267
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Detection of SARS-CoV-2 in Environment: Current Surveillance and Effective Data Management of COVID-19

ORCID Icon, , , , , , , , , , , , , , ORCID Icon, , , , , , & show all

References

  • Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. DOI: 10.1042/EBC20150001.
  • Nadzirah, S.; Gopinath, S. C.; Parmin, N. A.; Hamzah, A. A.; Mohamed, M. A.; Chang, E. Y.; Dee, C. F. State-of-the-Art on Functional Titanium Dioxide-Integrated Nano-Hybrids in Electrical Biosensors. Crit. Rev. Anal. Chem. 2022, 52, 637–648. DOI: 10.1080/10408347.2020.1816447.
  • Mehrotra, P. Biosensors and Their Applications – a Review. J. Oral Biol. Craniofac. Res. 2016, 6, 153–159. DOI: 10.1016/j.jobcr.2015.12.002.
  • Hamzah, A. A.; Nadzirah, S. Biosensor Development. In Encyclopedia of Sensors and Biosensors; Narayan R., ed.; Elsevier: Oxford; 2023. DOI: 10.1016/B978-0-12-822548-6.00112-6.
  • Khan, H.; Shah, M. R.; Barek, J.; Malik, M. I. Cancer Biomarkers and Their Biosensors: A Comprehensive Review. TrAC Trends Anal. Chem. 2023, 158, 116813. DOI: 10.1016/j.trac.2022.116813.
  • Yang, G.; Xiao, Z.; Tang, C.; Deng, Y.; Huang, H.; He, Z. Recent Advances in Biosensor for Detection of Lung Cancer Biomarkers. Biosens. Bioelectron. 2019, 141, 111416. DOI: 10.1016/j.bios.2019.111416.
  • Hasan, M. R.; Ahommed, M. S.; Daizy, M.; Bacchu, M. S.; Ali, M. R.; Al-Mamun, M. R.; Saad Aly, M. A.; Khan, M. Z. H.; Hossain, S. I. Recent Development in Electrochemical Biosensors for Cancer Biomarkers Detection. Biosens. Bioelectron. X 2021, 8, 100075. DOI: 10.1016/j.biosx.2021.100075.
  • Marsi, N.; Majlis, B. Y.; Hamzah, A. A.; Mohd-Yasin, F. The Mechanical and Electrical Effects of MEMS Capacitive Pressure Sensor Based 3C-SiC for Extreme Temperature. J. Eng. 2014, 2014, 1–8. DOI: 10.1155/2014/715167.
  • Marsi, N.; Majlis, B. Y.; Hamzah, A. A.; Mohd-Yasin, F. Comparison of Mechanical Deflection and Maximum Stress of 3C SiC- and Si-Based Pressure Sensor Diaphragms for Extreme Environment. In 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE), 2012; 186–190. DOI: 10.1109/SMElec.2012.6417120.
  • Hamzah, A. A.; Majlis, B. Y.; Ahmad, I. Deflection Analysis of Epitaxially Deposited Polysilicon Encapsulation for MEMS Devices. In 2004 IEEE International Conference on Semiconductor Electronics, 2004; 4 pp. DOI: 10.1109/SMELEC.2004.1620960.
  • Hamzah, A. A.; Yunas, J.; Majlis, B. Y.; Ahmad, I. Sputtered Encapsulation as Wafer Level Packaging for Isolatable MEMS Devices: A Technique Demonstrated on a Capacitive Accelerometer. Sensors (Basel) 2008, 8, 7438–7452. DOI: 10.3390/s8117438.
  • Alipio, M.; Villena, M. L. Intelligent Wearable Devices and Biosensors for Monitoring Cattle Health Conditions: A Review and Classification. Smart Heal. 2023, 27, 100369. DOI: 10.1016/j.smhl.2022.100369.
  • Nadzirah, S.; Azizah, N.; Hashim, U.; Gopinath, S. C. B.; Kashif, M. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. Coli O157:H7. PLoS One 2015, 10, e0139766. DOI: 10.1371/journal.pone.0139766.
  • Hamzah, A. A.; Majlis, B. Y.; Ahmad, I. HF Etching of Sacrificial Spin-on Glass in Straight and Junctioned Microchannels for MEMS Microstructure Release. J. Electrochem. Soc. 2007, 154, D376. DOI: 10.1149/1.2742302.
  • Azizah, N.; Hashim, U.; Gopinath, S. C. B.; Nadzirah, S. A Direct Detection of Human Papillomavirus 16 Genomic DNA Using Gold Nanoprobes. Int. J. Biol. Macromol. 2017, 94, 571–575. DOI: 10.1016/j.ijbiomac.2016.10.060.
  • Ribeiro, S. H. D.; Alves, L. M.; Flauzino, J. M. R.; Moço, A. C. R.; Segatto, M. S.; Silva, J. P.; Borges, L. F. A.; Madurro, J. M.; Madurro, A. G. B. Reusable Immunosensor for Detection of C-Reactive Protein in Human Serum. Electroanalysis 2020, 32, 2316–2322. DOI: 10.1002/elan.202000043.
  • Yousefi, H.; Ali, M. M.; Su, H.-M.; Filipe, C. D. M.; Didar, T. F. Sentinel Wraps: Real-Time Monitoring of Food Contamination by Printing DNAzyme Probes on Food Packaging. ACS Nano. 2018, 12, 3287–3294. DOI: 10.1021/acsnano.7b08010.
  • Zheng, S.; Yang, Q.; Yang, H.; Zhang, Y.; Guo, W.; Zhang, W. An Ultrasensitive and Specific Ratiometric Electrochemical Biosensor Based on SRCA-CRISPR/Cas12a System for Detection of Salmonella in Food. Food Control 2023, 146, 109528. DOI: 10.1016/j.foodcont.2022.109528.
  • Dong, Q.; Yue, X.; Li, S.; Hu, M.; Gao, X.; Yang, M.; Huang, G.; Xiong, C.; Fu, G.; Zhang, J. A Novel Rapid Detection Method for Salmonella Based on NMR Macromolecular Gd Biosensor. LWT 2022, 171, 114138. DOI: 10.1016/j.lwt.2022.114138.
  • Criscione, J.; Rezaei, Z.; Hernandez Cantu, C. M.; Murphy, S.; Shin, S. R.; Kim, D.-H. Heart-on-a-Chip Platforms and Biosensor Integration for Disease Modeling and Phenotypic Drug Screening. Biosens. Bioelectron. 2023, 220, 114840. DOI: 10.1016/j.bios.2022.114840.
  • Noah, N. M.; Ndangili, P. M. Green Synthesis of Nanomaterials from Sustainable Materials for Biosensors and Drug Delivery. Sensors Int. 2022, 3, 100166. DOI: 10.1016/j.sintl.2022.100166.
  • Bergmann, C. C.; Silverman, R. H. COVID-19: Coronavirus Replication, Pathogenesis, and Therapeutic Strategies. Cleve. Clin. J. Med. 2020, 87, 321–327. DOI: 10.3949/ccjm.87a.20047.
  • Hu, B.; Guo, H.; Zhou, P.; Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. DOI: 10.1038/s41579-020-00459-7.
  • Lamers, M. M.; Haagmans, B. L. SARS-CoV-2 Pathogenesis. Nat. Rev. Microbiol. 2022, 20, 270–284. DOI: 10.1038/s41579-022-00713-0.
  • Yin, X.; Riva, L.; Pu, Y.; Martin-Sancho, L.; Kanamune, J.; Yamamoto, Y.; Sakai, K.; Gotoh, S.; Miorin, L.; De Jesus, P. D.; et al. MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells. Cell Rep. 2021, 34, 108628. DOI: 10.1016/j.celrep.2020.108628.
  • Sampaio, N. G.; Chauveau, L.; Hertzog, J.; Bridgeman, A.; Fowler, G.; Moonen, J. P.; Dupont, M.; Russell, R. A.; Noerenberg, M.; Rehwinkel, J. The RNA Sensor MDA5 Detects SARS-CoV-2 Infection. Sci. Rep. 2021, 11, 13638. DOI: 10.1038/s41598-021-92940-3.
  • Jayaweera, M.; Perera, H.; Gunawardana, B.; Manatunge, J. Transmission of COVID-19 Virus by Droplets and Aerosols: A Critical Review on the Unresolved Dichotomy. Environ. Res. 2020, 188, 109819. DOI: 10.1016/j.envres.2020.109819.
  • Morawska, L.; Tang, J. W.; Bahnfleth, W.; Bluyssen, P. M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How Can Airborne Transmission of COVID-19 Indoors Be Minimised? Environ. Int. 2020, 142, 105832. DOI: 10.1016/j.envint.2020.105832.
  • Amoah, I. D.; Kumari, S.; Bux, F. Coronaviruses in Wastewater Processes: Source, Fate and Potential Risks. Environ. Int. 2020, 143, 105962. DOI: 10.1016/j.envint.2020.105962.
  • Bivins, A.; Greaves, J.; Fischer, R.; Yinda, K. C.; Ahmed, W.; Kitajima, M.; Munster, V. J.; Bibby, K. Persistence of SARS-CoV-2 in Water and Wastewater. Environ. Sci. Technol. Lett. 2020, 7, 937–942. DOI: 10.1021/acs.estlett.0c00730.
  • Kitajima, M.; Ahmed, W.; Bibby, K.; Carducci, A.; Gerba, C. P.; Hamilton, K. A.; Haramoto, E.; Rose, J. B. SARS-CoV-2 in Wastewater: State of the Knowledge and Research Needs. Sci. Total Environ. 2020, 739, 139076. DOI: 10.1016/j.scitotenv.2020.139076.
  • Castaño, N.; Cordts, S. C.; Kurosu Jalil, M.; Zhang, K. S.; Koppaka, S.; Bick, A. D.; Paul, R.; Tang, S. K. Y. Fomite Transmission, Physicochemical Origin of Virus–Surface Interactions, and Disinfection Strategies for Enveloped Viruses with Applications to SARS-CoV-2. ACS Omega. 2021, 6, 6509–6527. DOI: 10.1021/acsomega.0c06335.
  • Geng, Y.; Wang, Y. Stability and Transmissibility of SARS-CoV-2 in the Environment. J. Med. Virol. 2023, 95, e28103. DOI: 10.1002/jmv.28103.
  • Stadnytskyi, V.; Anfinrud, P.; Bax, A. Breathing, Speaking, Coughing or Sneezing: What Drives Transmission of SARS-CoV-2? J. Intern. Med. 2021, 290, 1010–1027. DOI: 10.1111/joim.13326.
  • Leung, N. H. L. Transmissibility and Transmission of Respiratory Viruses. Nat. Rev. Microbiol. 2021, 19, 528–545. DOI: 10.1038/s41579-021-00535-6.
  • Thylefors, J.; Thuresson, S.; Alsved, M.; Widell, A.; Fraenkel, C.-J.; Löndahl, J.; Medstrand, P.; Senneby, E. Detection of SARS-CoV-2 RNA on Surfaces in a COVID-19 Hospital Ward Indicates Airborne Viral Spread. J. Hosp. Infect. 2022, 124, 121–122. DOI: 10.1016/j.jhin.2022.02.025.
  • Dinoi, A.; Feltracco, M.; Chirizzi, D.; Trabucco, S.; Conte, M.; Gregoris, E.; Barbaro, E.; La Bella, G.; Ciccarese, G.; Belosi, F.; et al. A Review on Measurements of SARS-CoV-2 Genetic Material in Air in Outdoor and Indoor Environments: Implication for Airborne Transmission. Sci. Total Environ. 2022, 809, 151137. DOI: 10.1016/j.scitotenv.2021.151137.
  • Mills, S. Smiths Detection’s BioFlash shown to detect airborne COVID-19. https://www.businesswire.com/news/home/20210217005084/en/Smiths-Detection’s-BioFlash-shown-to-detect-airborne-COVID-19.
  • Piscitelli, P.; Miani, A.; Setti, L.; De Gennaro, G.; Rodo, X.; Artinano, B.; Vara, E.; Rancan, L.; Arias, J.; Passarini, F.; et al. The Role of Outdoor and Indoor Air Quality in the Spread of SARS-CoV-2: Overview and Recommendations by the Research Group on COVID-19 and Particulate Matter (RESCOP Commission). Environ. Res. 2022, 211, 113038. DOI: 10.1016/j.envres.2022.113038.
  • Petrovick, M. S.; Harper, J. D.; Nargi, F. E.; Schwoebel, E. D.; Hennessy, M. C.; Rider, T. H.; Hollis, M. A. Rapid Sensors for Biological-Agent Identification. Lincoln Lab. J 2007, 17, 63–84.
  • Vaquer, A.; Alba-Patiño, A.; Adrover-Jaume, C.; Russell, S. M.; Aranda, M.; Borges, M.; Mena, J.; del Castillo, A.; Socias, A.; Martín, L.; et al. Nanoparticle Transfer Biosensors for the Non-Invasive Detection of SARS-CoV-2 Antigens Trapped in Surgical Face Masks. Sens. Actuators. B Chem. 2021, 345, 130347. DOI: 10.1016/j.snb.2021.130347.
  • Kim, S.; Akarapipad, P.; Nguyen, B. T.; Breshears, L. E.; Sosnowski, K.; Baker, J.; Uhrlaub, J. L.; Nikolich-Žugich, J.; Yoon, J.-Y. Direct Capture and Smartphone Quantification of Airborne SARS-CoV-2 on a Paper Microfluidic Chip. Biosens. Bioelectron. 2022, 200, 113912. DOI: 10.1016/j.bios.2021.113912.
  • Orenes-Piñero, E.; Navas-Carrillo, D.; Moreno-Docón, A.; Ortega-García, J. A.; Torres-Cantero, A. M.; García-Vázquez, E.; Ramírez, P. Confirmation of SARS-CoV-2 Airborne Dissemination Indoors Using “COVID-19 Traps. J. Infect. 2022, 84, 343–350. DOI: 10.1016/j.jinf.2021.12.017.
  • Tao, Y.; Zhang, X.; Qiu, G.; Spillmann, M.; Ji, Z.; Wang, J. SARS-CoV-2 and Other Airborne Respiratory Viruses in Outdoor Aerosols in Three Swiss Cities before and during the First Wave of the COVID-19 Pandemic. Environ. Int. 2022, 164, 107266. DOI: 10.1016/j.envint.2022.107266.
  • Robotto, A.; Quaglino, P.; Lembo, D.; Morello, M.; Brizio, E.; Bardi, L.; Civra, A. SARS-CoV-2 and Indoor/Outdoor Air Samples: A Methodological Approach to Have Consistent and Comparable Results. Environ. Res. 2021, 195, 110847. DOI: 10.1016/j.envres.2021.110847.
  • Matsui, H.; Ueda, C.; Nakajima, E.; Suzuki, Y.; Endo, H.; Sugamata, M.; Takarabe, Y.; Yamaguchi, Y.; Honsho, M.; Hokari, R.; et al. Assessment of Environmental Surface Contamination with SARS-CoV-2 in Concert Halls and Banquet Rooms in Japan. J. Infect. Chemother. 2023, 29, 604–609. DOI: 10.1016/j.jiac.2023.02.013.
  • Hoffman, J. S.; Hirano, M.; Panpradist, N.; Breda, J.; Ruth, P.; Xu, Y.; Lester, J.; Nguyen, B. H.; Ceze, L.; Patel, S. N. Passively Sensing SARS-CoV-2 RNA in Public Transit Buses. Sci. Total Environ. 2022, 821, 152790. DOI: 10.1016/j.scitotenv.2021.152790.
  • Kumar, M. S.; Nandeshwar, R.; Lad, S. B.; Megha, K.; Mangat, M.; Butterworth, A.; Knapp, C. W.; Knapp, M.; Hoskisson, P. A.; Corrigan, D. K.; et al. Electrochemical Sensing of SARS-CoV-2 Amplicons with PCB Electrodes. Sens. Actuat. B Chem. 2021, 343, 130169. DOI: 10.1016/j.snb.2021.130169.
  • Robins, K.; Leonard, A. F. C.; Farkas, K.; Graham, D. W.; Jones, D. L.; Kasprzyk-Hordern, B.; Bunce, J. T.; Grimsley, J. M. S.; Wade, M. J.; Zealand, A. M.; McIntyre-Nolan, S. Research Needs for Optimising Wastewater-Based Epidemiology Monitoring for Public Health Protection. J. Water Health. 2022, 20, 1284–1313. DOI: 10.2166/wh.2022.026.
  • Kadadou, D.; Tizani, L.; Wadi, V. S.; Banat, F.; Alsafar, H.; Yousef, A. F.; Hasan, S. W. Detection of SARS-CoV-2 in Clinical and Environmental Samples Using Highly Sensitive Reduced Graphene Oxide (RGO)-Based Biosensor. Chem. Eng. J. 2023, 453, 139750. DOI: 10.1016/j.cej.2022.139750.
  • Kumblathan, T.; Liu, Y.; Qiu, Y.; Pang, L.; Hrudey, S. E.; Le, X. C.; Li, X.-F. An Efficient Method to Enhance Recovery and Detection of SARS-CoV-2 RNA in Wastewater. J. Environ. Sci. (China) 2023, 130, 139–148. DOI: 10.1016/j.jes.2022.10.006.
  • Kang, Y.; Wang, J.; Zhang, W.; Xu, Y.; Xu, B.; Qu, G.; Yu, Y.; Yan, B.; Su, G. RNA Extraction-Free Workflow Integrated with a Single-Tube CRISPR-Cas-Based Colorimetric Assay for Rapid SARS-CoV-2 Detection in Different Environmental Matrices. J. Hazard. Mater. 2023, 454, 131487. DOI: 10.1016/j.jhazmat.2023.131487.
  • Hayase, S.; Katayama, Y. A.; Hatta, T.; Iwamoto, R.; Kuroita, T.; Ando, Y.; Okuda, T.; Kitajima, M.; Natsume, T.; Masago, Y. Near Full-Automation of COPMAN Using a LabDroid Enables High-Throughput and Sensitive Detection of SARS-CoV-2 RNA in Wastewater as a Leading Indicator. Sci. Total Environ. 2023, 881, 163454. DOI: 10.1016/j.scitotenv.2023.163454.
  • Calle, E.; Martínez, D.; Brugués-I-Pujolràs, R.; Farreras, M.; Saló-Grau, J.; Pueyo-Ros, J.; Corominas, L. Optimal Selection of Monitoring Sites in Cities for SARS-CoV-2 Surveillance in Sewage Networks. Environ. Int. 2021, 157, 106768. DOI: 10.1016/j.envint.2021.106768.
  • Rallapalli, S.; Aggarwal, S.; Singh, A. P. Detecting SARS-CoV-2 RNA Prone Clusters in a Municipal Wastewater Network Using Fuzzy-Bayesian Optimization Model to Facilitate Wastewater-Based Epidemiology. Sci. Total Environ. 2021, 778, 146294. DOI: 10.1016/j.scitotenv.2021.146294.
  • Chia, P. Y.; Coleman, K. K.; Tan, Y. K.; Ong, S. W. X.; Gum, M.; Lau, S. K.; Lim, X. F.; Lim, A. S.; Sutjipto, S.; Lee, P. H.; et al. Detection of Air and Surface Contamination by SARS-CoV-2 in Hospital Rooms of Infected Patients. Nat. Commun. 2020, 11, 2800. DOI: 10.1038/s41467-020-16670-2.
  • Maltezou, H. C.; Tseroni, M.; Daflos, C.; Anastassopoulou, C.; Vasilogiannakopoulos, A.; Daligarou, O.; Panagiotou, M.; Botsa, E.; Spanakis, N.; Lourida, A.; Tsakris, A. Environmental Testing for SARS-CoV-2 in Three Tertiary-Care Hospitals during the Peak of the Third COVID-19 Wave. Am. J. Infect. Control. 2021, 49, 1435–1437. DOI: 10.1016/j.ajic.2021.08.022.
  • Dargahi, A.; Jeddi, F.; Vosoughi, M.; Karami, C.; Hadisi, A.; Ahamad Mokhtari, S.; Ghobadi, H.; Alighadri, M.; Haghighi, S. B.; Sadeghi, H. Investigation of SARS CoV-2 Virus in Environmental Surface. Environ. Res. 2021, 195, 110765. DOI: 10.1016/j.envres.2021.110765.
  • Lv, J.; Yang, J.; Xue, J.; Zhu, P.; Liu, L.; Li, S. Detection of SARS-CoV-2 RNA Residue on Object Surfaces in Nucleic Acid Testing Laboratory Using Droplet Digital PCR. Sci. Total Environ. 2020, 742, 140370. DOI: 10.1016/j.scitotenv.2020.140370.
  • Wang, B.; Yang, D.; Chang, Z.; Zhang, R.; Dai, J.; Fang, Y. Wearable Bioelectronic Masks for Wireless Detection of Respiratory Infectious Diseases by Gaseous Media. Matter 2022, 5, 4347–4362. DOI: 10.1016/j.matt.2022.08.020.
  • Maniam, G.; Sampe, J.; Jaafar, R.; Hamzah, A. A.; Mohamad Zin, N. Bio-FET Sensor Interface Module for COVID-19 Monitoring Using IoT. Int. J. Onl. Eng. 2022, 18, 70–88. DOI: 10.3991/ijoe.v18i12.31877.
  • Mao, K.; Zhang, H.; Yang, Z. An Integrated Biosensor System with Mobile Health and Wastewater-Based Epidemiology (IBMW) for COVID-19 Pandemic. Biosens. Bioelectron. 2020, 169, 112617. DOI: 10.1016/j.bios.2020.112617.
  • Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020, 7, 511–516. DOI: 10.1021/acs.estlett.0c00357.
  • Kumblathan, T.; Liu, Y.; Uppal, G. K.; Hrudey, S. E.; Li, X.-F. Wastewater-Based Epidemiology for Community Monitoring of SARS-CoV-2: Progress and Challenges. ACS Environ. Au 2021, 1, 18–31. DOI: 10.1021/acsenvironau.1c00015.
  • Sridhar, J.; Parit, R.; Boopalakrishnan, G.; Rexliene, M. J.; Praveen, R.; Viswananathan, B. Importance of Wastewater-Based Epidemiology for Detecting and Monitoring SARS-CoV-2. Case Stud. Chem. Environ. Eng. 2022, 6, 100241. DOI: 10.1016/j.cscee.2022.100241.
  • Dharmadhikari, T.; Yadav, R.; Dastager, S.; Dharne, M. Translating SARS-CoV-2 Wastewater-Based Epidemiology for Prioritizing Mass Vaccination: A Strategic Overview. Environ. Sci. Pollut. Res. Int. 2021, 28, 42975–42980. DOI: 10.1007/s11356-021-15169-7.
  • Nadzirah, S.; Hashim, U.; Gopinath, S. C. B.; Parmin, N. A.; Hamzah, A. A.; Yu, H. W.; Dee, C. F. Titanium Dioxide–Mediated Resistive Nanobiosensor for E. Coli O157:H7. Mikrochim. Acta. 2020, 187, 235–243. DOI: 10.1007/s00604-020-4214-y.
  • Selvarajan, R. S.; Rahim, R. A.; Majlis, B. Y.; Gopinath, S. C. B.; Hamzah, A. A. Ultrasensitive and Highly Selective Graphene-Based Field-Effect Transistor Biosensor for anti-Diuretic Hormone Detection. Sensors 2020, 20, 2642. DOI: 10.3390/s20092642.
  • A. Karim, S. S.; Nadzirah, S.; Kazmi, J.; A. Rahim, R.; Dee, C. F.; Hamzah, A. A.; Mohamed, M. A. Zinc Oxide Nanorods-Based Immuno-Field-Effect Transistor for Human Serum Albumin Detection. J. Mater. Sci. 2021, 56, 15344–15353. DOI: 10.1007/s10853-021-06288-0.
  • Ferreira, L. M. C.; Reis, I. F.; Martins, P. R.; Marcolino-Junior, L. H.; Bergamini, M. F.; Camargo, J. R.; Janegitz, B. C.; Vicentini, F. C. Using Low-Cost Disposable Immunosensor Based on Flexible PET Screen-Printed Electrode Modified with Carbon Black and Gold Nanoparticles for Sensitive Detection of SARS-CoV-2. Talanta Open. 2023, 7, 100201. DOI: 10.1016/j.talo.2023.100201.
  • Valenga, M. G. P.; Martins, G.; Martins, T. A. C.; Didek, L. K.; Gevaerd, A.; Marcolino-Junior, L. H.; Bergamini, M. F. Biochar: An Environmentally Friendly Platform for Construction of a SARS-CoV-2 Electrochemical Immunosensor. Sci. Total Environ. 2023, 858, 159797. DOI: 10.1016/j.scitotenv.2022.159797.
  • Ekici, R.; Bozdoğan, B.; Denkbaş, E. B. Development of Electrochemical Biosensor Platforms for Determination of Environmental Viral Structures. Appl. Sci. 2022, 12, 12971. DOI: 10.3390/app122412971.
  • Ahuja, S.; Kumar, M. S.; Nandeshwar, R.; Kondabagil, K.; Tallur, S. Longer Amplicons Provide Better Sensitivity for Electrochemical Sensing of Viral Nucleic Acid in Water Samples Using PCB Electrodes. Sci. Rep. 2022, 12, 8814. DOI: 10.1038/s41598-022-12818-w.
  • Sukjee, W.; Thitithanyanont, A.; Manopwisedjaroen, S.; Seetaha, S.; Thepparit, C.; Sangma, C. Virus MIP-Composites for SARS-CoV-2 Detection in the Aquatic Environment. Mater. Lett. 2022, 315, 131973. DOI: 10.1016/j.matlet.2022.131973.
  • Tahamtan, A.; Ardebili, A. Real-Time RT-PCR in COVID-19 Detection: Issues Affecting the Results. Expert Rev. Mol. Diagn. 2020, 20, 453–454. DOI: 10.1080/14737159.2020.1757437.
  • Hindson, C. M.; Chevillet, J. R.; Briggs, H. A.; Gallichotte, E. N.; Ruf, I. K.; Hindson, B. J.; Vessella, R. L.; Tewari, M. Absolute Quantification by Droplet Digital PCR versus Analog Real-Time PCR. Nat. Methods. 2013, 10, 1003–1005. DOI: 10.1038/nmeth.2633.
  • Ngandu, N. K.; Mmotsa, T. M.; Dassaye, R.; Thabetha, A.; Odendaal, W.; Langdown, N.; Ndwandwe, D. Hospital Acquired COVID-19 Infections Amongst Patients before the Rollout of COVID-19 Vaccinations, a Scoping Review. BMC Infect. Dis. 2022, 22, 140. DOI: 10.1186/s12879-022-07128-5.
  • Broughton, J. P.; Deng, X.; Yu, G.; Fasching, C. L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J. A.; Granados, A.; Sotomayor-Gonzalez, A.; et al. CRISPR–Cas12-Based Detection of SARS-CoV-2. Nat. Biotechnol. 2020, 38, 870–874. DOI: 10.1038/s41587-020-0513-4.
  • Zhang, Y.; Liu, X.; Wang, L.; Yang, H.; Zhang, X.; Zhu, C.; Wang, W.; Yan, L.; Li, B. Improvement in Detection Limit for Lateral Flow Assay of Biomacromolecules by Test-Zone Pre-Enrichment. Sci. Rep. 2020, 10, 9604. DOI: 10.1038/s41598-020-66456-1.
  • Budd, J.; Miller, B. S.; Weckman, N. E.; Cherkaoui, D.; Huang, D.; Decruz, A. T.; Fongwen, N.; Han, G.-R.; Broto, M.; Estcourt, C. S.; et al. Lateral Flow Test Engineering and Lessons Learned from COVID-19. Nat. Rev. Bioeng. 2023, 1, 13–31. DOI: 10.1038/s44222-022-00007-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.