182
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Review on Pretreatment and Analysis Methods of Polyether Antibiotics in Complex Samples

, , , , , ORCID Icon & show all

Reference

  • National Food Safety Standard-Maximum Residue Limits for Veterinary drugs in Food. GB 31650–2019. http://31650.foodmate.net/veterinary/drugs/lists.html (accessed March 2022).
  • List of Maximum Residue Limits (MRLs) for Veterinary Drugs in Foods. https://www.canada.ca/en/health-canada/services/drugs-health products/veterinary-drugs/maximum-residue-limits-mrls/list-maximum-residue-limits-mrls-veterinary-drugs-foods.html (accessed March 2022).
  • Maximum Residue Limits (MRLs) List of Agricultural Chemicals in Foods. https://db.ffcr.or.jp/front/ (accessed March 2022).
  • Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. http://data.europa.eu/eli/reg/2010/37(1)/oj (accessed March 2022).
  • Bak, S. A.; Hansen, M.; Krogh, K. A.; Brandt, A.; Halling-Sørensen, B.; Björklund, E. Development and Validation of an SPE Methodology Combined with LC-MS/MS for the Determination of Four Ionophores in Aqueous Environmental Matrices. Int. J. Environ. Anal. Chem. 2013, 93, 1500–1512. DOI: 10.1080/03067319.2013.763250.
  • Liu, X. X.; Xie, S. Y.; Ni, T. T.; Chen, D. M.; Wang, X.; Pan, Y. H.; Wang, Y. L.; Huang, L. L.; Cheng, G. Y.; Qu, W.; et al. Magnetic Solid-Phase Extraction Based on Carbon Nanotubes for the Determination of Polyether Antibiotic and s-Triazine Drug Residues in Animal Food with LC-MS/MS. J. Sep. Sci. 2017, 40, 2416–2430. DOI: 10.1002/jssc.201700017.
  • Dasenaki, M. E.; Thomaidis, N. S. Multi-Residue Methodology for the Determination of 16 Coccidiostats in Animal Tissues and Eggs by Hydrophilic Interaction Liquid chromatography – Tandem Mass Spectrometry. Food Chem. 2019, 275, 668–680. DOI: 10.1016/j.foodchem.2018.09.138.
  • Lee, Y. J.; Choi, J. H.; Abd El-Aty, A. M.; Chung, H. S.; Lee, H. S.; Kim, S. W.; Rahman, M. M.; Park, B. J.; Kim, J. E.; Shin, H. C.; Shim, J. H. Development of a Single-Run Analytical Method for the Detection of Ten Multiclass Emerging Contaminants in Agricultural Soil Using an Acetate-Buffered QuEChERS Method Coupled with LC-MS/MS. J. Sep. Sci. 2017, 40, 415–423. DOI: 10.1002/jssc.201600953.
  • Dai, S. Y.; Herrman, T. J. Evaluation of Two Liquid Chromatography/Tandem Mass Spectrometry Platforms for Quantification of Monensin in Animal Feed and Milk. Rapid Commun. Mass Spectrom. 2010, 24, 1431–1438. DOI: 10.1002/rcm.4533.
  • Matus, J. L.; Boison, J. O. A Multi-Residue Method for 17 Anticoccidial Drugs and Ractopamine in Animal Tissues by Liquid Chromatography-Tandem Mass Spectrometry and Time-of-Flight Mass Spectrometry. Drug Test. Anal. 2016, 8, 465–476. DOI: 10.1002/dta.2019.
  • Inoue, K.; Miura, Y.; Suzuki, M.; Kishikawa, N.; Hino, T.; Kuroda, N.; Oka, H. Simultaneous Determination of Five Polyether Ionophores Using Liquid Chromatography with One-Step Fluorescent Derivatization. Anal. Sci. 2012, 28, 175–178. DOI: 10.2116/analsci.28.175.
  • Dasenaki, M. E.; Thomaidis, N. S. Multi-Residue Determination of 115 Veterinary Drugs and Pharmaceutical Residues in Milk Powder, Butter, Fish Tissue and Eggs Using Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chim. Acta. 2015, 880, 103–121. DOI: 10.1016/j.aca.2015.04.013.
  • Zhao, X.; Wang, B.; Xie, K. Z.; Liu, J. Y.; Zhang, Y. Y.; Wang, Y. J.; Guo, T. W.; Zhang, G. X.; Dai, G. J.; Wang, J. Y. Development and Comparison of HPLC-MS/MS and UPLC-MS/MS Methods for Determining Eight Coccidiostats in Beef. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1087–1088, 98–107. DOI: 10.1016/j.jchromb.2018.04.044.
  • Silva, F. R. N.; Bortolotte, A. R.; Braga, P. A. C.; Reyes, F. G. R.; Arisseto-Bragotto, A. P. Polyether Ionophores Residues in Minas Frescal Cheese by UHPLC-MS/MS. Food Addit. Contam. Part B Surveill. 2020, 13, 130–138. DOI: 10.1080/19393210.2020.1739149.
  • Chang, K. C.; Su, J. J.; Cheng, C. Development of Online Sampling and Matrix Reduction Technique Coupled Liquid Chromatography/Ion Trap Mass Spectrometry for Determination Maduramicin in Chicken Meat. Food Chem. 2013, 141, 1522–1529. DOI: 10.1016/j.foodchem.2013.04.016.
  • Yoshikawa, S.; Nagano, C.; Kanda, M.; Hayashi, H.; Matsushima, Y.; Nakajima, T.; Tsuruoka, Y.; Nagata, M.; Koike, H.; Sekimura, K.; et al. Simultaneous Determination of Multi-Class Veterinary Drugs in Chicken Processed Foods and Muscle Using Solid-Supported Liquid Extraction Clean-up. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1057, 15–23. DOI: 10.1016/j.jchromb.2017.04.041.
  • Silva, J. M.; Azcárate, F. J.; Knobel, G.; Sosa, J. S.; Carrizo, D. B.; Boschetti, C. E. Multiple Response Optimization of a QuEChERS Extraction and HPLC Analysis of Diclazuril, Nicarbazin and Lasalocid in Chicken Liver. Food Chem. 2020, 311, 126014. DOI: 10.1016/j.foodchem.2019.126014.
  • Guo, L. L.; Xu, L. G.; Song, S. S.; Liu, L. Q.; Kuang, H. Development of an Immunochromatographic Strip for the Rapid Detection of Maduramicin in Chicken and Egg Samples. Food Agric. Immunol. 2018, 29, 458–469. DOI: 10.1080/09540105.2017.1401045.
  • Huang, J.; Chen, Y.; Sun, Z.; Qian, S.; Gu, Y.; Li, J. 2023, Available at SSRN 4506754.
  • Tian, W. H.; Zhang, X. X.; Song, M. R.; Jiang, H. Y.; Ding, S. Y.; Shen, J. Z.; Li, J. C. An Enzyme-Linked Immunosorbent Assay to Detect Salinomycin Residues Based on Immunomagnetic Bead Clean-up. Food Anal. Methods. 2017, 10, 3042–3051. DOI: 10.1007/s12161-017-0873-7.
  • Song, M. R.; Xiao, Z. M.; Xue, Y. N.; Zhang, X. Y.; Ding, S. Y.; Li, J. C. Development of an Indirect Competitive ELISA Based on Immunomagnetic Beads’ Clean-up for Detection of Maduramicin in Three Chicken Tissues. Food Anal. Methods. 2018, 29, 590–599. DOI: 10.1080/09540105.2017.1418842.
  • Huang, J. J.; Zhao, K. X.; Li, M.; Chen, Y. X.; Liang, X. Y.; Li, J. C. Development of an Immunomagnetic Bead Clean-up ELISA Method for Detection of Maduramicin Using Single-Chain Antibody in Chicken Muscle. Food Agric. Immunol. 2021, 32, 820–836. DOI: 10.1080/09540105.2021.1998388.
  • Chen, Y. X.; Zhao, K. X.; Huang, J. J.; Li, M.; Sun, X. J.; Li, J. C. Detection of Salinomycin and Lasalocid in Chicken Liver by icELISA Based on Functional Bispecific Single-Chain Antibody (scDb) and Interpretation of Molecular Recognition Mechanism. Anal. Bioanal. Chem. 2021, 413, 7031–7041. DOI: 10.1007/s00216-021-03666-0.
  • Kaklamanos, G.; Vincent, U.; von Holst, C. Multi-Residue Method for the Detection of Veterinary Drugs in Distillers Grains by Liquid chromatography-Orbitrap High Resolution Mass Spectrometry. J. Chromatogr. A. 2013, 1322, 38–48. DOI: 10.1016/j.chroma.2013.10.079.
  • Spisso, B. F.; Pereira, M. U.; Ferreira, R. G.; Monteiro, M. A.; da Costa, R. P.; Cruz, T. Á.; da Nóbrega, A. W. Pilot Survey of Hen Eggs Consumed in the Metropolitan Area of Rio de Janeiro, Brazil, for Polyether Ionophores, Macrolides and Lincosamides Residues. Food Addit. Contam. Part B Surveill. 2010, 3, 212–219. DOI: 10.1080/19393210.2010.531400.
  • Wang, B.; Liu, J. Y.; Zhao, X.; Xie, K. Z.; Diao, Z. X.; Zhang, G. X.; Zhang, T.; Dai, G. J. Determination of Eight Coccidiostats in Eggs by Liquid-Liquid Extraction-Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry. Molecules. 2020, 25, 987. DOI: 10.3390/molecules25040987.
  • Olejnik, M.; Szprengier-Juszkiewicz, T.; Jedziniak, P. Confirmatory method for determination of coccidiostats in eggs. Bulletin-Veterinary Institute in Pulawy. 2010, 54, 327–333.
  • Trace Level Determination of Eleven Antiprotozoal Agents in Eggs after Simple Matrix Clean-Up. https://www.thermoscientific.com/content/dam/tfs/ATG/CMD/CMD%20Documents/Application%20%26%20Technical%20Notes/CAN-116-Trace-Level-Determination-Eleven-Antiprotozoal-Agents-Eggs-CAN70802-EN.pdf (accessed March 2022).
  • Zang, G. D.; Fu, J. W.; Yang, Q. Z.; Huang, Z. J.; Chen, M. J. Determination of Three Kinds of Polyether Drug Residues in Eggs by QuEChERS dSPE EMR-Lipid-LC/MS/MS. Agri. Biotech. 2018, 7, 120–122.
  • Chico, J.; Rúbies, A.; Centrich, F.; Companyó, R.; Prat, M. D.; Granados, M. Use of Gel Permeation Chromatography for Clean-up in the Analysis of Coccidiostats in Eggs by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2013, 405, 4777–4786. DOI: 10.1007/s00216-013-6896-z.
  • Hu, M.; Wang, Y.; Yang, J. F.; Sun, Y. N.; Xing, G. G.; Deng, R. G.; Hu, X. F.; Zhang, G. P. A One-Pot CRISPR/Cas13a-Based Contamination-Free Biosensor for Low-Cost and Rapid Nucleic Acid Diagnostics. Biosens. Bioelectron. 2022, 202, 113994. DOI: 10.1016/j.bios.2019.111554.
  • Moloney, M.; Clarke, L.; O'Mahony, J.; Gadaj, A.; O'Kennedy, R.; Danaher, M. Determination of 20 Coccidiostats in Egg and Avian Muscle Tissue Using Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 2012, 1253, 94–104. DOI: 10.1016/j.chroma.2012.07.001.
  • Li, L. H.; Pan, Y. H.; Tao, Y. F.; Chen, D. M.; Wang, Y. L.; Wang, X.; Liu, Z. L.; Peng, D. P.; Yuan, Z. H. Development of a Sensitive Monoclonal Antibody–Based Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Determination of Monensin in Edible Chicken Tissues. Food Anal. Methods. 2019, 12, 1479–1486. DOI: 10.1007/s12161-019-01461-3.
  • Zhou, L. J.; Ying, G. G.; Liu, S.; Zhao, J. L.; Chen, F.; Zhang, R. Q.; Peng, F. Q.; Zhang, Q. Q. Simultaneous Determination of Human and Veterinary Antibiotics in Various Environmental Matrices by Rapid Resolution Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. J. Chromatogr. A. 2012, 1244, 123–138. DOI: 10.1016/j.chroma.2012.04.076.
  • Herrero, P.; Borrull, F.; Pocurull, E.; Marcé, R. M. Novel Amide Polar-Embedded Reversed-Phase Column for the Fast Liquid Chromatography-Tandem Mass Spectrometry Method to Determine Polyether Ionophores in Environmental Waters. J. Chromatogr. A. 2012, 1263, 7–13. DOI: 10.1016/j.chroma.2012.09.017.
  • de la Huebra, M. J.; Vincent, U.; von Holst, C. Determination of Semduramicin in Poultry Feed at Authorized Level by Liquid Chromatography Single Quadrupole Mass Spectrometry. J. Pharm. Biomed. Anal. 2010, 53, 860–868. DOI: 10.1016/j.jpba.2010.06.011.
  • Cronly, M.; Behan, P.; Foley, B.; Malone, E.; Shearan, P.; Regan, L. Determination of Eleven Coccidiostats in Animal Feed by Liquid Chromatography-Tandem Mass Spectrometry at Cross Contamination Levels. Anal. Chim. Acta. 2011, 700, 26–33. DOI: 10.1016/j.aca.2010.11.001.
  • Huang, M.; Braselton, W. E.; Rumbeiha, W. K.; Johnson, M. Rapid and Reliable Identification of Ionophore Antibiotics in Feeds by Liquid Chromatography-Tandem Mass Spectrometry. J. Vet. Diagn. Invest. 2011, 23, 358–363. DOI: 10.1177/104063871102300229.
  • Delahaut, P.; Pierret, G.; Ralet, N.; Dubois, M.; Gillard, N. Multi-Residue Method for Detecting Coccidiostats at Carry-over Level in Feed by HPLC-MS/MS. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2010, 27, 801–809. DOI: 10.1080/19440040903552408.
  • Rokka, M.; Jestoi, M.; Peltonen, K. Trace Level Determination of Polyether Ionophores in Feed. Biomed Res. Int. 2013, 2013, 151363. DOI: 10.1155/2013/151363.
  • Moretti, S.; Fioroni, L.; Giusepponi, D.; Pettinacci, L.; Saluti, G.; Galarini, R. Development and Validation of a Multiresidue Liquid Chromatography/Tandem Mass Spectrometry Method for 11 Coccidiostats in Feed. J. AOAC Int. 2013, 96, 1245–1257. DOI: 10.5740/jaoacint.12-440.
  • Vincent, U.; Ezerskis, Z.; Chedin, M.; von Holst, C. Determination of Ionophore Coccidiostats in Feeding Stuffs by Liquid Chromatography-Tandem Mass Spectrometry. Part II. Application to Cross-Contamination Levels and Non-Targeted Feed. J. Pharm. Biomed. Anal. 2011, 54, 526–534. DOI: 10.1016/j.jpba.2010.09.038.
  • Annunziata, L.; Visciano, P.; Stramenga, A.; Colagrande, M. N.; Campana, G.; Scortichini, G.; Migliorati, G.; Compagnone, D. Determination of Regulatory Ionophore Coccidiostat Residues in Feedstuffs at Carry-over Levels by Liquid Chromatography-Mass Spectrometry. PLoS One. 2017, 12, e0182831. DOI: 10.1371/journal.pone.0182831.
  • Ha, J.; Song, G.; Ai, L. F.; Li, J. C. Determination of Six Polyether Antibiotic Residues in Foods of Animal Origin by Solid Phase Extraction Combined with Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1017–1018, 187–194. DOI: 10.1016/j.jchromb.2016.01.057.
  • Pietruk, K.; Olejnik, M.; Jedziniak, P.; Szprengier-Juszkiewicz, T. Determination of Fifteen Coccidiostats in Feed at Carry-over Levels Using Liquid Chromatography-Mass Spectrometry. J. Pharm. Biomed. Anal. 2015, 112, 50–59. DOI: 10.1016/j.jpba.2015.03.019.
  • Wang, Z. P.; Shen, J. Z.; Linhardt, R. J.; Jiang, H.; Cheng, L. L. Liquid to Liquid Extraction and Liquid Chromatography-Tandem Mass Spectrometry Determination of Hainanmycin in Feed. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1046, 98–101. DOI: 10.1016/j.jchromb.2016.12.021.
  • González-Rubio, S.; García-Gómez, D.; Ballesteros-Gómez, A.; Rubio, S. A New Sample Treatment Strategy Based on Simultaneous Supramolecular Solvent and Dispersive Solid-Phase Extraction for the Determination of Ionophore Coccidiostats in All Legislated Foodstuffs. Food Chem. 2020, 326, 126987. DOI: 10.1016/j.foodchem.2020.126987.
  • Vudathala, D.; Murphy, L. Rapid Method for the Simultaneous Determination of Six Ionophores in Feed by Liquid Chromatography/Mass Spectrometry. J. AOAC Int. 2012, 95, 1016–1022. DOI: 10.5740/jaoacint.11-023.
  • Hoff, R. B.; Molognoni, L.; Deolindo, C. T. P.; Vargas, M. O.; Kleemann, C. R.; Daguer, H. Determination of 62 Veterinary Drugs in Feedingstuffs by Novel Pressurized Liquid Extraction Methods and LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1152, 122232. DOI: 10.1016/j.jchromb.2020.122232.
  • George, K.; Vincent, U.; von Holst, C. Analysis of Antimicrobial Agents in Pig Feed by Liquid Chromatography Coupled to Orbitrap Mass Spectrometry. J. Chromatogr. A. 2013, 1293, 60–74. DOI: 10.1016/j.chroma.2013.03.078.
  • Olejnik, M.; Jedziniak, P.; Szprengier-Juszkiewicz, T. The Determination of Six Ionophore Coccidiostats in Feed by Liquid Chromatography with Postcolumn Derivatisation and Spectrofotometric/Fluorescence Detection. Sci. World J. 2013, 2013, 763402. DOI: 10.1155/2013/763402.
  • Vincent, U.; Serano, F.; de la Huebra, M. J.; Von Holst, C. Determination of Semduramicin in Poultry Feed Additive, Premixture and Compound Feed by Liquid Chromatography and UV Spectrophotometric Detection after Post-Column Derivatisation. J. Pharm. Biomed. Anal. 2012, 61, 150–155. DOI: 10.1016/j.jpba.2011.11.017.
  • Amelin, V. G.; Krasnova, T. A. Identification and Determination of Antibiotics from Various Classes in Food- and Feedstuffs by Matrix-or Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. J. Anal. Chem. 2015, 70, 850–859. DOI: 10.1134/S1061934815070023.
  • Martínez-Villalba, A.; Vaclavik, L.; Moyano, E.; Galceran, M. T.; Hajslova, J. Direct Analysis in Real Time High-Resolution Mass Spectrometry for High-Throughput Analysis of Antiparasitic Veterinary Drugs in Feed and Food. Rapid Commun. Mass Spectrom. 2013, 27, 467–475. DOI: 10.1002/rcm.6466.
  • Rudnicki, K.; Landová, P.; Wrońska, M.; Domagała, S.; Čáslavský, J.; Vávrová, M.; Skrzypek, S. Quantitative Determination of the Veterinary Drug Monensin in Horse Feed Samples by Square Wave Voltammetry (SWV) and Direct Infusion Electrospray Ionization Tandem Mass Spectrometry (DI–ESI–MS/MS). Microchem. J. 2018, 141, 220–228. DOI: 10.1016/j.microc.2018.05.032.
  • Park, J.; Lim, H. B. Sample Treatment Platform Using Nanoparticles to Determine Salinomycin in Flesh and Meat. Food Chem. 2014, 160, 112–117. DOI: 10.1016/j.foodchem.2014.03.047.
  • Bienenmann-Ploum, M. E.; Huet, A. C.; Campbell, K.; Fodey, T. L.; Vincent, U.; Haasnoot, W.; Delahaut, P.; Elliott, C. T.; Nielen, M. W. Development of a Five-Plex Flow Cytometric Immunoassay for the Simultaneous Detection of Six Coccidiostats in Feed and Eggs. Anal. Bioanal. Chem. 2012, 404, 1361–1373. DOI: 10.1007/s00216-012-6214-1.
  • Magdy, G.; Abdel Hakiem, A. F.; Belal, F.; Abdel-Megied, A. M. Green One-Pot Synthesis of Nitrogen and Sulfur co-Doped Carbon Quantum Dots as New Fluorescent Nanosensors for Determination of Salinomycin and Maduramicin in Food Samples. Food Chem. 2021, 343, 128539. DOI: 10.1016/j.foodchem.2020.128539.
  • Park, Y.; Jung, D.-W.; Milcamps, A.; Takeyoshi, M.; Jacobs, M. N.; Houck, K. A.; Ono, A.; Bovee, T. F. H.; Browne, P.; Delrue, N.; et al. Characterisation and Validation of an in Vitro Transactivation Assay Based on the 22Rv1/MMTV_GR-KO Cell Line to Detect Human Androgen Receptor Agonists and Antagonists. Food Chem. Toxicol. 2021, 152, 112206. DOI: 10.1016/j.fct.2020.111633.
  • Clark, S. B.; Storey, J. M.; Carr, J. R.; Madson, M. Analysis of Lasalocid Residues in Grease and Fat Using Liquid Chromatography-Mass Spectrometry. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2015, 32, 1243–1248. DOI: 10.1080/19440049.2015.1052572.
  • Orso, D.; Floriano, L.; Ribeiro, L. C.; Bandeira, N. M.; Prestes, O. D.; Zanella, R. Simultaneous Determination of Multiclass Pesticides and Antibiotics in Honey Samples Based on Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Anal. Methods. 2016, 9, 1638–1653. DOI: 10.1007/s12161-015-0339-8.
  • Alkahtani, S. A.; Mahmoud, A. M.; Mahnashi, M. H.; Ali, R.; El-Wekil, M. M. Facile Fabrication of a Novel 3D Rose like Lanthanum Doped Zirconia Decorated Reduced Graphene Oxide Nanosheets: An Efficient Electro-Catalyst for Electrochemical Reduction of Futuristic anti-Cancer Drug Salinomycin during Pharmacokinetic Study. Biosens. Bioelectron. 2020, 150, 111849. DOI: 10.1016/j.bios.2019.111849.
  • Xu, X.; Liu, L.; Cui, G.; Wu, X.; Kuang, H. Development of an Immunochromatography Assay for Salinomycin and Methyl Salinomycin in Honey. Food Agric. Immunol. 2019, 30, 995–1006. DOI: 10.1080/09540105.2019.1649370.
  • Li, Y.; Fang, J. J.; Wu, S. M.; Ma, K. P.; Li, H. J.; Yan, X. Z.; Dong, F. T. Identification and Quantification of Salinomycin in Intoxicated Human Plasma by Liquid Chromatography-Electrospray Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2010, 398, 955–961. DOI: 10.1007/s00216-010-3999-7.
  • Cha, J.; Carlson, K. H. Occurrence of β-Lactam and Polyether Ionophore Antibiotics in Lagoon Water and Animal Manure. Sci. Total Environ. 2018, 640–641, 1346–1353. DOI: 10.1016/j.scitotenv.2018.05.391.
  • Thompson, T. S.; Noot, D. K.; Kendall, J. D. Determination of Ionophores in Raw Bovine Milk Using LC–MS/MS: Application to Residue Surveillance. Food Chem. 2011, 127, 321–326. DOI: 10.1016/j.foodchem.2010.12.136.
  • Zhan, J.; Yu, X. J.; Zhong, Y. Y.; Zhang, Z. T.; Cui, X. M.; Peng, J. F.; Feng, R.; Liu, X. T.; Zhu, Y. Generic and Rapid Determination of Veterinary Drug Residues and Other Contaminants in Raw Milk by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 906, 48–57. DOI: 10.1016/j.jchromb.2012.08.018.
  • Pietruk, K.; Olejnik, M.; Posyniak, A. Coccidiostats in Milk: Development of a Multi-Residue Method and Transfer of Salinomycin and Lasalocid from Contaminated Feed. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2018, 35, 1508–1518. DOI: 10.1080/19440049.2018.1461256.
  • Nász, S.; Károlyné, E. M.; Rikker, T.; Eke, Z. Determination of Coccidiostats in Milk Products by LC–MS and Its Application to a Fermentation Experiment. Chromatographia. 2012, 75, 645–653. DOI: 10.1007/s10337-012-2236-2.
  • Melekhin, A. O.; Tolmacheva, V. V.; Goncharov, N. O.; Apyari, V. V.; Dmitrienko, S. G.; Shubina, E. G.; Grudev, A. I. Multi-Class, Multi-Residue Determination of 132 Veterinary Drugs in Milk by Magnetic Solid-Phase Extraction Based on Magnetic Hypercrosslinked Polystyrene Prior to Their Determination by High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Chem. 2022, 387, 132866. DOI: 10.1016/j.foodchem.2022.132866.
  • Nász, S.; Debreczeni, L.; Rikker, T.; Eke, Z. Development and Validation of a Liquid Chromatographic-Tandem Mass Spectrometric Method for Determination of Eleven Coccidiostats in Milk. Food Chem. 2012, 133, 536–543. DOI: 10.1016/j.foodchem.2012.01.022.
  • Wei, H.; Tao, Y.; Chen, D.; Xie, S.; Pan, Y.; Liu, Z.; Huang, L.; Yuan, Z. Development and validation of a multi-residue screening method for veterinary drugs, their metabolites and pesticide in meat using liquid chromatography - tandem mass spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo Risk Assess. 2015, 32, 686–701.
  • Pereira, M. U.; Spisso, B. F.; Jacob, S. D. C.; Monteiro, M. A.; Ferreira, R. G.; Carlos, B. D. S.; da Nóbrega, A. W. Validation of a Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometric Method to Determine Six Polyether Ionophores in Raw, UHT, Pasteurized and Powdered Milk. Food Chem. 2016, 196, 130–137., DOI: 10.1016/j.foodchem.2015.09.011.
  • Clarke, L.; Moloney, M.; O'Mahony, J.; O'Kennedy, R.; Danaher, M. Determination of 20 Coccidiostats in Milk, Duck Muscle and Non-Avian Muscle Tissue Using UHPLC-MS/MS. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2013, 30, 958–969. DOI: 10.1080/19440049.2013.794306.
  • Abafe, O. A.; Gatyeni, P.; Matika, L. A Multi-Class Multi-Residue Method for the Analysis of Polyether Ionophores, Tetracyclines and Sulfonamides in Multi-Matrices of Animal and Aquaculture Fish Tissues by Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2020, 37, 438–450. DOI: 10.1080/19440049.2019.1705399.
  • Dasenaki, M. E.; Bletsou, A. A.; Koulis, G. A.; Thomaidis, N. S. Qualitative Multiresidue Screening Method for 143 Veterinary Drugs and Pharmaceuticals in Milk and Fish Tissue Using Liquid Chromatography Quadrupole-Time-of-Flight Mass Spectrometry. J. Agric. Food Chem. 2015, 63, 4493–4508. DOI: 10.1021/acs.jafc.5b00962.
  • Kang, J.; Park, S. J.; Park, H. C.; Hossain, M. A.; Kim, M. A.; Son, S. W.; Lim, C. M.; Kim, T. W.; Cho, B. H. Multiresidue Screening of Veterinary Drugs in Meat, Milk, Egg, and Fish Using Liquid Chromatography Coupled with Ion Trap Time-of-Flight Mass Spectrometry. Appl. Biochem. Biotechnol. 2017, 182, 635–652. DOI: 10.1007/s12010-016-2350-y.
  • Pugajeva, I.; Ikkere, L. E.; Judjallo, E.; Bartkevics, V. Determination of Residues and Metabolites of More than 140 Pharmacologically Active Substances in Meat by Liquid Chromatography Coupled to High Resolution Orbitrap Mass Spectrometry. J. Pharm. Biomed. Anal. 2019, 166, 252–263. DOI: 10.1016/j.jpba.2019.01.024.
  • Jerez, A.; Chihuailaf, R.; Gai, M. N.; Noro, M.; Wittwer, F. Diagnóstico de la Enfermedad de Chagas en Pacientes Con Cardiopatía en un Área Endémica de Guatemala. Rev. Cient. 2013, 23, 48–53. DOI: 10.54495/Rev.Cientifica.v23i1.111.
  • Godoy-Navajas, J.; Aguilar-Caballos, M. P.; Gómez-Hens, A. Determination of Monensin in Milk Samples by Front-Surface Long-Wavelength Fluoroimmunoassay Using Nile Blue-Doped Silica Nanoparticles as Labels. Talanta. 2012, 94, 195–200. DOI: 10.1016/j.talanta.2012.03.019.
  • Hu, M.; Hu, X. F.; Zhang, Y. P.; Teng, M.; Deng, R. G.; Xing, G. X.; Tao, J. Z.; Xu, G. R.; Chen, J.; Zhang, Y. J.; Zhang, G. P. Label-Free Electrochemical Immunosensor Based on AuNPs/Zn/Ni-ZIF-8-800@Graphene Composites for Sensitive Detection of Monensin in Milk. Sens. Actuators B Chem. 2019, 288, 571–578. DOI: 10.1016/j.snb.2019.03.014.
  • Abid, F.; Youssef, S. H.; Song, Y.; Parikh, A.; Trott, D.; Page, S. W.; Garg, S. Development and validation of a new analytical method for estimation of narasin using refractive index detector and its greenness evaluation. Microchem. J. 2022, 175, 107149. DOI: 10.1016/j.microc.2021.107149.
  • Goessens, T.; Baere, S. D.; Troyer, N. D.; Deknock, A.; Goethals, P.; Lens, L.; Pasmans, F.; Croubels, S. Highly Sensitive Multi-Residue Analysis of Veterinary Drugs Including Coccidiostats and Anthelmintics in Pond Water Using UHPLC-MS/MS: Application to Freshwater Ponds in Flanders, Belgium. Environ. Sci. Process. Impacts. 2020, 22, 2117–2131. DOI: 10.1039/d0em00215a.
  • Rybicki, M. J.; Becue, I.; Daeseleire, E.; Klimek-Turek, A.; Dzido, T. H. Solvent Front Position Extraction and Some Conventional Sample Preparation Techniques for the Determination of Coccidiostats in Poultry Feed by LC-MS/MS. Sci. Rep. 2022, 12, 3786. DOI: 10.1038/s41598-022-07587-5.
  • Barreto, F.; Ribeiro, C.; Hoff, R. B.; Costa, T. D. A Simple and High-Throughput Method for Determination and Confirmation of 14 Coccidiostats in Poultry Muscle and Eggs Using Liquid Chromatography – Quadrupole Linear Ion Trap – Tandem Mass Spectrometry (HPLC-QqLIT-MS/MS): Validation according to European Union 2002/657/EC. Talanta. 2017, 168, 43–51. DOI: 10.1016/j.talanta.2017.02.007.
  • Nebot, C.; Regal, P.; Miranda, J.; Cepeda, A.; Fente, C. Simultaneous Determination of Sulfonamides, Penicillins and Coccidiostats in Pork by High-Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. Sci. 2012, 50, 414–425. DOI: 10.1093/chromsci/bms021.
  • Rusko, J.; Jansons, M.; Pugajeva, I.; Zacs, D.; Bartkevics, V. Development and Optimization of Confirmatory Liquid chromatography-Orbitrap Mass Spectrometry Method for the Determination of 17 Anticoccidials in Poultry and Eggs. J. Pharm. Biomed. Anal. 2019, 164, 402–412. DOI: 10.1016/j.jpba.2018.10.056.
  • Burkin, M. A.; Galvidis, I. A. Simultaneous Immunodetection of Ionophore Antibiotics, Salinomycin and Narasin, in Poultry Products and Milk. Anal. Methods. 2021, 13, 1550–1558. DOI: 10.1039/d0ay02309d.
  • Sun, P.; Barmaz, D.; Cabrera, M. L.; Pavlostathis, S. G.; Huang, C. H. Detection and Quantification of Ionophore Antibiotics in Runoff, Soil and Poultry Litter. J. Chromatogr. A. 2013, 1312, 10–17. DOI: 10.1016/j.chroma.2013.08.044.
  • Herrero, P.; Cortés-Francisco, N.; Borrull, F.; Caixach, J.; Pocurull, E.; Marcé, R. M. Comparison of Triple Quadrupole Mass Spectrometry and Orbitrap High-Resolution Mass Spectrometry in Ultrahigh Performance Liquid Chromatography for the Determination of Veterinary Drugs in Sewage: Benefits and Drawbacks. J. Mass Spectrom. 2014, 49, 585–596. DOI: 10.1002/jms.3377.
  • Cha, J.; Yang, S.; Carlson, K. H. Occurrence of β-Lactam and Polyether Ionophore Antibiotics in Surface Water, Urban Wastewater, and Sediment. Geosys. Eng. 2015, 18, 140–150. DOI: 10.1080/12269328.2015.1010658.
  • Mooney, D.; Coxon, C.; Richards, K. G.; Gill, L. W.; Mellander, P. E.; Danaher, M. A New Sensitive Method for the Simultaneous Chromatographic Separation and Tandem Mass Spectrometry Detection of Anticoccidials, Including Highly Polar Compounds, in Environmental Waters. J. Chromatogr. A. 2020, 1618, 460857. DOI: 10.1016/j.chroma.2020.460857.
  • Cho, H. K.; Lim, H. B. Ultra-Sensitive Determination of Salinomycin in Serum Using ICP-MS with Nanoparticles. Bull. Korean Chem. Soc. 2014, 35, 3195–3198. DOI: 10.5012/bkcs.2014.35.11.3195.
  • Rudnicki, K.; Domagała, S.; Burnat, B.; Skrzypek, S. Voltammetric and Corrosion Studies of the Ionophoric Antibiotic–Salinomycin and Its Determination in a Soil Extract. J. Electroanal. Chem. 2016, 783, 56–62. DOI: 10.1016/j.jelechem.2016.10.058.
  • Kim, Y. H.; Son, K. J.; Lim, H. B. Sensors 2014 IEEE. 2014. DOI: 10.1109/ICSENS.2014.6985002.
  • Kim, Y. H.; Lim, H. B. Laser-Induced Fluorescence Reader with a Turbidimetric System for Sandwich-Type Immunoassay Using Nanoparticles. Anal. Chim. Acta. 2015, 883, 32–36. DOI: 10.1016/j.aca.2015.04.031.
  • Wang, Z. H.; Cheng, L. L.; Shi, W. M.; Zhang, S. X.; Shen, J. Z. Fluorescence Polarization Immunoassay for Salinomycin Based on Monoclonal Antibodies. Sci. China Chem. 2010, 53, 553–555. DOI: 10.1007/s11426-010-0085-0.
  • Tkáciková, S.; Kozárová, I.; Máté, D. Liquid Chromatography Tandem Mass Spectrometry Determination of Maduramycin Residues in the Tissues of Broiler Chickens. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2010, 27, 1226–1232. DOI: 10.1080/19440049.2010.488252.
  • Tkáčiková, S.; Kožárová, I.; Mačanga, J.; Levkut, M. Determination of Lasalocid Residues in the Tissues of Broiler Chickens by Liquid Chromatography-Tandem Mass Spectrometry. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2012, 29, 761–769. DOI: 10.1080/19440049.2011.653987.
  • Herrero, P.; Borrull, F.; Marcé, R. M.; Pocurull, E. Determination of Polyether Ionophores in Urban Sewage Sludge by Pressurised Liquid Extraction and Liquid Chromatography-Tandem Mass Spectrometry: Study of Different Clean-up Strategies. J. Chromatogr. A. 2013, 1285, 31–39. DOI: 10.1016/j.chroma.2013.02.034.
  • Yi, X. Z.; Bayen, S.; Kelly, B. C.; Li, X.; Zhou, Z. Improved Detection of Multiple Environmental Antibiotics through an Optimized Sample Extraction Strategy in Liquid Chromatography-Mass Spectrometry Analysis. Anal. Bioanal. Chem. 2015, 407, 9071–9083. DOI: 10.1007/s00216-015-9074-7.
  • Qie, M. J.; Zhao, Y.; Yang, S. M.; Wang, W.; Xu, Z. Z. Rapid simultaneous determination of 160 drugs in urine and blood of livestock and poultry by ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2019, 1608, 460423. DOI: 10.1016/j.chroma.2019.460423.
  • Broekaert, N.; Peteghem, C. V.; Daeseleire, E.; Sticker, D.; Poucke, C. V. Development and Validation of an UPLC-MS/MS Method for the Determination of Ionophoric and Synthetic Coccidiostats in Vegetables. Anal. Bioanal. Chem. 2011, 401, 3335–3344. DOI: 10.1007/s00216-011-5433-1.
  • Ramsey, E. D.; Rees, A. T.; Wei, G.; Liu, J. Y.; Wu, X. H. Direct Aqueous Supercritical Fluid Extraction Coupled on-Line with Liquid Chromatography-Tandem Mass Spectrometry for the Analysis of Polyether Ionophore Antibiotics in Water. J. Chromatogr. A. 2010, 1217, 3348–3356. DOI: 10.1016/j.chroma.2010.03.025.
  • Sun, P. Z.; Yao, H.; Minakata, D.; Crittenden, J. C.; Pavlostathis, S. G.; Huang, C. H. Acid-Catalyzed Transformation of Ionophore Veterinary Antibiotics: Reaction Mechanism and Product Implications. Environ. Sci. Technol. 2013, 47, 6781–6789. DOI: 10.1021/es3044517.
  • Khatibi, S. A.; Hamidi, S.; Siahi-Shadbad, M. R. Application of Liquid-Liquid Extraction for the Determination of Antibiotics in the Foodstuff: Recent Trends and Developments. Crit. Rev. Anal. Chem. 2022, 52, 327–342. DOI: 10.1080/10408347.2020.1798211.
  • Silvestro, L.; Savu, S. R. An Update on Solid Phase-Supported Liquid Extraction. Bioanalysis. 2015, 7, 2177–2186. DOI: 10.4155/bio.15.144.
  • Saraji, M.; Boroujeni, M. K. Recent Developments in Dispersive Liquid-Liquid Microextraction. Anal. Bioanal. Chem. 2014, 406, 2027–2066. DOI: 10.1007/s00216-013-7467-z.
  • Klimek-Turek, A.; Rybicki, M. J.; Gierach, A.; Korol, W.; Dzido, T. H. Solvent Front Position Extraction Procedure for Preparation of Biological Samples with Coccidiostats for Liquid Chromatography-Tandem Mass Spectrometry Determination. JPC-Modern TLC. 2019, 32, 183–189. DOI: 10.1556/1006.2019.32.3.2.
  • Klimek-Turek, A.; Jaglińska, K.; Imbierowicz, M.; Dzido, T. H. Solvent Front Position Extraction with Semi-Automatic Device as a Powerful Sample Preparation Procedure Prior to Quantitative Instrumental Analysis. Molecules. 2019, 24, 1358. DOI: 10.3390/molecules24071358.
  • Jaglińska, K.; Polak, B.; Klimek-Turek, A.; Pomastowski, P.; Buszewski, B.; Dzido, T. H. Retardation of Some Drugs in Thin-Layer Chromatographic Systems with Impregnated Silica Gel Plates with Hen’s Egg White and Bovine Serum Albumin. J. Chromatogr. A. 2020, 1625, 461277., DOI: 10.1016/j.chroma.2020.460912.
  • Rybicki, M. J.; Klimek-Turek, A.; Dzido, T. H. Optimization of Adsorbent Layer Type and Developing Solvent in Coccidiostats Sample Preparation with Procedure of Solvent Front Position Extraction. Molecules. 2020, 25, 6011. DOI: 10.3390/molecules25246011.
  • Wianowska, D.; Gil, M. New Insights into the Application of MSPD in Various Fields of Analytical Chemistry. Trends Analyt. Chem. 2019, 112, 29–51. DOI: 10.1016/j.trac.2018.12.028.
  • Khaw, K. Y.; Parat, M. O.; Shaw, P. N.; Falconer, J. R. Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review. Molecules. 2017, 22, 1186. DOI: 10.3390/molecules22071186.
  • Mainero Rocca, L.; Gentili, A.; Pérez-Fernández, V.; Tomai, P. Veterinary drugs residues: a review of the latest analytical research on sample preparation and LC-MS based methods. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 766–784.
  • Yaroshenko, D. V.; Kartsova, L. A. Matrix Effect and Methods for Its Elimination in Bioanalytical Methods Using Chromatography-Mass Spectrometry. J. Anal. Chem. 2014, 69, 311–317. DOI: 10.1134/S1061934814040133.
  • Rodríguez, R. C.; Bruno, M. M.; Angelomé, P. C. Au Nanoparticles Embedded in Mesoporous ZrO2 Films: Multifunctional Materials for Electrochemical Detection. Sens. Actuators, B. 2018, 254, 603–612. DOI: 10.1016/j.snb.2017.07.072.
  • Xia, Y. H.; Li, G. L.; Zhu, Y. F.; He, Q. G.; Hu, C. P. Facile Preparation of Metal-Free Graphitic-like Carbon Nitride/Graphene Oxide Composite for Simultaneous Determination of Uric Acid and Dopamine. Microchem. J. 2023, 190, 108726. DOI: 10.1016/j.microc.2023.108726.
  • Yu, Q.; Li, J.; Zheng, S.; Xia, X.; Xu, C.; Wang, C.; Wang, C.; Gu, B. Molybdenum Disulfide-Loaded Multilayer AuNPs with colorimetric-SERS Dual-Signal Enhancement Activities for Flexible Immunochromatographic Diagnosis of Monkeypox Virus. J. Hazard. Mater. 2023, 459, 132136., DOI: 10.1016/j.jhazmat.2022.129107.
  • Li, G. L.; Qi, X. M.; Zhang, J. Q.; Wang, L. S.; Li, K. H.; Wu, J. T.; Wan, X.; Liu, Y.; Li, Q. Low-Cost Voltammetric Sensors for Robust Determination of Toxic Cd(II) and Pb(II) in Environment and Food Based on Shuttle-like α-Fe2O3 Nanoparticles Decorated β-Bi2O3 Microspheres. Microchem. J. 2022, 179, 107515. DOI: 10.1016/j.microc.2022.107515.
  • Li, F. Z.; Ni, B. B.; Zheng, Y. R.; Huang, Y. X.; Li, G. L. A Simple and Efficient Voltammetric Sensor for Dopamine Determination Based on ZnO Nanorods/Electro-Reduced Graphene Oxide Composite. Surf. Interf. 2021, 26, 101375. DOI: 10.1016/j.surfin.2021.101375.
  • Cui, Q.; Gan, S.; Zhong, Y.; Yang, H.; Wan, Y.; Zuo, Y.; Yang, H.; Li, M.; Zhang, S.; Negahdary, M.; Zhang, Y. High-Throughput and Specific Detection of Microorganisms by Intelligent Modular Fluorescent Photoelectric Microbe Detector. Anal. Chim. Acta. 2023, 1265, 341282. DOI: 10.1016/j.aca.2021.338480.
  • Li, G. L.; Wu, J. T.; Qi, X. M.; Wan, X.; Liu, Y.; Chen, Y. W.; Xu, L. J. Molecularly Imprinted Polypyrrole Film-Coated Poly(3,4-Ethylenedioxythiophene):Polystyrene Sulfonate-Functionalized Black Phosphorene for the Selective and Robust Detection of Norfloxacin. Mater. Today Chem. 2022, 26, 101043. DOI: 10.1016/j.mtchem.2022.101043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.