173
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Analytical Methodologies for the Estimation of Oxazolidinone Antibiotics as Key Members of anti-MRSA Arsenal: A Decade in Review

ORCID Icon, , &

References

  • Ikuta, K. S.; Swetschinski, L. R.; Robles Aguilar, G.; Sharara, F.; Mestrovic, T.; Gray, A. P.; Davis Weaver, N.; Wool, E. E.; Han, C.; Gershberg Hayoon, A.; et al. Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. DOI: 10.1016/S0140-6736(22)02185-7.
  • Hegazy, W. A. H.; Rajab, A. A. H.; Abu Lila, A. S.; Abbas, H. A. Anti-Diabetics and Antimicrobials: Harmony of Mutual Interplay. World J. Diabetes. 2021, 12, 1832–1855. DOI: 10.4239/wjd.v12.i11.1832.
  • Bozdogan, B.; Appelbaum, P. C. Oxazolidinones: Activity, Mode of Action, and Mechanism of Resistance. Int. J. Antimicrob. Agents. 2004, 23, 113–119. DOI: 10.1016/j.ijantimicag.2003.11.003.
  • Khayyat, A. N.; Abbas, H. A.; Khayat, M. T.; Shaldam, M. A.; Askoura, M.; Asfour, H. Z.; Khafagy, E. S.; Abu Lila, A. S.; Allam, A. N.; Hegazy, W. A. H. Secnidazole is a Promising Imidazole Mitigator of Serratia marcescens Virulence. Microorganisms 2021, 9, 2333–2345. DOI: 10.3390/microorganisms9112333.
  • Askoura, M.; Almalki, A. J; Lila, A. S. A.; Almansour, K.; Alshammari, F.; Khafagy, E.-S.; Ibrahim, T. S.; Hegazy, W. A. H. Alteration of Salmonella enterica Virulence and Host Pathogenesis through Targeting sdiA by Using the CRISPR-Cas9 System. Microorganisms 2021, 9, 2564–2580. DOI: 10.3390/microorganisms9122564.
  • Abd El-Hamid, M. I.; Sewid, A. H.; Samir, M.; Hegazy, W. A. H.; Bahnass, M. M.; Mosbah, R. A.; Ghaith, D. M.; Khalifa, E.; Ramadan, H.; Alshareef, W. A.; et al. Clonal Diversity and Epidemiological Characteristics of ST239-MRSA Strains. Front. Cell. Infect. Microbiol 2022, 12, 1–13. DOI: 10.3389/fcimb.2022.782045.
  • Diekema, D. J.; Jones, R. N. Oxazolidinone Antibiotics. Lancet 2001, 358, 1975–1982. DOI: 10.1016/S0140-6736(01)06964-1.
  • Almalki, A. J.; Ibrahim, T. S.; Taher, E. S.; Mohamed, M. F. A.; Youns, M.; Hegazy, W. A. H.; Al-Mahmoudy, A. M. M. Synthesis, Antimicrobial, anti-Virulence and Anticancer Evaluation of New 5(4H)-Oxazolone-Based Sulfonamides. Molecules 2022, 27, 671–695. DOI: 10.3390/molecules27030671.
  • Riain, U. N.; MacGowan, A. P., CHAPTER 25 - Oxazolidinones. In Antibiotic and Chemotherapy, 9th ed.; Finch, R.G., et al., Ed.; W.B. Saunders: London, 2010; pp 301–305.
  • Senior, K. FDA approves first drug in new class of antibiotics. Lancet. 2000, 355(9214):1523. DOI: 10.1016/S0140-6736(00)02173-5
  • Burdette, S. D.; Trotman, R. Tedizolid: The First Once-Daily Oxazolidinone Class Antibiotic. Clin. Infect. Dis. 2015, 61, 1315–1321. DOI: 10.1093/cid/civ501.
  • Hoy, S. M. Contezolid: First Approval. Drugs 2021, 81, 1587–1591. DOI: 10.1007/s40265-021-01576-0.
  • Sellarès-Nadal, J.; Burgos, J.; Falcó, V.; Almirante, B. Investigational and Experimental Drugs for Community-Acquired Pneumonia: The Current Evidence. J. Exp. Pharmacol. 2020, 12, 529–538. DOI: 10.2147/JEP.S259286.
  • Olaru, I. D.; von Groote-Bidlingmaier, F.; Heyckendorf, J.; Yew, W. W.; Lange, C.; Chang, K. C. Novel Drugs against Tuberculosis: A Clinician’s Perspective. Eur. Respir. J. 2015, 45, 1119–1131. DOI: 10.1183/09031936.00162314.
  • Tetali, S. R.; Kunapaeddi, E.; Mailavaram, R. P.; Singh, V.; Borah, P.; Deb, P. K.; Venugopala, K. N.; Hourani, W.; Tekade, R. K. Current Advances in the Clinical Development of anti-Tubercular Agents. Tuberculosis (Edinb) 2020, 125, 101989. DOI: 10.1016/j.tube.2020.101989.
  • Fernandes, G.; Salgado, H. R. N.; Santos, J. L. D. A Critical Review of HPLC-Based Analytical Methods for Quantification of Linezolid. Crit. Rev. Anal. Chem. 2020, 50, 196–211. DOI: 10.1080/10408347.2019.1605876.
  • Kokilambigai, K. S.; Lakshmi, K. S.; Sai Susmitha, A.; Seetharaman, R.; Kavitha, J. Linezolid-A Review of Analytical Methods in Pharmaceuticals and Biological Matrices. Crit. Rev. Anal. Chem. 2020, 50, 179–188. DOI: 10.1080/10408347.2019.1599709.
  • Foti, C.; Piperno, A.; Scala, A.; Giuffrè, O. Oxazolidinone Antibiotics: Chemical, Biological and Analytical Aspects. Molecules 2021, 26, 4280–4292. DOI: 10.3390/molecules26144280.
  • Zhanel, G. G.; Love, R.; Adam, H.; Golden, A.; Zelenitsky, S.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P. R. S.; Rubinstein, E.; Walkty, A.; et al. Tedizolid: A Novel Oxazolidinone with Potent Activity against Multidrug-Resistant Gram-Positive Pathogens. Drugs 2015, 75, 253–270. DOI: 10.1007/s40265-015-0352-7.
  • Pucci, M. J.; Callebaut, C.; Cathcart, A.; Bush, K. 5.17 – Recent Epidemiological Changes in Infectious Diseases. In Comprehensive Medicinal Chemistry III, Chackalamannil, S., Rotella, D., Ward, S.E., Eds.; Elsevier: Oxford, 2017; pp 511–552.
  • Hori, T.; Owusu, Y. B.; Sun, D. US FDA-Approved Antibiotics during the 21st Century. In Encyclopedia of Infection and Immunity, Rezaei, N., Ed.; Elsevier: Oxford, 2022, pp 556–585.
  • El-Kimary, E. I.; Khamis, E. F.; Belal, S. F.; Abdel Moneim, M. M. Sensitive Inexpensive Chromatographic Determination of an Antimicrobial Combination in Human Plasma and Its Pharmacokinetic Application. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1097-1098, 94–100. DOI: 10.1016/j.jchromb.2018.09.008.
  • Zeng, R.; Tang, Y.; Zhang, L.; Luo, Z.; Tang, D. Dual-Readout Aptasensing of Antibiotic Residue Based on Gold Nanoclusters-Functionalized MnO2 Nanosheets with Target-Induced Etching Reaction. J. Mater. Chem. B 2018, 6, 8071–8077. DOI: 10.1039/c8tb02642d.
  • Zeng, R.; Zhang, L.; Su, L.; Luo, Z.; Zhou, Q.; Tang, D. Photoelectrochemical Bioanalysis of Antibiotics on rGO-Bi2WO6-Au Based on Branched Hybridization Chain Reaction. Biosens. Bioelectron. 2019, 133, 100–106. DOI: 10.1016/j.bios.2019.02.067.
  • Tanaka, R.; Kai, M.; Shinohara, S.; Tatsuta, R.; Itoh, H. A Validated UHPLC-MS/MS Method for Quantification of Total and Free Tedizolid Concentrations in Human Plasma. J. Pharm. Biomed. Anal. 2022, 219, 114929. DOI: 10.1016/j.jpba.2022.114929.
  • Tanaka, R.; Kai, M.; Goto, K.; Ohchi, Y.; Yasuda, N.; Tatsuta, R.; Kitano, T.; Itoh, H. High-Throughput and Wide-Range Simultaneous Determination of Linezolid, Daptomycin and Tedizolid in Human Plasma Using Ultra-Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2021, 194, 113764. DOI: 10.1016/j.jpba.2020.113764.
  • Kai, M.; Tanaka, R.; Suzuki, Y.; Goto, K.; Ohchi, Y.; Yasuda, N.; Tatsuta, R.; Kitano, T.; Itoh, H. Simultaneous Quantification of Plasma Levels of 12 Antimicrobial Agents Including Carbapenem, anti-Methicillin-Resistant Staphylococcus aureus Agent, Quinolone and Azole Used in Intensive Care Unit Using UHPLC-MS/MS Method. Clin. Biochem. 2021, 90, 40–49. DOI: 10.1016/j.clinbiochem.2021.01.012.
  • Kai, M.; Tanaka, R.; Suzuki, Y.; Goto, K.; Ohchi, Y.; Yasuda, N.; Tatsuta, R.; Kitano, T.; Itoh, H. UHPLC-MS/MS Method for Simultaneous Quantification of Doripenem, Meropenem, Ciprofloxacin, Levofloxacin, Pazufloxacin, Linezolid, and Tedizolid in Filtrate during Continuous Renal Replacement Therapy. J. Clin. Lab. Anal. 2023, 37, e24815. DOI: 10.1002/jcla.24815.
  • Kim, Y.; Kim, A.; Lee, S.; Choi, S.-H.; Lee, D. Y.; Song, J.-S.; Lee, H.; Jang, I.-J.; Yu, K.-S. Pharmacokinetics, Safety, and Tolerability of Tedizolid Phosphate after Single-Dose Administration in Healthy Korean Male Subjects. Clin. Ther. 2017, 39, 1849–1857. DOI: 10.1016/j.clinthera.2017.08.002.
  • Iqbal, M. A Highly Sensitive and Efficient UPLC-MS/MS Assay for Rapid Analysis of Tedizolid (a Novel Oxazolidinone Antibiotic) in Plasma Sample. Biomed. Chromatogr. 2016, 30, 1750–1756. DOI: 10.1002/bmc.3749.
  • Yu, H. C.; Pan, C. W.; Xie, Q. P.; Zheng, Y.; Hu, Y. Z.; Lin, Y. M. Simultaneous Determination of Tedizolid and Linezolid in Rat Plasma by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry and Its Application to a Pharmacokinetic Study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1011, 94–98. DOI: 10.1016/j.jchromb.2015.12.056.
  • Alshememry, A.; Alkholief, M.; Abul Kalam, M.; Raish, M.; Ali, R.; Alhudaithi, S. S.; Iqbal, M.; Alshamsan, A. Perspectives of Positively Charged Nanocrystals of Tedizolid Phosphate as a Topical Ocular Application in Rabbits. Molecules 2022, 27, 4619–4634. DOI: 10.3390/molecules27144619.
  • Kalam, M. A.; Iqbal, M.; Alshememry, A.; Alkholief, M.; Alshamsan, A. UPLC-MS/MS Assay of Tedizolid in Rabbit Aqueous Humor: Application to Ocular Pharmacokinetic Study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1171, 122621. DOI: 10.1016/j.jchromb.2021.122621.
  • Gu, L.; Ma, M.; Zhang, Y.; Zhang, L.; Zhang, S.; Huang, M.; Zhang, M.; Xin, Y.; Zheng, G.; Chen, S. Comparative Pharmacokinetics of Tedizolid in Rat Plasma and Cerebrospinal Fluid. Regul. Toxicol. Pharmacol. 2019, 107, 104420. DOI: 10.1016/j.yrtph.2019.104420.
  • Kim, S.; Scanga, C. A.; Miranda Silva, C.; Zimmerman, M.; Causgrove, C.; Stein, B.; Dartois, V.; Peloquin, C. A.; Graham, E.; Louie, A.; et al. Pharmacokinetics of Tedizolid, Sutezolid, and sutezolid-M1 in Non-Human Primates. Eur. J. Pharm. Sci. 2020, 151, 105421. DOI: 10.1016/j.ejps.2020.105421.
  • Ong, V.; Flanagan, S.; Fang, E.; Dreskin, H. J.; Locke, J. B.; Bartizal, K.; Prokocimer, P. Absorption, Distribution, Metabolism, and Excretion of the Novel Antibacterial Prodrug Tedizolid Phosphate. Drug Metab. Dispos. 2014, 42, 1275–1284. DOI: 10.1124/dmd.113.056697.
  • Park, A. Y. J.; Wang, J.; Jayne, J.; Fukushima, L.; Rao, A. P.; D'Argenio, D. Z.; Beringer, P. M. Pharmacokinetics of Tedizolid in Plasma and Sputum of Adults with Cystic Fibrosis. Antimicrob. Agents Chemother. 2018, 62, e00550-18. DOI: 10.1128/AAC.00550-18.
  • Housman, S. T.; Pope, J. S.; Russomanno, J.; Salerno, E.; Shore, E.; Kuti, J. L.; Nicolau, D. P. Pulmonary Disposition of Tedizolid following Administration of Once-Daily Oral 200-Milligram Tedizolid Phosphate in Healthy Adult Volunteers. Antimicrob. Agents Chemother. 2012, 56, 2627–2634. DOI: 10.1128/AAC.05354-11.
  • Sato, Y.; Takekuma, Y.; Daisho, T.; Kashiwagi, H.; Imai, S.; Sugawara, M. Development of a Method of Liquid Chromatography Coupled with Tandem Mass Spectrometry for Simultaneous Determination of Linezolid and Tedizolid in Human Plasma. Biol. Pharm. Bull. 2022, 45, 421–428. DOI: 10.1248/bpb.b21-00798.
  • Flanagan, S.; Fang, E.; Munoz, K. A.; Minassian, S. L.; Prokocimer, P. G. Single- and Multiple-Dose Pharmacokinetics and Absolute Bioavailability of Tedizolid. Pharmacotherapy 2014, 34, 891–900. DOI: 10.1002/phar.1458.
  • Flanagan, S.; Minassian, S. L.; Passarell, J. A.; Fiedler-Kelly, J.; Prokocimer, P. Pharmacokinetics of Tedizolid in Obese and Nonobese Subjects. J. Clin. Pharmacol. 2017, 57, 1290–1294. DOI: 10.1002/jcph.928.
  • Flanagan, S. D.; Minassian, S. L.; Prokocimer, P. Pharmacokinetics, Safety, and Tolerability of Tedizolid Phosphate in Elderly Subjects. Clin. Pharmacol. Drug Dev. 2018, 7, 788–794. DOI: 10.1002/cpdd.426.
  • Flanagan, S.; Passarell, J.; Lu, Q.; Fiedler-Kelly, J.; Ludwig, E.; Prokocimer, P. Tedizolid Population Pharmacokinetics, Exposure Response, and Target Attainment. Antimicrob. Agents Chemother. 2014, 58, 6462–6470. DOI: 10.1128/AAC.03423-14.
  • Flanagan, S.; Minassian, S. L.; Morris, D.; Ponnuraj, R.; Marbury, T. C.; Alcorn, H. W.; Fang, E.; Prokocimer, P. Pharmacokinetics of Tedizolid in Subjects with Renal or Hepatic Impairment. Antimicrob. Agents Chemother. 2014, 58, 6471–6476. DOI: 10.1128/AAC.03431-14.
  • Flanagan, S.; Minassian, S. L.; Prokocimer, P. Pharmacokinetics of Tedizolid and Pseudoephedrine Administered Alone or in Combination in Healthy Volunteers. JCM 2018, 7, 150–156. DOI: 10.3390/jcm7060150.
  • Mikamo, H.; Takesue, Y.; Iwamoto, Y.; Tanigawa, T.; Kato, M.; Tanimura, Y.; Kohno, S. Efficacy, Safety and Pharmacokinetics of Tedizolid versus Linezolid in Patients with Skin and Soft Tissue Infections in Japan – Results of a Randomised, Multicentre Phase 3 Study. J. Infect. Chemother. 2018, 24, 434–442. DOI: 10.1016/j.jiac.2018.01.010.
  • Keel, R. A.; Crandon, J. L.; Nicolau, D. P. Pharmacokinetics and Pulmonary Disposition of Tedizolid and Linezolid in a Murine Pneumonia Model under Variable Conditions. Antimicrob. Agents. Chemother. 2012, 56, 3420–3422. DOI: 10.1128/AAC.06121-11.
  • Chen, R.; Shen, K.; Chang, X.; Tanaka, T.; Li, L.; Hu, P. Pharmacokinetics and Safety of Tedizolid after Single and Multiple Intravenous/Oral Sequential Administrations in Healthy Chinese Subjects. Clin. Ther. 2016, 38, 1869–1879. DOI: 10.1016/j.clinthera.2016.06.014.
  • Bradley, J. S.; Flanagan, S. D.; Arrieta, A. C.; Jacobs, R.; Capparelli, E.; Prokocimer, P. Pharmacokinetics, Safety and Tolerability of Single Oral or Intravenous Administration of 200 mg Tedizolid Phosphate in Adolescents. Pediatr. Infect. Dis. J. 2016, 35, 628–633. DOI: 10.1097/INF.0000000000001096.
  • Wunderink, R. G.; Roquilly, A.; Croce, M.; Rodriguez Gonzalez, D.; Fujimi, S.; Butterton, J. R.; Broyde, N.; Popejoy, M. W.; Kim, J. Y.; De Anda, C. A Phase 3, Randomized, Double-Blind Study Comparing Tedizolid Phosphate and Linezolid for Treatment of Ventilated Gram-Positive Hospital-Acquired or Ventilator-Associated Bacterial Pneumonia. Clin. Infect. Dis. 2021, 73, e710–e718. DOI: 10.1093/cid/ciab032.
  • Pai, M. P. Pharmacokinetics of Tedizolid in Morbidly Obese and Covariate-Matched Nonobese Adults. Antimicrob. Agents Chemother. 2016, 60, 4585–4589. DOI: 10.1128/AAC.00682-16.
  • Arrieta, A. C.; Ang, J. Y.; Espinosa, C.; Fofanov, O.; Tøndel, C.; Chou, M. Z.; De Anda, C. S.; Kim, J. Y.; Li, D.; Sabato, P.; et al. Pharmacokinetics and Safety of Single-Dose Tedizolid Phosphate in Children 2 to <12 Years of Age. Pediatr. Infect. Dis. J. 2021, 40, 317–323. DOI: 10.1097/INF.0000000000003030.
  • Gregoire, M.; Libois, J. B.; Waast, D.; Gaborit, B.; Dauty, M.; Deslandes, G.; Dailly, E.; Touchais, S.; Boutoille, D.; Gregoire, N.; et al. Pharmacokinetics of Tedizolid in an Obese Patient after Bariatric Surgery. Antimicrob. Agents Chemother. 2018, 62, e02432-17. DOI: 10.1128/AAC.02432-17.
  • Aboras, S. I.; Abdine, H. H.; Ragab, M. A. A.; Korany, M. A. A Review on Analytical Strategies for the Assessment of Recently Approved Direct Acting Antiviral Drugs. Crit. Rev. Anal. Chem. 2022, 52, 1878–1900. DOI: 10.1080/10408347.2021.1923456.
  • SIVEXTRO Product monograph. https://pdf.hres.ca/dpd_pm/00032313.PDF (accessed May 28, 2023.
  • Dorn, C.; Schießer, S.; Wulkersdorfer, B.; Hitzenbichler, F.; Kees, M. G.; Zeitlinger, M. Determination of Free Clindamycin, Flucloxacillin or Tedizolid in Plasma: Pay Attention to Physiological Conditions When Using Ultrafiltration. Biomed. Chromatogr. 2020, 34, e4820–e4825. DOI: 10.1002/bmc.4820.
  • Yang, Z.; Tian, L.; Liu, J.; Huang, G. Construction and Evaluation in Vitro and in Vivo of Tedizolid Phosphate Loaded Cationic Liposomes. J. Liposome Res. 2018, 28, 322–330. DOI: 10.1080/08982104.2017.1380665.
  • Santini, D. A.; Sutherland, C. A.; Nicolau, D. P. Development of a High Performance Liquid Chromatography Method for the Determination of Tedizolid in Human Plasma, Human Serum, Saline and Mouse Plasma. J. Chromatogr. Sep. Tech. 2015, 6, 1000270.
  • Tsuji, Y.; Numajiri, M.; Ogami, C.; Kurosaki, F.; Miyamoto, A.; Aoyama, T.; Kawasuji, H.; Nagaoka, K.; Matsumoto, Y.; To, H.; Yamamoto, Y. Development of a Simple Method for Measuring Tedizolid Concentration in Human Serum Using HPLC with a Fluorescent Detector. Medicine (Baltimore) 2021, 100, e28127. DOI: 10.1097/MD.0000000000028127.
  • Anerao, A.; Dighe, V.; John, S.; Pradhan, N. Enantioseparation of Tedizolid Phosphate by RP-HPLC, Using β-Cyclodextrin as a Chiral Mobile Phase Additive. J. Appl. Pharm. Sci. 2017, 7, 30–36.
  • Ezquer-Garin, C.; Ferriols-Lisart, R.; Martinez-Lopez, L. M.; Sangrador-Pelluz, C.; Nicolas-Pico, J.; Alos, A. M. Stability of Tedizolid Phosphate-Sodium Rifampicin and Tedizolid Phosphate-Meropenem Admixtures in Intravenous Infusion Bags Stored at Different Temperatures. Pharmazie 2020, 75, 172–176. DOI: 10.1691/ph.2020.9155.
  • Kalam, M. A.; Iqbal, M.; Alshememry, A.; Alkholief, M.; Alshamsan, A. Development and Evaluation of Chitosan Nanoparticles for Ocular Delivery of Tedizolid Phosphate. Molecules 2022, 27, 2326–2347. DOI: 10.3390/molecules27072326.
  • Kalam, M. A.; Iqbal, M.; Alshememry, A.; Alkholief, M.; Alshamsan, A. Fabrication and Characterization of Tedizolid Phosphate Nanocrystals for Topical Ocular Application: Improved Solubilization and in Vitro Drug Release. Pharmaceutics 2022, 14, 1328–1354. DOI: 10.3390/pharmaceutics14071328.
  • Kennedy, G.; Osborn, J.; Flanagan, S.; Alsayed, N.; Bertolami, S. Stability of Crushed Tedizolid Phosphate Tablets for Nasogastric Tube Administration. Drugs R D. 2015, 15, 329–333. DOI: 10.1007/s40268-015-0108-6.
  • Michalska, K.; Widyńska, W.; Bus, K.; Bocian, W.; Tyski, S. The Solution and Solid-State Degradation Study Followed by Identification of Tedizolid Related Compounds in Medicinal Product by High Performance Liquid Chromatography with Diode Array and Tandem Mass Spectrometry Detection. J. Pharm. Biomed. Anal. 2021, 194, 113783. DOI: 10.1016/j.jpba.2020.113783.
  • Moaaz, E. M.; Abdel-Moety, E. M.; Rezk, M. R.; Fayed, A. S. Stability-Indicating Determination of Tedizolid Phosphate in the Presence of Its Active Form and Possible Degradants. J. Chromatogr. Sci. 2022, 60, 51–60. DOI: 10.1093/chromsci/bmab045.
  • Paczkowska-Walendowska, M.; Rosiak, N.; Tykarska, E.; Michalska, K.; Płazińska, A.; Płaziński, W.; Szymanowska, D.; Cielecka-Piontek, J. Tedizolid-Cyclodextrin System as Delayed-Release Drug Delivery with Antibacterial Activity. IJMS 2020, 22, 115–128. DOI: 10.3390/ijms22010115.
  • Vashistha, V. K.; Verma, N.; Kumar, R.; Tyagi, I.; Gaur, A.; Bala, R. Enantioseparation of Linezolid and Tedizolid Using Validated High-Performance Liquid Chromatographic Method. Chirality 2022, 34, 1044–1052. DOI: 10.1002/chir.23472.
  • Lei, Y.; Jin, B.; Ma, C.; Zhang, T.; Li, T. Identification of Forced Degradation Products of Tedizolid Phosphate by Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2017, 139, 221–231. DOI: 10.1016/j.jpba.2017.03.006.
  • Michalska, K.; Gruba, E.; Cielecka-Piontek, J.; Bednarek, E. Chiral Separation of Tedizolid Using Charge Single Isomer Derivatives of Cyclodextrins by Capillary Electrokinetic Chromatography. J. Pharm. Biomed. Anal. 2016, 120, 402–412. DOI: 10.1016/j.jpba.2015.11.022.
  • Alam, P.; Shakeel, F.; Alqarni, M. H.; Foudah, A. I. A Rapid and Highly Sensitive Stability-Indicating High-Performance Thin-Layer Chromatography Technique for the Determination of Tedizolid Phosphate with a Classical Univariate Calibration. JPC-J. Planar. Chromat. 2021, 34, 271–278. DOI: 10.1007/s00764-021-00104-w.
  • El-Kimary, E. I.; Khamis, E. F.; Belal, S. F.; Abdel Moneim, M. M. Novel Validated HPTLC Method for the Analysis of Two Binary Mixtures Containing Tamsulosin Hydrochloride with Antimuscarinic Agents. J. Chromatogr. Sci. 2018, 56, 81–91. DOI: 10.1093/chromsci/bmx081.
  • El-Kimary, E. I.; Youssef, R. M.; Allam, A. N. High-Performance Thin-Layer Chromatographic Assay of Metformin in Urine Using Ion-Pair Solid-Phase Extraction: Application for Bioavailability and Bioequivalence Study of New Microbeads Controlled Release Formulation. JPC – J. Planar Chromatogr. – Modern TLC 2014, 27, 377–384. DOI: 10.1556/JPC.27.2014.5.9.
  • El-Kimary, E. I.; Korany, M. A.; Issa, A. E.; Basuny, M. G. Simultaneous Microdetermination of Different Penicillin Antibiotics Residues for Cross-Contamination Study in Non-Penicillin Dosage Forms. Microchem. J. 2023, 185, 108291. DOI: 10.1016/j.microc.2022.108291.
  • El-Kimary, E. I.; Ragab, M. A. A. Recent Analytical Methodologies for the Determination of Omeprazole and/or Its Active Isomer Esomeprazole in Different Matrices: A Critical Review. Crit. Rev. Anal. Chem. 2022, 52, 106–130. DOI: 10.1080/10408347.2020.1791042.
  • El Yazbi, F. A.; Amin, O. A.; El-Kimary, E. I.; Khamis, E. F.; Younis, S. E.; Elkhatib, M. A. W.; El-Yazbi, A. F. A Novel HPLC-DAD Method for Simultaneous Determination of Febuxostat and Diclofenac in Biological Samples: Pharmacokinetic Outcomes. Bioanalysis 2019, 11, 41–54. DOI: 10.4155/bio-2018-0219.
  • Maher, M. H.; Ragab, A. A. M.; El-Kimary, I. E. Chemometrics-Assisted Spectrofluorimetric Determination of Two Co-Administered Drugs of Major Interaction, Methotrexate and Aspirin, in Human Urine following Acid-Induced Hydrolysis. Comb. Chem. High Throughput Screen. 2015, 18, 723–734. DOI: 10.2174/1386207318666150803140749.
  • El‐Kimary, E.; Khamis, F.; Belal, S.; Moneim, M. Enhanced Spectrofluorimetric Determination of Two Novel Combination Therapies for the Treatment of Benign Prostatic Hyperplasia Containing Tamsulosin Hydrochloride. Luminescence 2018, 33, 771–779. DOI: 10.1002/bio.3475.
  • Mohamed, A. A.; Derayea, S. M.; Omar, M. A. A New Fluorescence Method for Specific Determination of Tedizolid in Real Human Plasma: Based on Twisted Intramolecular Charge Transfer (TICT) Blocking. J. Mol. Liq. 2021, 337, 116593. DOI: 10.1016/j.molliq.2021.116593.
  • El-Kimary, E. I.; Khamis, E. F.; Belal, S. F.; Abdel Moneim, M. M. Fourier Convolution versus Derivative Spectrophotometry: Application to the Analysis of Two Binary Mixtures Containing Tamsulosin Hydrochloride as a Minor Component. Ann. Pharm. Fr. 2020, 78, 129–141. DOI: 10.1016/j.pharma.2020.01.003.
  • Karpuz, M.; Atlihan-Gundogdu, E.; Demir, E. S.; Senyigit, Z. Radiolabeled Tedizolid Phosphate Liposomes for Topical Application: Design, Characterization, and Evaluation of Cellular Binding Capacity. AAPS PharmSciTech. 2021, 22, 62–70. DOI: 10.1208/s12249-020-01917-4.
  • Bednarek, E.; Bocian, W.; Michalska, K. Nuclear Magnetic Resonance Spectroscopic Study of the Inclusion Complex of (R)-Tedizolid with HDAS-beta-CD, beta-CD, and Gamma-Cyclodextrin in Aqueous Solution. J. Pharm. Biomed. Anal. 2019, 169, 170–180. DOI: 10.1016/j.jpba.2019.02.031.
  • El-Yazbi, A. F.; El-Kimary, E. I. Novel Inexpensive ‘Turn-On’ Fluorescent Biosensor for the Sensitive Detection of DNA Damage Induced by Epirubicin. Microchem. J. 2021, 168, 106535. DOI: 10.1016/j.microc.2021.106535.
  • El-Yazbi, A. F.; Khalil, H. A.; Belal, T. S.; El-Kimary, E. I. Inexpensive Bioluminescent Genosensor for Sensitive Determination of DNA Damage Induced by Some Commonly Used Sunscreens. Anal. Biochem. 2022, 651, 114700. DOI: 10.1016/j.ab.2022.114700.
  • Shu, J.; Tang, D. Recent Advances in Photoelectrochemical Sensing: From Engineered Photoactive Materials to Sensing Devices and Detection Modes. Anal. Chem. 2020, 92, 363–377. DOI: 10.1021/acs.analchem.9b04199.
  • Lv, S.; Zhang, K.; Zhu, L.; Tang, D.; Niessner, R.; Knopp, D. H(2)-Based Electrochemical Biosensor with Pd Nanowires@ZIF-67 Molecular Sieve Bilayered Sensing Interface for Immunoassay. Anal. Chem. 2019, 91, 12055–12062. DOI: 10.1021/acs.analchem.9b03177.
  • El-Yazbi, F. A.; Amin, O. A.; Bakry, R.; Khamis, E. F.; El-Kimary, E. I.; Younis, S. E. A Novel Voltammetry Offline Coupled MALDI/TOF MS Characterization of Electrochemical Reaction Products and the Voltammetric Determination of Febuxostat in Human Plasma. Talanta 2019, 194, 542–547. DOI: 10.1016/j.talanta.2018.10.087.
  • Moaaz, E. M.; Mahmoud, A. M.; Fayed, A. S.; Rezk, M. R.; Abdel-Moety, E. M. Determination of Tedizolid Phosphate Using Graphene Nanocomposite Based Solid Contact Ion Selective Electrode; Green Profile Assessment by Eco-Scale and GAPI Approach. Electroanalysis 2021, 33, 1895–1901. DOI: 10.1002/elan.202100067.
  • Stalker, D. J.; Jungbluth, G. L. Clinical Pharmacokinetics of Linezolid, a Novel Oxazolidinone Antibacterial. Clin. Pharmacokinet. 2003, 42, 1129–1140. DOI: 10.2165/00003088-200342130-00004.
  • Bouza, E.; Muñoz, P. Linezolid: Pharmacokinetic Characteristics and Clinical Studies. Clin. Microbiol. Infect. 2001, 7, 75–82. DOI: 10.1046/j.1469-0691.2001.00061.x.
  • Aster, R. H. Chapter 41 - Drug-Induced Thrombocytopenia. In Platelets, 3rd ed., Michelson, A.D., Ed. Academic Press: London, 2013; pp 835–850.
  • Ramaiah, L.; Bounous, D. I.; Elmore, S. A. Chapter 50 - Hematopoietic System. In Haschek and Rousseaux’s Handbook of Toxicologic Pathology, 3rd ed.; Haschek, W.M.; Rousseaux, C.G., Wallig, M.A. Eds.; Academic Press: Boston, 2013; pp 1863–1933.
  • Zoller, M.; Maier, B.; Hornuss, C.; Neugebauer, C.; Döbbeler, G.; Nagel, D.; Holdt, L. M.; Bruegel, M.; Weig, T.; Grabein, B.; et al. Variability of Linezolid Concentrations after Standard Dosing in Critically Ill Patients: A Prospective Observational Study. Crit. Care 2014, 18, R148–R158. DOI: 10.1186/cc13984.
  • Guan, Y.; Yu, X.; Wang, Y.; Li, Q.; Liang, D.; Zhu, H.; Chen, C.; Dong, B.; Ou, J.; Qiu, K.; Wu, J. Developing an Isotope Dilution UHPLC-MS/MS Method to Quantify Linezolid in Human Plasma: Application to Therapeutic Drug Monitoring. Bioanalysis 2020, 12, 991–1001. DOI: 10.4155/bio-2020-0098.
  • Qi, Y.; Liu, G. A UPLC-MS/MS Method for Simultaneous Determination of Eight Special-Grade Antimicrobials in Human Plasma and Application in TDM. J. Pharm. Biomed. Anal. 2022, 220, 114964. DOI: 10.1016/j.jpba.2022.114964.
  • Sun, H.; Xing, H.; Tian, X.; Zhang, X.; Yang, J.; Wang, P. UPLC-MS/MS Method for Simultaneous Determination of 14 Antimicrobials in Human Plasma and Cerebrospinal Fluid: Application to Therapeutic Drug Monitoring. J. Anal. Methods Chem. 2022, 2022, 7048605. DOI: 10.1155/2022/7048605.
  • Woksepp, H.; Karlsson, L.; Arlemalm, A.; Hallgren, A.; Schon, T.; Carlsson, B. Simultaneous Measurement of 11 Antibiotics for Use in the Intensive Care Unit by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Ther. Drug Monit. 2022, 44, 308–318. DOI: 10.1097/FTD.0000000000000911.
  • Lu, W.; Pan, M.; Ke, H.; Liang, J.; Liang, W.; Yu, P.; Zhang, P.; Wang, Q. An LC-MS/MS Method for the Simultaneous Determination of 18 Antibacterial Drugs in Human Plasma and Its Application in Therapeutic Drug Monitoring. Front. Pharmacol. 2022, 13, 1044234. DOI: 10.3389/fphar.2022.1044234.
  • Piestansky, J.; Cizmarova, I.; Mikus, P.; Parrak, V.; Babiak, P.; Secnik, P.; Jr. Secnik, P.; Kovac, A. An Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Determination of 4 beta-Lactam Antibiotics, Tazobactam, and Linezolid in Human Plasma Samples. Ther. Drug Monit. 2022, 44, 784–790. DOI: 10.1097/FTD.0000000000001017.
  • Lu, Q.; He, X.; Fang, J.; Shi, K.; Hu, F.; Bian, X.; Wang, X. Simultaneous Determination of Linezolid and Voriconazole Serum Concentrations Using Liquid Chromatography-Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2022, 212, 114659. DOI: 10.1016/j.jpba.2022.114659.
  • Wang, Y.; Ye, X.; Lan, Q.; Ke, X.; Hu, L.; Hu, L. UPLC-MS/MS Determination of Linezolid and Heme in Plasma of Infected Patients and Correlation Analysis. Biomed. Res. Int. 2021, 2021, 6679076. DOI: 10.1155/2021/6679076.
  • Wang, Y.; Gu, E. M.; Du, X.; Xu, R. A.; Lin, G. A Novel UPLC-MS/MS Assay for the Measurement of Linezolid and Its Metabolite PNU-142300 in Human Serum and Its Application to Patients with Renal Insufficiency. Front Pharmacol. 2021, 12, 641872. DOI: 10.3389/fphar.2021.641872.
  • Paal, M.; Zoller, M.; Schuster, C.; Vogeser, M.; Schütze, G. Simultaneous Quantification of Cefepime, Meropenem, Ciprofloxacin, Moxifloxacin, Linezolid and Piperacillin in Human Serum Using an Isotope-Dilution HPLC-MS/MS Method. J. Pharm. Biomed. Anal. 2018, 152, 102–110. DOI: 10.1016/j.jpba.2018.01.031.
  • Ferrari, D.; Ripa, M.; Premaschi, S.; Banfi, G.; Castagna, A.; Locatelli, M. LC-MS/MS Method for Simultaneous Determination of Linezolid, Meropenem, Piperacillin and Teicoplanin in Human Plasma Samples. J. Pharm. Biomed. Anal. 2019, 169, 11–18. DOI: 10.1016/j.jpba.2019.02.037.
  • Seraissol, P.; Lanot, T.; Baklouti, S.; Mané, C.; Ruiz, S.; Lavit, M.; De Riols, P.; Garrigues, J. C.; Gandia, P. Evaluation of 4 Quantification Methods for Monitoring 16 Antibiotics and 1 Beta-Lactamase Inhibitor in Human Serum by High-Performance Liquid Chromatography with Tandem Mass Spectrometry Detection. J. Pharm. Biomed. Anal. 2022, 219, 114900. DOI: 10.1016/j.jpba.2022.114900.
  • Fage, D.; Brilleman, R.; Deprez, G.; Payen, M. C.; Cotton, F. Development, Validation and Clinical Use of a LC-MS/MS Method for the Simultaneous Determination of the Nine Main Antituberculosis Drugs in Human Plasma. J. Pharm. Biomed. Anal. 2022, 215, 114776. DOI: 10.1016/j.jpba.2022.114776.
  • Mercier, T.; Desfontaine, V.; Cruchon, S.; Da Silva Pereira Clara, J. A.; Briki, M.; Mazza-Stalder, J.; Kajkus, A.; Burger, R.; Suttels, V.; Buclin, T.; et al. A Battery of Tandem Mass Spectrometry Assays with Stable Isotope-Dilution for the Quantification of 15 anti-Tuberculosis Drugs and Two Metabolites in Patients with Susceptible-, Multidrug-Resistant- and Extensively Drug-Resistant Tuberculosis. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2022, 1211, 123456. DOI: 10.1016/j.jchromb.2022.123456.
  • Souza, E.; Felton, J.; Crass, R. L.; Hanaya, K.; Pai, M. P. Development of a Sensitive LC-MS/MS Method for Quantification of Linezolid and Its Primary Metabolites in Human Serum. J. Pharm. Biomed. Anal. 2020, 178, 112968. DOI: 10.1016/j.jpba.2019.112968.
  • Yin, L.; Feng, Y.; Tong, J.; Guo, Z.; Zhang, Y.; Zhang, Q.; Sun, Y.; Fawcett, J. P.; Gu, J. Ultrahigh-Throughput Absolute Quantitative Analysis of Linezolid in Human Plasma by Direct Analysis in Real Time Mass Spectrometry without Chromatographic Separation and Its Application to a Pharmacokinetic Study. Anal. Bioanal. Chem. 2019, 411, 5139–5148. DOI: 10.1007/s00216-019-01891-2.
  • Van Vooren, S.; Verstraete, A. G. A Sensitive and High-Throughput Quantitative Liquid Chromatography High-Resolution Mass Spectrometry Method for Therapeutic Drug Monitoring of 10 β-Lactam Antibiotics, Linezolid and Two β-Lactamase Inhibitors in Human Plasma. Biomed. Chromatogr. 2021, 35, e5092–e5106. DOI: 10.1002/bmc.5092.
  • Gupta, S.; Samal, N. Application of Direct Analysis in Real-Time Mass Spectrometry (DART-MS) in Forensic Science: A Comprehensive Review. Egypt J. Forensic. Sci. 2022, 12, 17–41. DOI: 10.1186/s41935-022-00276-4.
  • Yang, G.; Yan, Y.; Mao, J.; Liu, H.; Chen, M.; Zhang, N.; Li, Y.; Gu, J.; Huang, X. Development and Validation of an HPLC-UV Method for Quantitation of Linezolid: Application to Resistance Study Using in Vitro PK/PD Model. Infect. Drug Resist. 2021, 14, 5089–5098. DOI: 10.2147/IDR.S343200.
  • Missoum, A.; Hamza, K.; Malki, F.; Hamdi, A.; Aboul-Enein, H. Y. Method Development and Validation for the Determination of Linezolid Drug in Human Plasma by Reversed-Phase High-Performance Liquid Chromatography. CPA 2022, 18, 528–534. DOI: 10.2174/1573412917666210823092454.
  • Wu, C.; Zhang, X.; Xie, J.; Li, Q.; He, J.; Hu, L.; Wang, H.; Liu, A.; Xu, J.; Yang, C.; et al. Pharmacokinetic/Pharmacodynamic Parameters of Linezolid in the Epithelial Lining Fluid of Patients with Sepsis. J. Clin. Pharmacol. 2022, 62, 891–897. DOI: 10.1002/jcph.2031.
  • Wei, Y.; Zhang, H.; Fu, M.; Ma, R.; Li, R.; Kong, L. Plasma and Intrapulmonary Pharmacokinetics, and Dosage Regimen Optimization of Linezolid for Treatment of Gram-Positive Cocci Infections in Patients with Pulmonary Infection after Cerebral Hemorrhage. Infect Drug Resist 2022, 15, 1733–1742. DOI: 10.2147/IDR.S357300.
  • Zhang, S-h.; Zhu, Z-y.; Chen, Z.; Li, Y.; Zou, Y.; Yan, M.; Xu, Y.; Wang, F.; Liu, M-z.; Zhang, M.; Zhang, B-k Population Pharmacokinetics and Dosage Optimization of Linezolid in Patients with Liver Dysfunction. Antimicrob. Agents Chemother. 2020, 64, e00133-20. DOI: 10.1128/AAC.00133-20.
  • Ogami, C.; Tsuji, Y.; To, H.; Yamamoto, Y. Pharmacokinetics, Toxicity and Clinical Efficacy of Linezolid in Japanese Pediatric Patients. J. Infect. Chemother. 2019, 25, 979–986. DOI: 10.1016/j.jiac.2019.05.025.
  • Li, S. C.; Ye, Q.; Xu, H.; Zhang, L.; Wang, Y. Population Pharmacokinetics and Dosing Optimization of Linezolid in Pediatric Patients. Antimicrob. Agents Chemother. 2019, 63, e02387-18. DOI: 10.1128/AAC.02387-18.
  • Thibault, C.; Kassir, N.; Goyer, I.; Théorêt, Y.; Litalien, C.; Moussa, A.; Ovetchkine, P.; Autmizguine, J. Population Pharmacokinetics of Intravenous Linezolid in Premature Infants. Pediatr. Infect. Dis. J. 2019, 38, 82–88. DOI: 10.1097/INF.0000000000002067.
  • Gunther, S.; Reimer, A.; Vogl, H.; Spenke, S.; Dinges, H. C.; Eberhart, L.; Geldner, G. Therapeutic Drug Monitoring of Linezolid: HPLC-Based Assays for Routine Quantification of Linezolid in Human Serum and Cerebrospinal Fluid. Eur. J. Hosp. Pharm. 2022, 2022, ejhpharm-2021-003036. DOI: 10.1136/ejhpharm-2021-003036.
  • Sakurai, N.; Nakamura, Y.; Kawaguchi, H.; Abe, J.; Yamada, K.; Nagayama, K.; Kakeya, H. Measurement of Linezolid and Its Metabolites PNU-142300 and PNU-142586 in Human Plasma Using Ultra-Performance Liquid Chromatography Method. Chem. Pharm. Bull. (Tokyo) 2019, 67, 439–444. DOI: 10.1248/cpb.c18-00840.
  • Ferrone, V.; Cotellese, R.; Carlucci, M.; Di Marco, L.; Carlucci, G. Air Assisted Dispersive Liquid-Liquid Microextraction with Solidification of the Floating Organic Droplets (AA-DLLME-SFO) and UHPLC-PDA Method: Application to Antibiotics Analysis in Human Plasma of Hospital Acquired Pneumonia Patients. J. Pharm. Biomed. Anal. 2018, 151, 266–273. DOI: 10.1016/j.jpba.2017.12.039.
  • Xie, F.; Liu, L.; Wang, Y.; Peng, Y.; Li, S. An UPLC-PDA Assay for Simultaneous Determination of Seven Antibiotics in Human Plasma. J. Pharm. Biomed. Anal. 2022, 210, 114558. DOI: 10.1016/j.jpba.2021.114558.
  • Fage, D.; Deprez, G.; Fontaine, B.; Wolff, F.; Cotton, F. Simultaneous Determination of 8 Beta-Lactams and Linezolid by an Ultra-Performance Liquid Chromatography Method with UV Detection and Cross-Validation with a Commercial Immunoassay for the Quantification of Linezolid. Talanta 2021, 221, 121641. DOI: 10.1016/j.talanta.2020.121641.
  • Taylor, R.; Sunderland, B.; Luna, G.; Czarniak, P. Evaluation of the Stability of Linezolid in Aqueous Solution and Commonly Used Intravenous Fluids. Drug Des. Devel. Ther. 2017, 11, 2087–2097. DOI: 10.2147/DDDT.S136335.
  • Mansour, F.; Danielson, N. Solidification of Floating Organic Droplet in Dispersive Liquid-Liquid Microextraction as a Green Analytical Tool. Talanta 2017, 170, 22–35. DOI: 10.1016/j.talanta.2017.03.084.
  • Guo, P.; Buttaro, B. A.; Xue, H. Y.; Tran, N. T.; Wong, H. L. Lipid-Polymer Hybrid Nanoparticles Carrying Linezolid Improve Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) Harbored inside Bone Cells and Biofilms. Eur. J. Pharm. Biopharm. 2020, 151, 189–198. DOI: 10.1016/j.ejpb.2020.04.010.
  • Carreño, G.; Marican, A.; Vijayakumar, S.; Valdés, O.; Cabrera-Barjas, G.; Castaño, J.; Durán-Lara, E. F. Sustained Release of Linezolid from Prepared Hydrogels with Polyvinyl Alcohol and Aliphatic Dicarboxylic Acids of Variable Chain Lengths. Pharmaceutics 2020, 12, 982–999. DOI: 10.3390/pharmaceutics12100982.
  • de Barros, A. L. C.; Schmidt, F. F.; de Aquino, S. F.; Afonso, R. Determination of Nine Pharmaceutical Active Compounds in Surface Waters from Paraopeba River Basin in Brazil by LTPE-HPLC-ESI-MS/MS. Environ. Sci. Pollut. Res. Int. 2018, 25, 19962–19974. DOI: 10.1007/s11356-018-2123-y.
  • El-Kimary, E. I.; Khalil, H. A.; Belal, T. S.; El-Yazbi, A. F. Green Stability-Indicating Capillary Electrophoretic Method for Simultaneous Determination of Lesinurad and Allopurinol in Tablet Dosage Form: Degradation Kinetics Investigation. Microchem. J. 2020, 158, 105199. DOI: 10.1016/j.microc.2020.105199.
  • Pauter, K.; Szultka-Młyńska, M.; Szumski, M.; Król-Górniak, A.; Pomastowski, P.; Buszewski, B. CE-DAD-MS/MS in the Simultaneous Determination and Identification of Selected Antibiotic Drugs and Their Metabolites in Human Urine Samples. Electrophoresis 2022, 43, 978–989. DOI: 10.1002/elps.202100190.
  • Ragab, M. A. A.; El-Kimary, E. I. Recent Advances and Applications of Microfluidic Capillary Electrophoresis: A Comprehensive Review (2017–Mid 2019). Crit. Rev. Anal. Chem. 2021, 51, 709–741. DOI: 10.1080/10408347.2020.1765729.
  • El-Kimary, E. I.; Ragab, M. A. A. Derivative Synchronous Spectrofluorimetry: Application to the Analysis of Two Binary Mixtures Containing Codeine in Dosage Forms. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 204, 677–684. DOI: 10.1016/j.saa.2018.06.102.
  • Ragab, M. A. A.; El-Kimary, E. I. Convolution of Emission Derivative Ratio Curves of Closely Related Fluorescent Reaction Products Using Discrete Fourier Functions and Non-Parametric Linear Regression Method. J. Fluoresc. 2014, 24, 1745–1756. DOI: 10.1007/s10895-014-1463-3.
  • Kim, H. Y.; Ruiter, E.; Jongedijk, E. M.; Ak, H. K.; Marais, B. J.; Pk, B.; Sawleshwarkar, S.; Touw, D. J.; Alffenaar, J.-W. Saliva-Based Linezolid Monitoring on a Mobile UV Spectrophotometer. J. Antimicrob. Chemother. 2021, 76, 1786–1792. DOI: 10.1093/jac/dkab075.
  • El-Kimary, E. I.; Ragab, M. A. A. 10 - Chemical Analysis. In Smartphone-Based Detection Devices, Hussain, C. Ed. Elsevier: New York, 2021; pp 185–198
  • Merli, D.; Pretali, L.; Fasani, E.; Albini, A.; Profumo, A. Analytical Determination and Electrochemical Characterization of the Oxazolidinone Antibiotic Linezolid. Electroanalysis 2011, 23, 2364–2372. DOI: 10.1002/elan.201100191.
  • Aydin, I.; Akgun, H.; Pınar, P. T. Analytical Determination of the Oxazolidinone Antibiotic Linezolid at a Pencil Graphite and Carbon Paste Electrodes. ChemistrySelect 2019, 4, 9966–9971. DOI: 10.1002/slct.201902269.
  • Pınar, P. T.; Şentürk, Z. Electrochemical and Analytical Performance of Cathodically Pretreated Boron-Doped Diamond Electrode for the Determination of Oxazolidinone Antibiotic Linezolid in Cationic Surfactant Media. Electroanal. Chem. 2020, 878, 114681. DOI: 10.1016/j.jelechem.2020.114681.
  • Attia, A. K.; Al-Ghobashy, M. A.; El-Sayed, G. M.; Kamal, S. M. Voltammetric Monitoring of Linezolid, Meropenem and Theophylline in Plasma. Anal. Biochem. 2018, 545, 54–64. DOI: 10.1016/j.ab.2018.01.009.
  • Atta, N. F.; Galal, A.; El-Gohary, A. R. M. Novel Designed Electrochemical Sensor for Simultaneous Determination of Linezolid and Meropenem Pneumonia Drugs. Electroanal. Chem. 2021, 902, 115814. DOI: 10.1016/j.jelechem.2021.115814.
  • El-Sayed, G. M.; Al-Ghobashy, M. A.; Attia, A. K.; Kamal, S. M. Nanoparticle-Enhanced Potentiometric Ion-Selective Electrodes for Therapeutic Drug Monitoring of Linezolid. J. Electrochem. Soc. 2019, 166, B1312–B1320. DOI: 10.1149/2.1221913jes.
  • Meng, J.; Zhong, D.; Li, L.; Yuan, Z.; Yuan, H.; Xie, C.; Zhou, J.; Li, C.; Gordeev, M. F.; Liu, J.; Chen, X. Metabolism of MRX-I, a Novel Antibacterial Oxazolidinone, in Humans: The Oxidative Ring Opening of 2,3-Dihydropyridin-4-One Catalyzed by Non-P450 Enzymes. Drug Metab. Dispos. 2015, 43, 646–659. DOI: 10.1124/dmd.114.061747.
  • Eckburg, P. B.; Ge, Y.; Hafkin, B. Single- and Multiple-Dose Study to Determine the Safety, Tolerability, Pharmacokinetics, and Food Effect of Oral MRX-I versus Linezolid in Healthy Adult Subjects. Antimicrob. Agents Chemother. 2017, 61, e02181-16. DOI: 10.1128/AAC.02181-16.
  • Wu, X.; Li, Y.; Zhang, J.; Zhang, Y.; Yu, J.; Cao, G.; Chen, Y.; Guo, B.; Shi, Y.; Huang, J.; et al. Short-Term Safety, Tolerability, and Pharmacokinetics of MRX-I, an Oxazolidinone Antibacterial Agent, in Healthy Chinese Subjects. Clin. Ther. 2018, 40, 322–332.e5. DOI: 10.1016/j.clinthera.2017.12.017.
  • Li, L.; Wu, H.; Chen, Y.; Yuan, H.; Wu, J.; Wu, X.; Zhang, Y.; Cao, G.; Guo, B.; Wu, J.; et al. Population Pharmacokinetics Study of Contezolid (MRX-I), a Novel Oxazolidinone Antibacterial Agent, in Chinese Patients. Clin. Ther. 2020, 42, 818–829. DOI: 10.1016/j.clinthera.2020.03.020.
  • Wu, J.; Wu, H.; Wang, Y.; Chen, Y.; Guo, B.; Cao, G.; Wu, X.; Yu, J.; Wu, J.; Zhu, D.; et al. Tolerability and Pharmacokinetics of Contezolid at Therapeutic and Supratherapeutic Doses in Healthy Chinese Subjects, and Assessment of Contezolid Dosing Regimens Based on Pharmacokinetic/Pharmacodynamic Analysis. Clin. Ther. 2019, 41, 1164–1174 e4. DOI: 10.1016/j.clinthera.2019.04.025.
  • Wu, X.; Meng, J.; Yuan, H.; Zhong, D.; Yu, J.; Cao, G.; Liu, X.; Guo, B.; Chen, Y.; Li, Y.; et al. Pharmacokinetics and Disposition of Contezolid in Humans: Resolution of a Disproportionate Human Metabolite for Clinical Development. Antimicrob. Agents Chemother. 2021, 65, e0040921. DOI: 10.1128/AAC.00409-21.
  • Wang, Y.; Wu, H.; Wu, J.; Fan, Y.; Liu, X.; Li, Y.; Hu, J.; Zhang, J.; Guo, B. Development and Validation of Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometric Methods for Simultaneous and Rapid Determination of Contezolid and Its Major Metabolite M2 in Plasma and Urine Samples and Its Application to a Study in Subjects with Moderate Liver Impairment. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2022, 1191, 123129. DOI: 10.1016/j.jchromb.2022.123129.
  • Zhang, G.; Zhang, N.; Dong, L.; Bai, N.; Cai, Y. Development and Validation of an LC-MS/MS Method for the Quantitative Determination of Contezolid in Human Plasma and Cerebrospinal Fluid. Pharmaceuticals (Basel) 2022, 16, 32–56. DOI: 10.3390/ph16010032.
  • Jeong, J.-W.; Jung, S.-J.; Lee, H.-H.; Kim, Y.-Z.; Park, T.-K.; Cho, Y.-L.; Chae, S.-E.; Baek, S.-Y.; Woo, S.-H.; Lee, H.-S.; Kwak, J.-H. In Vitro and in Vivo Activities of LCB01-0371, a New Oxazolidinone. Antimicrob. Agents Chemother. 2010, 54, 5359–5362. DOI: 10.1128/AAC.00723-10.
  • Kim, J. S.; Kim, Y.-H.; Lee, S. H.; Kim, Y. H.; Kim, J.-W.; Kang, J. Y.; Kim, S. K.; Kim, S. J.; Kang, Y.-S.; Kim, T.-H.; et al. Early Bactericidal Activity of Delpazolid (LCB01-0371) in Patients with Pulmonary Tuberculosis. Antimicrob. Agents Chemother. 2022, 66, e0168421-e0168421. DOI: 10.1128/AAC.01684-21.
  • Cho, Y. L.; Jang, J. Development of Delpazolid for the Treatment of Tuberculosis. Appl. Sci. 2020, 10, 2211–2221. DOI: 10.3390/app10072211.
  • Cho, Y. S.; Lim, H. S.; Lee, S. H.; Cho, Y. L.; Nam, H. S.; Bae, K. S. Pharmacokinetics, Pharmacodynamics, and Tolerability of Single-Dose Oral LCB01-0371, A Novel Oxazolidinone with Broad-Spectrum Activity, in Healthy Volunteers. Antimicrob. Agents Chemother. 2018, 62, e00451-18. DOI: 10.1128/AAC.00451-18.
  • Choi, Y.; Lee, S. W.; Kim, A.; Jang, K.; Nam, H.; Cho, Y. L.; Yu, K. S.; Jang, I. J.; Chung, J. Y. Safety, Tolerability and Pharmacokinetics of 21 Day Multiple Oral Administration of a New Oxazolidinone Antibiotic, LCB01-0371, in Healthy Male Subjects. J. Antimicrob. Chemother. 2018, 73, 183–190. DOI: 10.1093/jac/dkx367.
  • Cho, Y. S.; Lim, H. S.; Cho, Y. L.; Nam, H. S.; Bae, K. S. Multiple-Dose Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Oral LCB01-0371 in Healthy Male Volunteers. Clin. Ther. 2018, 40, 2050–2064. DOI: 10.1016/j.clinthera.2018.10.007.
  • Cho, Y. S.; Lim, H. S.; Han, S.; Yoon, S. K.; Kim, H.; Cho, Y. L.; Nam, H. S.; Bae, K. S. Single-Dose Intravenous Safety, Tolerability, and Pharmacokinetics and Absolute Bioavailability of LCB01-0371. Clin. Ther. 2019, 41, 92–106. DOI: 10.1016/j.clinthera.2018.11.009.
  • Sunwoo, J.; Kim, Y. K.; Choi, Y.; Yu, K. S.; Nam, H.; Cho, Y. L.; Yoon, S.; Chung, J. Y. Effect of Food on the Pharmacokinetic Characteristics of a Single Oral Dose of LCB01-0371, a Novel Oxazolidinone Antibiotic. Drug Des. Devel. Ther. 2018, 12, 1707–1714. DOI: 10.2147/DDDT.S155657.
  • Lemaire, S.; Kosowska-Shick, K.; Appelbaum, P. C.; Verween, G.; Tulkens, P. M.; Van Bambeke, F. Cellular Pharmacodynamics of the Novel Biaryloxazolidinone Radezolid: Studies with Infected Phagocytic and Nonphagocytic Cells, Using Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, and Legionella pneumophila. Antimicrob Agents Chemother. 2010, 54, 2549–2559. DOI: 10.1128/AAC.01724-09.
  • CABP. https://newdrugapprovals.org/2014/03/31/radezolid-in-phase-2rib-x-pharmaceuticals/#:∼:text=Rib%2DX%20Pharmaceuticals%20announced%20that,acquired%20bacterial%20pneumonia%20.
  • Kong, Q.; Yang, Y. Recent Advances in Antibacterial Agents. Bioorg. Med. Chem. Lett. 2021, 35, 127799. DOI: 10.1016/j.bmcl.2021.127799.
  • Michalska, K.; Gruba, E.; Mizera, M.; Lewandowska, K.; Bednarek, E.; Bocian, W.; Cielecka-Piontek, J. Application of Spectroscopic Methods (FT-IR, Raman, ECD and NMR) in Studies of Identification and Optical Purity of Radezolid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 183, 116–122. DOI: 10.1016/j.saa.2017.04.038.
  • Michalska, K.; Gruba, E.; Bocian, W.; Cielecka-Piontek, J. Enantioselective Recognition of Radezolid by Cyclodextrin Modified Capillary Electrokinetic Chromatography and Electronic Circular Dichroism. J. Pharm. Biomed. Anal. 2017, 139, 98–108. DOI: 10.1016/j.jpba.2017.01.041.
  • Bocian, W.; Bednarek, E.; Michalska, K. Explanation of the Formation of Complexes between Representatives of Oxazolidinones and HDAS-beta-CD Using Molecular Modeling as a Complementary Technique to cEKC and NMR. IJMS 2021, 22, 7139–7160. DOI: 10.3390/ijms22137139.
  • Umumararungu, T.; Mukazayire, M. J.; Mpenda, M.; Mukanyangezi, M. F.; Nkuranga, J. B.; Mukiza, J.; Olawode, E. O. A Review of Recent Advances in anti-Tubercular Drug Development. Indian J. Tuberc. 2020, 67, 539–559. DOI: 10.1016/j.ijtb.2020.07.017.
  • AlMatar, M.; AlMandeal, H.; Var, I.; Kayar, B.; Köksal, F. New Drugs for the Treatment of Mycobacterium tuberculosis Infection. Biomed. Pharmacother. 2017, 91, 546–558. DOI: 10.1016/j.biopha.2017.04.105.
  • Perveen, S.; Kumari, D.; Singh, K.; Sharma, R. Tuberculosis Drug Discovery: Progression and Future Interventions in the Wake of Emerging Resistance. Eur. J. Med. Chem. 2022, 229, 114066. DOI: 10.1016/j.ejmech.2021.114066.
  • Bruinenberg, P.; Nedelman, J.; Yang, T. J.; Pappas, F.; Everitt, D. Single Ascending-Dose Study to Evaluate the Safety, Tolerability, and Pharmacokinetics of Sutezolid in Healthy Adult Subjects. Antimicrob. Agents Chemother. 2022, 66, e0210821. DOI: 10.1128/aac.02108-21.
  • Guo, K.; Zhang, T.; Wang, Y.; Jin, B.; Ma, C. Characterization of Degradation Products and Process-Related Impurity of Sutezolid by Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2019, 169, 196–207. DOI: 10.1016/j.jpba.2019.03.005.
  • Michalska, K.; Bocian, W.; Bednarek, E.; Pałys, B.; Cielecka-Piontek, J. Enantioselective Recognition of Sutezolid by Cyclodextrin Modified non-aqueous Capillary Electrophoresis and Explanation of Complex Formation by Means of Infrared Spectroscopy, NMR and Molecular Modelling. J. Pharm. Biomed. Anal. 2019, 169, 49–59. DOI: 10.1016/j.jpba.2019.02.033.
  • Yu, Z.; Tang, D. Artificial Neural Network-Assisted Wearable Flexible Sweat Patch for Drug Management in Parkinson’s Patients Based on Vacancy-Engineered Processing of g-C3N4. Anal. Chem. 2022, 94, 18000–18008. DOI: 10.1021/acs.analchem.2c04291.
  • Li, Y.; Zeng, R.; Wang, W.; Xu, J.; Gong, H.; Li, L.; Li, M.; Tang, D. Size-Controlled Engineering Photoelectrochemical Biosensor for Human Papillomavirus-16 Based on CRISPR-Cas12a-Induced Disassembly of Z-Scheme Heterojunctions. ACS Sens. 2022, 7, 1593–1601. DOI: 10.1021/acssensors.2c00691.
  • Yu, Z.; Gong, H.; Xu, J.; Li, Y.; Zeng, Y.; Liu, X.; Tang, D. Exploiting Photoelectric Activities and Piezoelectric Properties of NaNbO(3) Semiconductors for Point-of-Care Immunoassay. Anal. Chem. 2022, 94, 3418–3426. DOI: 10.1021/acs.analchem.2c00066.
  • Zeng, R.; Qiu, M.; Wan, Q.; Huang, Z.; Liu, X.; Tang, D.; Knopp, D. Smartphone-Based Electrochemical Immunoassay for Point-of-Care Detection of SARS-CoV-2 Nucleocapsid Protein. Anal. Chem. 2022, 94, 15155–15161. DOI: 10.1021/acs.analchem.2c03606.
  • Cai, G.; Yu, Z.; Tong, P.; Tang, D. Ti3C2 MXene Quantum Dot-Encapsulated Liposomes for Photothermal Immunoassays Using a Portable near-Infrared Imaging Camera on a Smartphone. Nanoscale 2019, 11, 15659–15667. DOI: 10.1039/c9nr05797h.
  • Zeng, R.; Wang, W.; Chen, M.; Wan, Q.; Wang, C.; Knopp, D.; Tang, D. CRISPR-Cas12a-Driven MXene-PEDOT:PSS Piezoresistive Wireless Biosensor. Nano Energy 2021, 82, 105711. DOI: 10.1016/j.nanoen.2020.105711.
  • Lin, Q.; Yu, Z.; Lu, L.; Huang, X.; Wei, Q.; Tang, D. Smartphone-Based Photoelectrochemical Immunoassay of Prostate-Specific Antigen Based on Co-Doped Bi(2)O(2)S Nanosheets. Biosens. Bioelectron. 2023, 230, 115260. DOI: 10.1016/j.bios.2023.115260.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.