292
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Current Trends in Nanomaterials-Based Electrochemiluminescence Aptasensors for the Determination of Antibiotic Residues in Foodstuffs: A Comprehensive Review

, , , , , , , , & show all

References

  • Chen, J.; Ying, G.-G.; Deng, W.-J. Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. J. Agric. Food Chem. 2019, 67, 7569–7586. DOI: 10.1021/acs.jafc.9b01334.
  • Lan, L.; Yao, Y.; Ping, J.; Ying, Y. Recent Advances in Nanomaterial-Based Biosensors for Antibiotics Detection. Biosens. Bioelectron. 2017, 91, 504–514. DOI: 10.1016/j.bios.2017.01.007.
  • Banan, K.; Hatamabadi, D.; Afsharara, H.; Mostafiz, B.; Sadeghi, H.; Rashidi, S.; Beirami, A. D.; Shahbazi, M.-A.; Keçili, R.; Hussain, C. M.; Ghorbani-Bidkorbeh, F. MIP-Based Extraction Techniques for the Determination of Antibiotic Residues in Edible Meat Samples: Design, Performance & Recent Developments. Trends Food Sci. Technol. 2022, 119, 164–178. DOI: 10.1016/j.tifs.2021.11.022.
  • Sun, Y.; Zhao, J.; Liang, L. Recent Development of Antibiotic Detection in Food and Environment: The Combination of Sensors and Nanomaterials. Mikrochim. Acta. 2021, 188, 21. DOI: 10.1007/s00604-020-04671-3.
  • Ahmed, S.; Ning, J.; Peng, D.; Chen, T.; Ahmad, I.; Ali, A.; Lei, Z.; Abu Bakr Shabbir, M.; Cheng, G.; Yuan, Z. Current Advances in Immunoassays for the Detection of Antibiotics Residues: A Review. Food Agri. Immunol. 2020, 31, 268–290. DOI: 10.1080/09540105.2019.1707171.
  • Ragab, M. A.; El-Kimary, E. I. Recent Advances and Applications of Microfluidic Capillary Electrophoresis: A Comprehensive Review (2017–Mid 2019). Crit. Rev. Anal. Chem. 2021, 51, 709–741. DOI: 10.1080/10408347.2020.1765729.
  • Mehata, A. K.; Suseela, M. N. L.; Gokul, P.; Malik, A. K.; Viswanadh, M. K.; Singh, C.; Selvin, J.; Muthu, M. S. Fast and Highly Efficient Liquid Chromatographic Methods for Qualification and Quantification of Antibiotic Residues from Environmental Waste. Microchem. J. 2022, 179, 107573. DOI: 10.1016/j.microc.2022.107573.
  • Li, J.; Jia, H.; Ren, X.; Li, Y.; Liu, L.; Feng, R.; Ma, H.; Wei, Q. Dumbbell Plate‐Shaped AIEgen‐Based Luminescent MOF with High Quantum Yield as Self‐Enhanced ECL Tags: Mechanism Insights and Biosensing Application. Small. 2022, 18, e2106567. DOI: 10.1002/smll.202106567.
  • Li, S.; Pang, C.; Ma, X.; Wu, Y.; Wang, M.; Xu, Z.; Luo, J. Aggregation-Induced Electrochemiluminescence and Molecularly Imprinted Polymer Based Sensor with Fe3O4@ Pt Nanoparticle Amplification for Ultrasensitive Ciprofloxacin Detection. Microchem. J. 2022, 178, 107345. DOI: 10.1016/j.microc.2022.107345.
  • Zhao, Y.; Wang, R.; Wang, Y.; Jie, G.; Zhou, H. Dual-Channel Molecularly Imprinted Sensor Based on Dual-Potential Electrochemiluminescence of Zn-MOFs for Double Detection of Trace Chloramphenicol. Food Chem. 2023, 413, 135627. DOI: 10.1016/j.foodchem.2023.135627.
  • Shen, Y.; Gao, X.; Lu, H.-J.; Nie, C.; Wang, J. Electrochemiluminescence-Based Innovative Sensors for Monitoring the Residual Levels of Heavy Metal Ions in Environment-Related Matrices. Coord. Chem. Rev. 2023, 476, 214927. DOI: 10.1016/j.ccr.2022.214927.
  • Shen, Y.; Wei, Y.; Zhu, C.; Cao, J.; Han, D.-M. Ratiometric Fluorescent Signals-Driven Smartphone-Based Portable Sensors for Onsite Visual Detection of Food Contaminants. Coord. Chem. Rev. 2022, 458, 214442. DOI: 10.1016/j.ccr.2022.214442.
  • Li, Y.; Zhou, H.; Zhang, J.; Cui, B.; Fang, Y. Determination of Nitrite in Food Based on Its Sensitizing Effect on Cathodic Electrochemiluminescence of Conductive PTH-DPP Films. Food Chem. 2022, 397, 133760. DOI: 10.1016/j.foodchem.2022.133760.
  • Abdussalam, A.; Xu, G. Recent Advances in Electrochemiluminescence Luminophores. Anal. Bioanal. Chem. 2022, 414, 131–146. DOI: 10.1007/s00216-021-03329-0.
  • Qin, D.; Meng, S.; Wu, Y.; Mo, G.; Deng, B. Aggregation-Induced Electrochemiluminescence Resonance Energy Transfer with Dual Quenchers for the Sensitive Detection of Prostate-Specific Antigen. Sens. Actuators, B. 2022, 367, 132176. DOI: 10.1016/j.snb.2022.132176.
  • Karimzadeh, Z.; Mahmoudpour, M.; Rahimpour, E.; Jouyban, A. Nanomaterial Based PVA Nanocomposite Hydrogels for Biomedical Sensing: Advances toward Designing the Ideal Flexible/Wearable Nanoprobes. Adv. Colloid Interf. Sci. 2022, 305, 102705. DOI: 10.1016/j.cis.2022.102705.
  • Karimzadeh, Z.; Mahmoudpour, M.; Guardia, M. D. L.; Ezzati Nazhad Dolatabadi, J.; Jouyban, A. Aptamer-Functionalized Metal Organic Frameworks as an Emerging Nanoprobe in the Food Safety Field: Promising Development Opportunities and Translational Challenges. TrAC, Trends Anal. Chem. 2022, 152, 116622. DOI: 10.1016/j.trac.2022.116622.
  • Mahmoudpour, M.; Ding, S.; Lyu, Z.; Ebrahimi, G.; Du, D.; Ezzati Nazhad Dolatabadi, J.; Torbati, M.; Lin, Y. Aptamer Functionalized Nanomaterials for Biomedical Applications: Recent Advances and New Horizons. Nano Today. 2021, 39, 101177. DOI: 10.1016/j.nantod.2021.101177.
  • Khonsari, Y. N.; Sun, S. Recent Trends in Electrochemiluminescence Aptasensors and Their Applications. Chem. Commun. (Camb). 2017, 53, 9042–9054. DOI: 10.1039/c7cc04300g.
  • Yang, F.; Li, J.; Dong, H.; Wang, G.; Han, J.; Xu, R.; Kong, Q.; Huang, J.; Xiang, Y.; Yang, Q.; et al. A Novel Label-Free Electrochemiluminescence Aptasensor Using a Tetrahedral DNA Nanostructure as a Scaffold for Ultrasensitive Detection of Organophosphorus Pesticides in a Luminol–H 2 O 2 System. Analyst. 2022, 147, 712–721. DOI: 10.1039/d1an02060a.
  • Li, Y.; Gao, X.; Fang, Y.; Cui, B.; Shen, Y. Nanomaterials-Driven Innovative Electrochemiluminescence Aptasensors in Reporting Food Pollutants. Coord. Chem. Rev. 2023, 485, 215136. DOI: 10.1016/j.ccr.2023.215136.
  • Fan, Y.; Liu, Z.; Wang, J.; Cui, C.; Hu, L. An “Off–On” Electrochemiluminescence Aptasensor for Determination of Lincomycin Based on CdS QDs/Carboxylated g-C3N4. Mikrochim. Acta. 2022, 190, 11. DOI: 10.1007/s00604-022-05587-w.
  • Duan, X.; Zhang, N.; Li, Z.; Zhang, L.; Sun, F.; Zhou, Z.; Liu, H.; Guo, Y.; Sun, X.; Jiang, J.; Zhang, D. Ultrasensitive Electrochemiluminescent Aptasensor for Trace Detection of Kanamycin Based-on Novel Semi-Sandwich Gadolinium Phthalocyanine Complex and Dysprosium Metal-Organic Framework. J. Colloid Interf. Sci. 2023, 632, 171–178. DOI: 10.1016/j.jcis.2022.11.016.
  • Hercules, D. M. Chemiluminescence Resulting from Electrochemically Generated Species. Sci. 1964, 145, 808–809. DOI: 10.1126/science.145.3634.808.
  • Kurup, C. P.; Lim, S. A.; Ahmed, M. U. Nanomaterials as Signal Amplification Elements in Aptamer-Based Electrochemiluminescent Biosensors. Bioelectrochem. 2022, 147, 108170. DOI: 10.1016/j.bioelechem.2022.108170.
  • Zhou, H.; Liu, J.; Zhang, S. Quantum Dot-Based Photoelectric Conversion for Biosensing Applications. TrAC, Trends Anal. Chem. 2015, 67, 56–73. DOI: 10.1016/j.trac.2014.12.007.
  • Lu, Q.; Zhang, J.; Wu, Y.; Chen, S. Conjugated Polymer Dots/Oxalate Anodic Electrochemiluminescence System and Its Application for Detecting Melamine. RSC Adv. 2015, 5, 63650–63654. DOI: 10.1039/C5RA10809H.
  • Yuan, Y.; Han, S.; Hu, L.; Parveen, S.; Xu, G. Coreactants of Tris (2, 2′-Bipyridyl) Ruthenium (II) Electrogenerated Chemiluminescence. Electrochim. Acta. 2012, 82, 484–492. DOI: 10.1016/j.electacta.2012.03.156.
  • Chen, L.; Wei, J.; Chi, Y.; Zhou, S. F.; Tris, 2.; Bipyridyl, 2’. Ruthenium (II)‐Nanomaterial Co‐Reactant Electrochemiluminescence. Chem. Electro. Chem. 2019, 6, 3878–3884. DOI: 10.1002/celc.201900693.
  • Chang, K.; Sun, P.; Dong, X.; Zhu, C.; Liu, X.; Zheng, D.; Liu, C. Aptamers as Recognition Elements for Electrochemical Detection of Exosomes. Chem. Res. Chin. Univ. 2022, 38, 879–885. DOI: 10.1007/s40242-022-2088-8.
  • Xue, Y.-Q.; Zhang, H.; Han, Z.-Y.; He, H. Electrochemical Impedimetric Aptasensors Based on Hyper-Cross-Linked Porous Organic Frameworks for the Determination of Kanamycin. J. Mater. Chem. C. 2021, 9, 12566–12572. DOI: 10.1039/D1TC02143E.
  • Han, D.; Li, X.; Bian, X.; Wang, J.; Kong, L.; Ding, S.; Yan, Y. Localized Surface Plasmon-Enhanced Electrochemiluminescence Biosensor for Rapid, Label-Free, and Single-Step Detection of Broad-Spectrum Bacteria Using Urchin-like Au and Ag Nanoparticles. Sens. Actuators, B. 2022, 355, 131120. DOI: 10.1016/j.snb.2021.131120.
  • Khoshfetrat, S. M.; Bagheri, H.; Mehrgardi, M. A. Visual Electrochemiluminescence Biosensing of Aflatoxin M1 Based on Luminol-Functionalized, Silver Nanoparticle-Decorated Graphene Oxide. Biosens. Bioelectron. 2018, 100, 382–388. DOI: 10.1016/j.bios.2017.09.035.
  • Li, B.; Wang, Y.; Wei, H.; Dong, S. Amplified Electrochemical Aptasensor Taking AuNPs Based Sandwich Sensing Platform as a Model. Biosens. Bioelectron. 2008, 23, 965–970. DOI: 10.1016/j.bios.2007.09.019.
  • Liu, S.-Q.; Chen, J.-S.; Liu, X.-P.; Mao, C.-J.; Jin, B.-K. An Electrochemiluminescence Aptasensor Based on Highly Luminescent Silver-Based MOF and Biotin–Streptavidin System for Mercury Ion Detection. Analyst. 2023, 148, 772–779. DOI: 10.1039/d2an02036j.
  • Chen, Y.; Zhou, S.; Li, L.; Zhu, J.-J. Nanomaterials-Based Sensitive Electrochemiluminescence Biosensing. Nano Today. 2017, 12, 98–115. DOI: 10.1016/j.nantod.2016.12.013.
  • Fiorani, A.; Merino, J. P.; Zanut, A.; Criado, A.; Valenti, G.; Prato, M.; Paolucci, F. Advanced Carbon Nanomaterials for Electrochemiluminescent Biosensor Applications. Curr. Opin. Electrochem. 2019, 16, 66–74. DOI: 10.1016/j.coelec.2019.04.018.
  • Zhai, W.; Srikanth, N.; Kong, L. B.; Zhou, K. Carbon Nanomaterials in Tribology. Carbon. 2017, 119, 150–171. DOI: 10.1016/j.carbon.2017.04.027.
  • Mahmoudpour, M.; Dolatabadi, J. E.-N.; Hasanzadeh, M.; Soleymani, J. Carbon-Based Aerogels for Biomedical Sensing: Advances toward Designing the Ideal Sensor. Adv. Colloid Interf. Sci. 2021, 298, 102550. DOI: 10.1016/j.cis.2021.102550.
  • Cheng, S.; Zhang, H.; Huang, J.; Xu, R.; Sun, X.; Guo, Y. Highly Sensitive Electrochemiluminescence Aptasensor Based on Dual-Signal Amplification Strategy for Kanamycin Detection. Sci. Total Environ. 2020, 737, 139785. DOI: 10.1016/j.scitotenv.2020.139785.
  • Liu, Y.; Wang, H.; Xiong, C.; Yuan, Y.; Chai, Y.; Yuan, R. A Sensitive Electrochemiluminescence Immunosensor Based on Luminophore Capped Pd@ Au Core-Shell Nanoparticles as Signal Tracers and Ferrocenyl Compounds as Signal Enhancers. Biosens. Bioelectron. 2016, 81, 334–340. DOI: 10.1016/j.bios.2016.03.014.
  • Zhu, M. J.; Pan, J. B.; Wu, Z. Q.; Gao, X. Y.; Zhao, W.; Xia, X. H.; Xu, J. J.; Chen, H. Y. Electrogenerated Chemiluminescence Imaging of Electrocatalysis at a Single Au‐Pt Janus Nanoparticle. Angew. Chem. 2018, 130, 4074–4078. DOI: 10.1002/ange.201800706.
  • Xiong, H.; Gao, J.; Wang, Y.; Chen, Z.; Chen, M.-M.; Zhang, X.; Wang, S. Construction of an Ultrasensitive Electrochemiluminescent Aptasensor for Ractopamine Detection. Analyst. 2019, 144, 2550–2555. DOI: 10.1039/c9an00183b.
  • Huang, J.; Xiang, Y.; Li, J.; Kong, Q.; Zhai, H.; Xu, R.; Yang, F.; Sun, X.; Guo, Y. A Novel Electrochemiluminescence Aptasensor Based on Copper-Gold Bimetallic Nanoparticles and Its Applications. Biosens. Bioelectron. 2021, 194, 113601. DOI: 10.1016/j.bios.2021.113601.
  • Mohamad, A.; Teo, H.; Keasberry, N. A.; Ahmed, M. U. Recent Developments in Colorimetric Immunoassays Using Nanozymes and Plasmonic Nanoparticles. Crit. Rev. Biotechnol. 2019, 39, 50–66. DOI: 10.1080/07388551.2018.1496063.
  • Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with Enzyme-like Characteristics (Nanozymes): Next-Generation Artificial Enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. DOI: 10.1039/c8cs00457a.
  • Cheng, S.; Liu, H.; Zhang, H.; Chu, G.; Guo, Y.; Sun, X. Ultrasensitive Electrochemiluminescence Aptasensor for Kanamycin Detection Based on Silver Nanoparticle-Catalyzed Chemiluminescent Reaction between Luminol and Hydrogen Peroxide. Sens. Actuators, B. 2020, 304, 127367. DOI: 10.1016/j.snb.2019.127367.
  • Xie, S.; Ai, L.; Cui, C.; Fu, T.; Cheng, X.; Qu, F.; Tan, W. Functional Aptamer-Embedded Nanomaterials for Diagnostics and Therapeutics. ACS Appl. Mater. Interf. 2021, 13, 9542–9560. DOI: 10.1021/acsami.0c19562.
  • Zhang, Y.; Ge, S.; Wang, S.; Yan, M.; Yu, J.; Song, X.; Liu, W. Magnetic Beads-Based Electrochemiluminescence Immunosensor for Determination of Cancer Markers Using Quantum Dot Functionalized PtRu Alloys as Labels. Analyst. 2012, 137, 2176–2182. DOI: 10.1039/c2an16170b.
  • Gomes, S. A.; Vieira, C. S.; Almeida, D. B.; Santos-Mallet, J. R.; Menna-Barreto, R. F.; Cesar, C. L.; Feder, D. CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms. Sensors (Basel). 2011, 11, 11664–11678. DOI: 10.3390/s111211664.
  • Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Sci. 1996, 271, 933–937. DOI: 10.1126/science.271.5251.933.
  • Yang, E.; Zhang, Y.; Shen, Y. Quantum Dots for Electrochemiluminescence Bioanalysis – A Review. Anal. Chim. Acta. 2022, 1209, 339140. DOI: 10.1016/j.aca.2021.339140.
  • Zhang, X.-L.; Li, X.; Li, X.-T.; Gao, Y.; Feng, F.; Yang, G.-J. Electrochemiluminescence Sensor for Pentoxifylline Detection Using Au Nanoclusters@ Graphene Quantum Dots as an Amplified Electrochemiluminescence Luminophore. Sens. Actuators, B. 2019, 282, 927–935. DOI: 10.1016/j.snb.2018.11.113.
  • Hamami, M.; Bouaziz, M.; Raouafi, N.; Bendounan, A.; Korri-Youssoufi, H. Mos2/Ppy Nanocomposite as a Transducer for Electrochemical Aptasensor of Ampicillin in River Water. Biosensors. 2021, 11, 311. DOI: 10.3390/bios11090311.
  • Feng, D.; Tan, X.; Wu, Y.; Ai, C.; Luo, Y.; Chen, Q.; Han, H. Electrochemiluminecence Nanogears Aptasensor Based on MIL-53 (Fe)@ CdS for Multiplexed Detection of Kanamycin and Neomycin. Biosens. Bioelectron. 2019, 129, 100–106. DOI: 10.1016/j.bios.2018.12.050.
  • Muzyka, K.; Saqib, M.; Liu, Z.; Zhang, W.; Xu, G. Progress and Challenges in Electrochemiluminescent Aptasensors. Biosens. Bioelectron. 2017, 92, 241–258. DOI: 10.1016/j.bios.2017.01.015.
  • Qin, X.; Zhan, Z.; Ding, Z. Progress in Electrochemiluminescence Biosensors Based on Organic Framework Emitters. Curr. Opin. Electrochem. 2023, 39, 101283. DOI: 10.1016/j.coelec.2023.101283.
  • Glinka, M.; Wojnowski, W.; Wasik, A. Determination of Aminoglycoside Antibiotics: Current Status and Future Trends. TrAC, Trends Anal. Chem. 2020, 131, 116034. DOI: 10.1016/j.trac.2020.116034.
  • Arsand, J. B.; Jank, L.; Martins, M. T.; Hoff, R. B.; Barreto, F.; Pizzolato, T. M.; Sirtori, C. Determination of Aminoglycoside Residues in Milk and Muscle Based on a Simple and Fast Extraction Procedure Followed by Liquid Chromatography Coupled to Tandem Mass Spectrometry and Time of Flight Mass Spectrometry. Talanta. 2016, 154, 38–45. DOI: 10.1016/j.talanta.2016.03.045.
  • Liu, X.-P.; Cheng, J.-L.; Mao, C.-J.; Wu, M.-Z.; Chen, J.-S.; Kang Jin, B. Highly Sensitive Electrochemiluminescence Aptasensor Based on a g-C3N4-COOH/ZnSe Nanocomposite for Kanamycin Detection. Microchem. J. 2022, 172, 106928. DOI: 10.1016/j.microc.2021.106928.
  • Dong, Y.-P.; Gao, T.-T.; Zhou, Y.; Zhu, J.-J. Electrogenerated Chemiluminescence Resonance Energy Transfer between Luminol and CdSe@ ZnS Quantum Dots and Its Sensing Application in the Determination of Thrombin. Anal. Chem. 2014, 86, 11373–11379. DOI: 10.1021/ac5033319.
  • Cheng, S.; Xu, R.; Yang, F.; Huang, J.; Sun, X.; Huang, X.; Li, H.; Li, F.; Guo, Y.; Hasanzadeh, M.; Zhu, Y. Novel Sandwich-Type Electrochemiluminescence Aptasensor Based on Luminol Functionalized Aptamer as Signal Probe for Kanamycin Detection. Bioelectrochem. 2022, 147, 108174. DOI: 10.1016/j.bioelechem.2022.108174.
  • Li, J.; Luo, M.; Yang, H.; Ma, C.; Cai, R.; Tan, W. Novel Dual-Signal Electrochemiluminescence Aptasensor Involving the Resonance Energy Transform System for Kanamycin Detection. Anal. Chem. 2022, 94, 6410–6416. DOI: 10.1021/acs.analchem.2c01163.
  • Du, X.; Sun, J.; Li, Y.; Du, W.; Jiang, D. Self-Accelerated Electrochemiluminescence Luminophor of Ag3PO4-Ti3C2 for Trace Lincomycin Aptasensing. Microchem. J. 2022, 179, 107578. DOI: 10.1016/j.microc.2022.107578.
  • Mohammadzadeh-Asl, S.; Keshtkar, A.; Dolatabadi, J. E. N.; de la Guardia, M. Nanomaterials and Phase Sensitive Based Signal Enhancment in Surface Plasmon Resonance. Biosens. Bioelectron. 2018, 110, 118–131. DOI: 10.1016/j.bios.2018.03.051.
  • Mahmoudpour, M.; Ezzati Nazhad Dolatabadi, J.; Torbati, M.; Homayouni-Rad, A. Nanomaterials Based Surface Plasmon Resonance Signal Enhancement for Detection of Environmental Pollutions. Biosens. Bioelectron. 2019, 127, 72–84. DOI: 10.1016/j.bios.2018.12.023.
  • Tedsree, K.; Li, T.; Jones, S.; Chan, C. W. A.; Yu, K. M. K.; Bagot, P. A.; Marquis, E. A.; Smith, G. D.; Tsang, S. C. E. Hydrogen Production from Formic Acid Decomposition at Room Temperature Using a Ag–Pd Core–Shell Nanocatalyst. Nat. Nanotechnol. 2011, 6, 302–307. DOI: 10.1038/nnano.2011.42.
  • Zheng, Z.; Tachikawa, T.; Majima, T. Plasmon-Enhanced Formic Acid Dehydrogenation Using Anisotropic Pd–Au Nanorods Studied at the Single-Particle Level. J. Am. Chem. Soc. 2015, 137, 948–957. DOI: 10.1021/ja511719g.
  • Li, J.; Luo, M.; Jin, C.; Zhang, P.; Yang, H.; Cai, R.; Tan, W. Plasmon-Enhanced Electrochemiluminescence of PTP-Decorated Eu MOF-Based Pt-Tipped Au Bimetallic Nanorods for the Lincomycin Assay. ACS Appl. Mater. Interf. 2022, 14, 383–389. DOI: 10.1021/acsami.1c21528.
  • Kamyabi, M. A.; Moharramnezhad, M. A Novel Cathodic Electrochemiluminescent Sensor Based on CuS/Carbon Quantum Dots/g-C3N4 Nanosheets and Boron Nitride Quantum Dots for the Sensitive Detection of Organophosphate Pesticide. Microchem. J. 2022, 179, 107421. DOI: 10.1016/j.microc.2022.107421.
  • Ma, X.; Li, M.; Kang, Q.; Huang, Y.; Ma, C.; Shen, D. A Simple and Sensitive Approach to Monitor the Spectrum Change during the Electrochemiluminescence Process and Reveal the Mutual Promotion between g-C3N4 and co-Reactant of S2O82. Sens. Actuators, B. 2022, 360, 131679. DOI: 10.1016/j.snb.2022.131679.
  • Dong, Y.-X.; Cao, J.-T.; Wang, B.; Ma, S.-H.; Liu, Y.-M. Spatial-Resolved Photoelectrochemical Biosensing Array Based on a CdS@ g-C3N4 Heterojunction: A Universal Immunosensing Platform for Accurate Detection. ACS Appl. Mater. Interf. 2018, 10, 3723–3731. DOI: 10.1021/acsami.7b13557.
  • Pang, X.; Pan, J.; Gao, P.; Wang, Y.; Wang, L.; Du, B.; Wei, Q. A Visible Light Induced Photoelectrochemical Aptsensor Constructed by Aligned ZnO@ CdTe Core Shell Nanocable Arrays/Carboxylated g-C3N4 for the Detection of Proprotein Convertase Subtilisin/Kexin Type 6 Gene. Biosens. Bioelectron. 2015, 74, 49–58. DOI: 10.1016/j.bios.2015.06.030.
  • Zhou, H.; Zhang, M.; Chen, Q.; Shan, Q.; Liu, S.; Lin, J.; Ma, L.; Zheng, G.; Li, L.; Zhao, C.; et al. Determination of Amphenicol Antibiotic Residues in Aquaculture Products by Response Surface Methodology Modified QuEChERS Method Combined with UPLC-MS/MS. Microchem. J. 2023, 190, 108729. DOI: 10.1016/j.microc.2023.108729.
  • Sun, Y.; Waterhouse, G. I. N.; Qiao, X.; Xiao, J.; Xu, Z. Determination of Chloramphenicol in Food Using Nanomaterial-Based Electrochemical and Optical sensors – A Review. Food Chem. 2023, 410, 135434. DOI: 10.1016/j.foodchem.2023.135434.
  • He, Z.-J.; Kang, T.-F.; Lu, L.-P.; Cheng, S.-Y. An Electrochemiluminescence Aptamer Sensor for Chloramphenicol Based on GO-QDs Nanocomposites and Enzyme-Linked Aptamers. Electroanal. Chem. 2020, 860, 113870. DOI: 10.1016/j.jelechem.2020.113870.
  • Yang, L.; Zheng, W.; Zhang, P.; Chen, J.; Zhang, W.; Tian, W.; Sun, Z. Freestanding Nitrogen-Doped d-Ti3C2/Reduced Graphene Oxide Hybrid Films for High Performance Supercapacitors. Electrochim. Acta. 2019, 300, 349–356. DOI: 10.1016/j.electacta.2019.01.122.
  • Ding, J.; Tang, C.; Zhu, G.; Sun, W.; Du, A.; He, F.; Wu, M.; Zhang, H. Integrating SnS2 Quantum Dots with Nitrogen-Doped Ti3C2T x MXene Nanosheets for Robust Sodium Storage Performance. ACS Appl. Energy Mater. 2021, 4, 846–854. DOI: 10.1021/acsaem.0c02730.
  • Jiang, D.; Wei, M.; Du, X.; Qin, M.; Shan, X.; Chen, Z. One-Pot Synthesis of ZnO Quantum Dots/N-Doped Ti3C2 MXene: Tunable Nitrogen-Doping Properties and Efficient Electrochemiluminescence Sensing. Chem. Eng. J. 2022, 430, 132771. DOI: 10.1016/j.cej.2021.132771.
  • Wen, J.; Jiang, D.; Shan, X.; Wang, W.; Xu, F.; Shiigi, H.; Chen, Z. Ternary Electrochemiluminescence Biosensor Based on Black Phosphorus Quantum Dots Doped Perylene Derivative and Metal Organic Frameworks as a Coreaction Accelerator for the Detection of Chloramphenicol. Microchem. J. 2022, 172, 106927. DOI: 10.1016/j.microc.2021.106927.
  • Chen, J. A.; Jin, Y.; Ren, T.; Wang, S.; Wang, X.; Zhang, F.; Tang, Y. A Novel Terbium (III) and Aptamer-Based Probe for Label-Free Detection of Three Fluoroquinolones in Honey and Water Samples. Food Chem. 2022, 386, 132751. DOI: 10.1016/j.foodchem.2022.132751.
  • Ye, Y.; Wu, T.; Jiang, X.; Cao, J.; Ling, X.; Mei, Q.; Chen, H.; Han, D.; Xu, J.-J.; Shen, Y. Portable Smartphone-Based QDs for the Visual Onsite Monitoring of Fluoroquinolone Antibiotics in Actual Food and Environmental Samples. ACS Appl. Mater. Interf. 2020, 12, 14552–14562. DOI: 10.1021/acsami.9b23167.
  • Mahmoudpour, M.; Kholafazad-Kordasht, H.; Nazhad Dolatabadi, J. E.; Hasanzadeh, M.; Rad, A. H.; Torbati, M. Sensitive Aptasensing of Ciprofloxacin Residues in Raw Milk Samples Using Reduced Graphene Oxide and Nanogold-Functionalized Poly(Amidoamine) Dendrimer: An Innovative Apta-Platform towards Electroanalysis of Antibiotics. Anal. Chim. Acta. 2021, 1174, 338736. DOI: 10.1016/j.aca.2021.338736.
  • Mahmoudpour, M.; Dolatabadi, J. E. N.; Hasanzadeh, M.; Rad, A. H.; Torbati, M.; Seidi, F. Aptasensing of Ciprofloxacin Residue Using Graphene Oxide Modified with Gold Nanoparticles and Branched Polyethyleneimine. RSC Adv. 2022, 12, 29602–29612. DOI: 10.1039/d2ra02761e.
  • Jiang, D.; Wei, M.; Du, X.; Qin, M.; Shan, X.; Wang, W.; Chen, Z. Ultrasensitive near-Infrared Aptasensor for Enrofloxacin Detection Based on Wavelength Tunable AgBr Nanocrystals Electrochemiluminescence Emission Triggered by O-Terminated Ti3C2 MXene. Biosens. Bioelectron. 2022, 200, 113917. DOI: 10.1016/j.bios.2021.113917.
  • Wang, Y.; Sun, X.; Cai, L.; Wang, H.; Zhang, B.; Fang, G.; Wang, S. A “Signal on/off” Biomimetic Electrochemiluminescence Sensor Using Titanium Carbide Nanodots as co-Reaction Accelerator for Ultra-Sensitive Detection of Ciprofloxacin. Anal. Chim. Acta. 2022, 1206, 339690. DOI: 10.1016/j.aca.2022.339690.
  • Zhao, Z.; Wu, Z.; Lin, X.; Han, F.; Liang, Z.; Huang, L.; Dai, M.; Han, D.; Han, L.; Niu, L. A Label-Free Pec Aptasensor Platform Based on g-C3N4/BiVO4 Heterojunction for Tetracycline Detection in Food Analysis. Food Chem. 2023, 402, 134258. DOI: 10.1016/j.foodchem.2022.134258.
  • Shen, Y.; Wei, Y.; Chen, H.; Wu, Z.; Ye, Y.; Han, D.-M. Liposome-Encapsulated Aggregation-Induced Emission Fluorogen Assisted with Portable Smartphone for Dynamically on-Site Imaging of Residual Tetracycline. Sens. Actuators, B. 2022, 350, 130871. DOI: 10.1016/j.snb.2021.130871.
  • Xu, R.; Shen, Z.; Xiang, Y.; Huang, J.; Wang, G.; Yang, F.; Sun, J.; Han, J.; Liu, W.; Duan, X.; et al. Portable Electrochemiluminescence Detection System Based on Silicon Photomultiplier Single Photon Detector and Aptasensor for the Detection of Tetracycline in Milk. Biosens. Bioelectron. 2023, 220, 114785. DOI: 10.1016/j.bios.2022.114785.
  • Wang, C.; Han, Q.; Liu, P.; Zhang, G.; Song, L.; Zou, X.; Fu, Y. A Superstable Luminescent Lanthanide Metal Organic Gel Utilized in an Electrochemiluminescence Sensor for Epinephrine Detection with a Narrow Potential Sweep Range. ACS Sens. 2021, 6, 252–258. DOI: 10.1021/acssensors.0c02272.
  • Wang, C.; Li, Z.; Ju, H. Copper-Doped Terbium Luminescent Metal Organic Framework as an Emitter and a co-Reaction Promoter for Amplified Electrochemiluminescence Immunoassay. Anal. Chem. 2021, 93, 14878–14884. DOI: 10.1021/acs.analchem.1c03988.
  • Du, S. Z.; Sun, Z.; Han, L.; Qing, M.; Luo, H. Q.; Li, N. B. Two 3d-4f Metal-Organic Frameworks as Fluorescent Sensor Array for the Discrimination of Phosphates Based on Different Response Patterns. Sens. Actuators, B. 2020, 324, 128757. DOI: 10.1016/j.snb.2020.128757.
  • Kuang, G.; Wang, C.; Song, L.; Zhang, G.; Yang, Y.; Fu, Y. Novel Electrochemiluminescence Luminophore Based on Flower-like Binuclear Coordination Polymer for High-Sensitivity Detection of Tetracycline in Food Products. Food Chem. 2023, 403, 134376. DOI: 10.1016/j.foodchem.2022.134376.
  • Liu, Y.; Yang, Q.; Chen, X.; Song, Y.; Wu, Q.; Yang, Y.; He, L. Sensitive Analysis of Trace Macrolide Antibiotics in Complex Food Samples by Ambient Mass Spectrometry with Molecularly Imprinted Polymer-Coated Wooden Tips. Talanta 2019, 204, 238–247. DOI: 10.1016/j.talanta.2019.05.102.
  • Veloso, W. B.; Almeida, A. T. D. F. O.; Ribeiro, L. K.; de Assis, M.; Longo, E.; Garcia, M. A. S.; Tanaka, A. A.; Santos da Silva, I.; Dantas, L. M. F. Rapid and Sensitivity Determination of Macrolides Antibiotics Using Disposable Electrochemical Sensor Based on Super P Carbon Black and Chitosan Composite. Microchem. J. 2022, 172, 106939. DOI: 10.1016/j.microc.2021.106939.
  • Li, J.; Li, W.; Liu, K.; Guo, Y.; Ding, C.; Han, J.; Li, P. Global Review of Macrolide Antibiotics in the Aquatic Environment: Sources, Occurrence, Fate, Ecotoxicity, and Risk Assessment. J. Hazard. Mater. 2022, 439, 129628. DOI: 10.1016/j.jhazmat.2022.129628.
  • Wu, B.; Guo, Y.; Cao, H.; Zhang, Y.; Yu, L.; Jia, N. A Novel Mesoporous Molecular Sieves-Based Electrochemilumenescence Sensor for Sensitive Detection of Azithromycin. Sens. Actuators, B. 2013, 186, 219–225. DOI: 10.1016/j.snb.2013.05.080.
  • Abu-Dalo, M. A.; Nassory, N. S.; Abdulla, N. I.; Al-Mheidat, I. R. Azithromycin-Molecularly Imprinted Polymer Based on PVC Membrane for Azithromycin Determination in Drugs Using Coated Graphite Electrode. Electroanal. Chem. 2015, 751, 75–79. DOI: 10.1016/j.jelechem.2015.05.030.
  • Hu, L.; Zhou, T.; Feng, J.; Jin, H.; Tao, Y.; Luo, D.; Mei, S.; Lee, Y.-I. A Rapid and Sensitive Molecularly Imprinted Electrochemiluminescence Sensor for Azithromycin Determination in Biological Samples. Electroanal. Chem. 2018, 813, 1–8. DOI: 10.1016/j.jelechem.2018.02.010.
  • Li, Y.; Xu, J.; Cheng, R.; Yang, J.; Li, C.; Liu, Y.; Xu, R.; Wei, Q.; Zhang, Y. A Robust Molecularly Imprinted Electrochemiluminescence Sensor Based on a Ni–Co Nanoarray for the Sensitive Detection of Spiramycin. Analyst. 2022, 147, 5178–5186. DOI: 10.1039/d2an01497a.
  • Cao, J.-T.; Fu, Y.-Z.; Fu, X.-L.; Ren, S.-W.; Liu, Y.-M. Dual-Wavelength Electrochemiluminescence Ratiometry for Hydrogen Sulfide Detection Based on Cd 2+-Doped gC 3 N 4 Nanosheets. Analyst. 2022, 147, 247–251. DOI: 10.1039/d1an01873f.
  • Liu, M.-L.; He, X.-J.; Li, Y.; Zhao, M.-L.; Zhuo, Y. A Convenient and Economical Strategy for Multiple-Target Electrochemiluminescence Detection Using Peroxydisulfate Solution. Talanta. 2023, 251, 123788. DOI: 10.1016/j.talanta.2022.123788.
  • Lv, Y.; Sun, Y.; Mahmood Khan, I.; Li, Q.; Zhou, Y.; Yue, L.; Zhang, Y.; Wang, Z. Locking-DNA Network Regulated CRISPR-Cas12a Fluorescent Aptasensor Based on Hollow Flower-like Magnetic MoS2 Microspheres for Sensitive Detection of Sulfadimethoxine. Chem. Eng. J. 2023, 459, 141463. DOI: 10.1016/j.cej.2023.141463.
  • Wang, J.; Xu, X.; Zheng, L.; Guo, Q.; Nie, G. A Signal “On–Off-On”-Type Electrochemiluminescence Aptamer Sensor for Detection of Sulfadimethoxine Based on Ru@ Zn-Oxalate MOF Composites. Mikrochim. Acta. 2023, 190, 131. DOI: 10.1007/s00604-023-05701-6.
  • Zhai, H.; Wang, Y.; Geng, L.; Guo, Q.; Zhang, Y.; Yang, Q.; Sun, X.; Guo, Y.; Zhang, Y. Bipotential-Resolved Electrochemiluminescence Biosensor Based on Bi2S3@ Au Nanoflowers for Simultaneous Detection of Cd (II) and Ampicillin in Aquatic Products. Food Chem. 2023, 414, 135708. DOI: 10.1016/j.foodchem.2023.135708.
  • He, B.; Wang, L.; Dong, X.; Yan, X.; Li, M.; Yan, S.; Yan, D. Aptamer-Based Thin Film Gold Electrode Modified with Gold Nanoparticles and Carboxylated Multi-Walled Carbon Nanotubes for Detecting Oxytetracycline in Chicken Samples. Food Chem. 2019, 300, 125179. DOI: 10.1016/j.foodchem.2019.125179.
  • Xu, Z.; Yi, X.; Wu, Q.; Zhu, Y.; Ou, M.; Xu, X. First Report on a BODIPY-Based Fluorescent Probe for Sensitive Detection of Oxytetracycline: Application for the Rapid Determination of Oxytetracycline in Milk, Honey and Pork. RSC Adv. 2016, 6, 89288–89297. DOI: 10.1039/C6RA19459A.
  • Shen, Y.; Zhang, Y.; Gao, Z. F.; Ye, Y.; Wu, Q.; Chen, H.-Y.; Xu, J.-J. Recent Advances in Nanotechnology for Simultaneous Detection of Multiple Pathogenic Bacteria. Nano Today. 2021, 38, 101121. DOI: 10.1016/j.nantod.2021.101121.
  • Majdinasab, M.; Marty, J. L. Recent Advances in Electrochemical Aptasensors for Detection of Biomarkers. Pharmaceuticals. 2022, 15, 995. DOI: 10.3390/ph15080995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.