c00371.
  • Manzanares-Palenzuela, C. L.; Pourrahimi, A. M.; Gonzalez-Julian, J.; Sofer, Z.; Pykal, M.; Otyepka, M.; Pumera, M. Interaction of Single-and Double-Stranded DNA with Multilayer MXene by Fluorescence Spectroscopy and Molecular Dynamics Simulations. Chem. Sci. 2019, 10, 10010–10017. DOI: 10.1039/c9sc03049b.
  • Zhang, Q.; Wang, F.; Zhang, H.; Zhang, Y.; Liu, M.; Liu, Y. Universal Ti3C2 MXenes Based Self-Standard Ratiometric Fluorescence Resonance Energy Transfer Platform for Highly Sensitive Detection of Exosomes. Anal. Chem. 2018, 90, 12737–12744. DOI: 10.1021/acs.analchem.8b03083.
  • Wu, Z.; Sun, D.-W.; Pu, H.; Wei, Q. A Novel Fluorescence Biosensor Based on CRISPR/Cas12a Integrated MXenes for Detecting Aflatoxin B1. Talanta 2023, 252, 123773. DOI: 10.1016/j.talanta.2022.123773.
  • Núñez, C.; Triviño, J. J.; Arancibia, V. A Electrochemical Biosensor for as (III) Detection Based on the Catalytic Activity of Alcaligenes faecalis Immobilized on a Gold Nanoparticle–Modified Screen–Printed Carbon Electrode. Talanta 2021, 223, 121702. DOI: 10.1016/j.talanta.2020.121702.
  • Karimzadeh, Z.; Jouyban, A.; Ostadi, A.; Gharakhani, A.; Rahimpour, E. A Sensitive Determination of Morphine in Plasma Using AuNPs@ UiO-66/PVA Hydrogel as an Advanced Optical Scaffold. Anal. Chim. Acta. 2022, 1227, 340252. DOI: 10.1016/j.aca.2022.340252.
  • Sun, X.; Sun, J.; Ye, Y.; Ji, J.; Sheng, L.; Yang, D.; Sun, X. Metabolic Pathway-Based Self-Assembled Au@ MXene Liver Microsome Electrochemical Biosensor for Rapid Screening of Aflatoxin B1. Bioelectrochemistry 2023, 151, 108378. DOI: 10.1016/j.bioelechem.2023.108378.
  • Bui-Klimke, T. R.; Wu, F. Ochratoxin a and Human Health Risk: A Review of the Evidence. Crit. Rev. Food Sci. Nutr. 2015, 55, 1860–1869. DOI: 10.1080/10408398.2012.724480.
  • Pfohl‐Leszkowicz, A.; Manderville, R. A. Ochratoxin A: An Overview on Toxicity and Carcinogenicity in Animals and Humans. Mol. Nutr. Food Res. 2007, 51, 61–99. DOI: 10.1002/mnfr.200600137.
  • Jiang, C.; Lan, L.; Yao, Y.; Zhao, F.; Ping, J. Recent Progress in Application of Nanomaterial-Enabled Biosensors for Ochratoxin a Detection. TrAC, Trends Anal. Chem. 2018, 102, 236–249. DOI: 10.1016/j.trac.2018.02.007.
  • Zhang, X.; Wang, F.; Zhi, H.; Zhao, J.; Wan, P.; Feng, L. Electrochemical “Signal on/off” Paper-Based Aptasensor for Ochratoxin a Detection Based on MXene-Au and Pt@NiCo-LDH-Catalyzed Signal Amplification. Sens. Actuators, B 2022, 368, 132161. DOI: 10.1016/j.snb.2022.132161.
  • Rana, S. S.; Rahman, M. T.; Salauddin, M.; Sharma, S.; Maharjan, P.; Bhatta, T.; Cho, H.; Park, C.; Park, J. Y. Electrospun PVDF-TrFE/MXene Nanofiber Mat-Based Triboelectric Nanogenerator for Smart Home Appliances. ACS Appl. Mater. Interfaces. 2021, 13, 4955–4967. DOI: 10.1021/acsami.0c17512.
  • Al-Dhahebi, A. M.; Jose, R.; Mustapha, M.; Saheed, M. S. M. Ultrasensitive Aptasensor Using Electrospun MXene/Polyvinylidene Fluoride Nanofiber Composite for Ochratoxin a Detection. Food Chem. 2022, 390, 133105. DOI: 10.1016/j.foodchem.2022.133105.
  • Lyu, B.; Choi, Y.; Jing, H.; Qian, C.; Kang, H.; Lee, S.; Cho, J. H. 2D MXene–TiO2 Core–Shell Nanosheets as a Data‐Storage Medium in Memory Devices. Adv. Mater. 2020, 32, 1907633. DOI: 10.1002/adma.201907633.
  • Shahzad, A.; Rasool, K.; Nawaz, M.; Miran, W.; Jang, J.; Moztahida, M.; Mahmoud, K. A.; Lee, D. S. Heterostructural TiO2/Ti3C2Tx (MXene) for Photocatalytic Degradation of Antiepileptic Drug Carbamazepine. Chemical Engineering Journal 2018, 349, 748–755. DOI: 10.1016/j.cej.2018.05.148.
  • Qiu, Z.; Xue, X.; Lei, Y.; Lin, X.; Tang, D.; Chen, Y. MXene-TiO2-Based Photocatalytic Fuel Cell with Bioresponsive Controlled Glucose Release System: An Innovative Mode for Ochratoxin a Detection. Anal. Chim. Acta 2023, 1257, 341126. DOI: 10.1016/j.aca.2023.341126.
  • Nguyen, N. T.; Ozkan, S.; Tomanec, O.; Zhou, X.; Zboril, R.; Schmuki, P. Nanoporous AuPt and AuPtAg Alloy co-Catalysts Formed by Dewetting–Dealloying on an Ordered TiO2 Nanotube Surface Lead to Significantly Enhanced Photocatalytic H 2 Generation. J. Mater. Chem. A 2018, 6, 13599–13606. DOI: 10.1039/C8TA04495C.
  • Chen, C.; Zhou, X.; Wang, Z.; Han, J.; Chen, S. Core–Shell Au@ PtAg Modified TiO2–Ti3C2 Heterostructure and Target-Triggered DNAzyme Cascade Amplification for Photoelectrochemical Detection of Ochratoxin A. Anal. Chim. Acta. 2022, 1216, 339943. DOI: 10.1016/j.aca.2022.339943.
  • Narváez, A.; Castaldo, L.; Izzo, L.; Pallarés, N.; Rodríguez-Carrasco, Y.; Ritieni, A. Deoxynivalenol Contamination in Cereal-Based Foodstuffs from Spain: Systematic Review and Meta-Analysis Approach for Exposure Assessment. Food Control 2022, 132, 108521. DOI: 10.1016/j.foodcont.2021.108521.
  • Mahato, D. K.; Pandhi, S.; Kamle, M.; Gupta, A.; Sharma, B.; Panda, B. K.; Srivastava, S.; Kumar, M.; Selvakumar, R.; Pandey, A. K.; et al. Trichothecenes in Food and Feed: Occurrence, Impact on Human Health and Their Detection and Management Strategies. Toxicon 2022, 208, 62–77. DOI: 10.1016/j.toxicon.2022.01.011.
  • Sangu, S. S.; Illias, N. M.; Ong, C. C.; Gopinath, S. C. B.; Saheed, M. S. M. MXene-Based Aptasensor: Characterization and High-Performance Voltammetry Detection of Deoxynivalenol. BioNanoSci. 2021, 11, 314–323. DOI: 10.1007/s12668-021-00847-0.
  • Wang, H.; Zhao, R.; Hu, H.; Fan, X.; Zhang, D.; Wang, D. 0D/2D Heterojunctions of Ti3C2 MXene QDs/SiC as an Efficient and Robust Photocatalyst for Boosting the Visible Photocatalytic NO Pollutant Removal Ability. ACS Appl. Mater. Interfaces. 2020, 12, 40176–40185. DOI: 10.1021/acsami.0c01013.
  • Pan, L.; Wang, S.; Xie, J.; Wang, L.; Zhang, X.; Zou, J.-J. Constructing TiO2 pn Homojunction for Photoelectrochemical and Photocatalytic Hydrogen Generation. Nano Energy 2016, 28, 296–303. DOI: 10.1016/j.nanoen.2016.08.054.
  • You, F.; Wen, Z.; Yuan, R.; Qian, J.; Long, L.; Wang, K. Sensitive and Stable Detection of Deoxynivalenol Based on Electrochemiluminescence Aptasensor Enhanced by 0D/2D Homojunction Effect in Food Analysis. Food Chem. 2023, 403, 134397. DOI: 10.1016/j.foodchem.2022.134397.
  • Lin, X.; Li, C.; Meng, X.; Yu, W.; Duan, N.; Wang, Z.; Wu, S. CRISPR-Cas12a-Mediated Luminescence Resonance Energy Transfer Aptasensing Platform for Deoxynivalenol Using Gold Nanoparticle-Decorated Ti3C2Tx MXene as the Enhanced Quencher. J. Hazard. Mater. 2022, 433, 128750. DOI: 10.1016/j.jhazmat.2022.128750.
  • Caglayan, M. O.; Şahin, S.; Üstündağ, Z. Detection Strategies of Zearalenone for Food Safety: A Review. Crit. Rev. Anal. Chem. 2022, 52, 294–313. DOI: 10.1080/10408347.2020.1797468.
  • Lu, Q.; Luo, J.-Y.; Ruan, H.-N.; Wang, C.-J.; Yang, M.-H. Structure-Toxicity Relationships, Toxicity Mechanisms and Health Risk Assessment of Food-Borne Modified Deoxynivalenol and Zearalenone: A Comprehensive Review. Sci. Total Environ. 2022, 806, 151192. DOI: 10.1016/j.scitotenv.2021.151192.
  • Siva Sangu, S.; Chandra Bose Gopinath, S.; Abdul Shukur, M. F.; Mohamed Saheed, M. S. An Electrochemical Approach for Ultrasensitive Detection of Zearalenone in Commodity Using Disposable Screen-Printed Electrode Coated with MXene/Chitosan Film. BioNanoSci. 2022, 12, 814–823. DOI: 10.1007/s12668-022-00984-0.
  • Mahmoudpour, M.; Dolatabadi, J. E.-N.; Hasanzadeh, M.; Soleymani, J. Carbon-Based Aerogels for Biomedical Sensing: Advances toward Designing the Ideal Sensor. Adv. Colloid Interface Sci. 2021, 298, 102550. DOI: 10.1016/j.cis.2021.102550.
  • Karimzadeh, Z.; Gharekhani, A.; Rahimpour, E.; Jouyban, A. Dual-Emission Ratiometric Fluorescent Probe Based on N-Doped CQDs@ UiO-66/PVA Nanocomposite Hydrogel for Quantification of Pethidine in Human Plasma. Mikrochim. Acta. 2023, 190, 128. DOI: 10.1007/s00604-023-05703-4.
  • Yu, P.; Cao, G.; Yi, S.; Zhang, X.; Li, C.; Sun, X.; Wang, K.; Ma, Y. Binder-Free 2D Titanium Carbide (MXene)/Carbon Nanotube Composites for High-Performance Lithium-Ion Capacitors. Nanoscale 2018, 10, 5906–5913. DOI: 10.1039/c8nr00380g.
  • Kalambate, P. K.; Sinha, A.; Li, Y.; Shen, Y.; Huang.; Y.; Dhanjai. An Electrochemical Sensor for Ifosfamide, Acetaminophen, Domperidone, and Sumatriptan Based on Self-Assembled MXene/MWCNT/Chitosan Nanocomposite Thin Film. Microchim. Acta 2020, 187, 1. DOI: 10.1007/s00604-020-04366-9.
  • Chandran, M.; Thomas, A.; Raveendran, A.; Vinoba, M.; Bhagiyalakshmi, M. MoS2 Confined MXene Heterostructures as Electrode Material for Energy Storage Application. J. Storage. Mater. 2020, 30, 101446. DOI: 10.1016/j.est.2020.101446.
  • Huang, H.; Camarada, M. B.; Wang, D.; Liao, X.; Xiong, W.; Du, J.; Xiong, J.; Hong, Y. MoS 2 Quantum Dots and Titanium Carbide co-Modified Carbon Nanotube Heterostructure as Electrode for Highly Sensitive Detection of Zearalenone. Microchim. Acta 2022, 189, DOI: 10.1007/s00604-021-05104-5.
  • Guo, W.; Umar, A.; Algadi, H.; Albargi, H.; Ibrahim, A. A.; Cui, K.; Wang, L.; Pei, M.; Wang, Y. Design of a Unique “on/off” Switch Electrochemical Aptasensor Driven by the pH for the Detection of Aflatoxin B1 in Acid Solutions Based on Titanium Carbide/Carboxylated Graphene Oxide- Poly(4-Vinyl Pyridine)/Aptamer Composite. Microchem. J. 2021, 169, 106548. DOI: 10.1016/j.microc.2021.106548.
  • Zheng, F.; Ke, W.; Shi, L.; Liu, H.; Zhao, Y. Plasmonic Au–Ag Janus Nanoparticle Engineered Ratiometric Surface-Enhanced Raman Scattering Aptasensor for Ochratoxin a Detection. Anal. Chem. 2019, 91, 11812–11820. DOI: 10.1021/acs.analchem.9b02469.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.