269
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Critical Review of Soil Sampling and Data Analysis Strategies for Source Tracing of Soil in Forensic Investigations

, , , & ORCID Icon

References

  • Stahr, K. Soil Functions, Soil Potential Uses and Ecosystem Services. In Encyclopedia of Soiols in the Environment, 2nd Edition; Goss, M. J.; Oliver, M., Eds.; Academic Press, 2023, pp. 1–11. DOI: 10.1016/B978-0-12-822974-3.00173-7.
  • Fan, G.; Ning, X.; Chen, S.; Zhong, L.; Guo, C.; Yang, Y.; Liu, J.; Tang, M.; Liao, G.; Wang, X.; et al. Differences in Fruit Yields and Essential Oil Contents and Composition among Natural Provenances of Litsea Cubeba in China and Their Relationships with Main Habitat Factors. Ind. Crops Prod. 2023, 194, 116285. DOI: 10.1016/j.indcrop.2023.116285.
  • Wei, L.; Liu, G.; Wu, D. Characteristics and Provenance of Hazardous Trace Elements in Soil from a Typical Agricultural Region in Eastern Anhui, China. Geosci. J. 2020, 24, 575–584. DOI: 10.1007/s12303-019-0043-6.
  • Hoogewerff, J. A.; Reimann, C.; Ueckermann, H.; Frei, R.; Frei, K. M.; van Aswegen, T.; Stirling, C.; Reid, M.; Clayton, A.; Ladenberger, A, GEMAS Project Team. Bioavailable 87Sr/86Sr in European Soils: A Baseline for Provenancing Studies. Sci. Total Environ. 2019, 672, 1033–1044. DOI: 10.1016/j.scitotenv.2019.03.387.
  • Lu, Q.-Q.; Chen, Y.-X.; Henderson, J.; Bayon, G. A Large-Scale Sr and Nd Isotope Baseline for Archaeological Provenance in Silk Road Regions and Its Application to Plant-Ash Glass. J. Archaeolog. Sci. 2023, 149, 105695. DOI: 10.1016/j.jas.2022.105695.
  • Karadayi, S. Assessment of the Link between Evidence and Crime Scene through Soil Bacterial and Fungal Microbiome: A Mock Case in Forensic Study. Forensic Sci. Int. 2021, 329, 111060.
  • Dawson, L. A.; Fitzpatrick, R. W. Forensic Soil Science. In Encyclopedia of Forensic Sciences, 3rd ed.; Houck, M. M., Ed.; Elsevier, 2023, pp. 688–699. DOI: 10.1016/B978-0-12-823677-2.00235-X.
  • Sharma, V.; Chauhan, R.; Kumar, R. Spectral Characteristics of Organic Soil Matter: A Comprehensive Review. Microchem. J. 2021, 171, 106836. DOI: 10.1016/j.microc.2021.106836.
  • Sangwan, P.; Nain, T.; Singal, K.; Hooda, N.; Sharma, N. Soil as a Tool of Revelation in Forensic Science: A Review. Anal. Methods. 2020, 12, 5150–5159. DOI: 10.1039/d0ay01634a.
  • Ogilvie, R. H.; Lednev, I. K. Soil from Footwear is a Newly Rediscovered Type of Forensic Evidence Due to the Application of Modern Analytical Techniques: A Review. Trends Anal. Chem. 2023, 163, 117081. DOI: 10.1016/j.trac.2023.117081.
  • Owens, P. N.; Blake, W. H.; Gaspar, L.; Gateuille, D.; Koiter, A. J.; Lobb, D. A.; Petticrew, E. L.; Reiffarth, D. G.; Smith, H. G.; Woodward, J. C. Fingerprinting and Tracing the Sources of Soils and Sediments: Earth and Ocean Science, Geoarchaeological, Forensic, and Human Health Applications. Earth. Sci. Rev. 2016, 162, 1–23. DOI: 10.1016/j.earscirev.2016.08.012.
  • Sauzier, G.; van Bronswijk, W.; Lewis, S. W. Chemometrics in Forensic Science: Approaches and Applications. Analyst. 2021, 146, 2415–2448. DOI: 10.1039/d1an00082a.
  • Barra, I.; Haefele, S. M.; Sakrabani, R.; Kebede, F. Soil Spectroscopy with the Use of Chemometrics, Machine Learning and Pre-Processing Techniques in Soil Diagnosis: Recent advances-A Review. Trends Anal. Chem. 2021, 135, 116166. DOI: 10.1016/j.trac.2020.116166.
  • Frøslev, T. G.; Ejrnæs, R.; Hansen, A. J.; Bruun, H. H.; Nielsen, I. B.; Ekelund, F.; Vestergård, M.; Kjøller, R. Treated like Dirt: Robust Forensic and Ecological Inferences from Soil eDNA after Challenging Sample Storage. Environ. DNA. 2023, 5, 158–174. DOI: 10.1002/edn3.367.
  • Zeng, R.; Rossiter, D. G.; Zhao, Y. G.; Li, D. C.; Liu, F.; Zheng, G. H.; Zhang, G. L. The Choice of Spectral Similarity Algorithms Influences Suspected Soil Sample Provenance. Forensic Sci. Int. 2023, 347, 111688. DOI: 10.1016/j.forsciint.2023.111688.
  • Silva, M. P. N. E.; Guedes, C. C. F. D. F.; Melo, V. D. O.; Mascarenhas, R.; Salvador, F. A. S. Evaluating Geostatistical Methods along with Semi-Destructive Analysis for Forensic Provenancing Organic-Rich Soils in Humid Subtropical Climate. Forensic Sci. Int. 2022, 341, 111508. DOI: 10.1016/j.forsciint.2022.111508.
  • Newland, T. G.; Pitts, K.; Lewis, S. W. Multimodal Spectroscopy with Chemometrics for the Forensic Analysis of Western Australia Sandy Soils. Forensic Chem. 2022, 28, 100412. DOI: 10.1016/j.forc.2022.100412.
  • Testoni, S.; Dawson, L.; Melo, V.; Lopes-Mazzetto, J.; Ramalho, B.; Salvador, F. Soil Colour and Plant-Wax Markers: Application in Forensic Investigations under Urban Subtropical Environments. Forensic Sci. 2022, 2, 57–71. DOI: 10.3390/forensicsci2010005.
  • Maione, C.; Luíza da Costa, N.; Barbosa, F.; Barbosa, R. M. A Cluster Analysis Methodology for the Categorization of Soil Samples for Forensic Sciences Based on Elemental Fingerprint. Appl. Artif. Intel. 2022, 36, e2010941. DOI: 10.1080/08839514.2021.2010941.
  • Hay, J. G. P.; Oxley, A. P. A.; Wos-Oxley, M. L.; Hayes, R.; Pickles, T.; Roberts, K.; Conlan, X. A. The Cyclic Nature of Soil Chemistry: Forensic Analysis with the Aid of Ultra-High Performance Liquid Chromatography. Talanta Open. 2022, 6, 100126. DOI: 10.1016/j.talo.2022.100126.
  • Caritat, P. D.; Woods, B.; Simpson, T.; Nichols, C.; Hoogenboom, L.; Ilheo, A.; Aberle, M. G.; Hoogewerff, J. Forensic Soil Provenancing in Urban/Suburban Setting: A Simultaneous Multivariate Approach. J. Forensic Sci. 2022, 67, 927–935. DOI: 10.1111/1556-4029.14967.
  • Guo, H.; Wang, P.; Li, Y.; Hu, C.; Zheng, J.; Mei, H.; Zhu, J.; Fan, S.; Zhong, Q. Mineralogical and Elemental Data for Soil Discriminating and Geolocation Tracing. Sci. Justice. 2022, 62, 76–85. DOI: 10.1016/j.scijus.2021.12.003.
  • Molinero-Garcia, A.; Muller, A.; Martin-Garcia, J. M.; Simonsen, S. L.; Delgado, R. Provenance of Quartz Grains from Soils over Quaternary Terraces along the Guadalquivir River. Spain. Geoderma. 2022, 414, 115769. DOI: 10.1016/j.geoderma.2022.115769.
  • Lim, Y. C.; Marolf, A.; Estoppey, N.; Massonnet, G. A Probabilistic Approach towards Source Level Inquiries for Forensic Soil Examination Based on Mineral Counts. Forensic Sci. Int. 2021, 328, 111035. DOI: 10.1016/j.forsciint.2021.111035.
  • Kocak, A.; Wyatt, W.; Comanescu, M. A. Comparative Study of ATR and DRIFT Infrared Spectroscopy Techniques in the Analysis of Soil Samples. Forensic Sci. Int. 2021, 328, 111002. DOI: 10.1016/j.forsciint.2021.111002.
  • Ma, Y.; Minasny, B.; McBratney, A. Identifying Soil Provenance Based on Portable X-Ray Fluorescence Measurements Using Similarity and Inverse-Mapping Approaches – a Case in the Lower Hunter Valley, Australia. Geoderma Reg. 2021, 25, e00368. DOI: 10.1016/j.geodrs.2021.e00368.
  • Guo, H.; Yao, Y.; Li, Y.; Wang, P.; Hu, C.; Yuan, M.; Mei, H.; Zhu, J. A Case Study in Forensic Soil Comparison. J. Forensic Sci. 2022, 67, 766–774. DOI: 10.1111/1556-4029.14921.
  • Caritat, P. D.; Woods, B.; Simpson, T.; Nichols, C.; Hoogenboom, L.; Ilheo, A.; Aberle, M. G.; Hoogewerff, J. Forensic Soil Provenancing in Urban/Suburban Setting: A Sequential Multivariate Approach. J. Forensic Sci. 2021, 66, 1679–1696. DOI: 10.1111/1556-4029.14727.
  • Idrizi, H.; Najdoski, M.; Kuzmanovski, I. Classification of Urban Soils for Forensic Purposes Using Supervised Self-Organizing Maps. J. Chemom. 2021, 35, e3328.
  • Stern, L. A.; Webb, J. B.; Ingham, J.; Monteith, S.; Saginor, I. Soil Survey Laboratory Grain Count Data to Substantiate the Rarity of Mineral Grains in Forensic Soil Reports of Examination. J. Forensic Sci. 2021, 66, 2413–2423. DOI: 10.1111/1556-4029.14816.
  • Chauhan, R.; Kumar, R.; Kumar, V.; Sharma, K.; Sharma, V. On the Discrimination of Soil Samples by Derivative Diffuse Reflectance UV-vis-NIR Spectroscopy and Chemometrics Methods. Forensic Sci. Int. 2021, 319, 110655. DOI: 10.1016/j.forsciint.2020.110655.
  • Pitts, K. M.; Clarke, R. M. The Forensic Discrimination of Quartz Sands from the Swan Coastal Plain, Western Australia. Forensic Sci. Int.: Rep. 2020, 2, 100130. DOI: 10.1016/j.fsir.2020.100130.
  • Hu, C.; Mei, H.; Guo, H.; Wang, P.; Zhu, J. The Analysis of Soil Evidence to Associate Criminal Tool and Location. Forensic Sci. Int. 2020, 309, 110231. DOI: 10.1016/j.forsciint.2020.110231.
  • Profumo, A.; Gorroni, A.; Guarnieri, S. A.; Mellerio, G. G.; Cucca, L.; Merli, D. GC-MS Qualitative Analysis of the Volatile, Semivolatile and Volatilizable Fractions of Soil Evidence for Forensic Application: A Chemical Fingerprinting. Talanta. 2020, 219, 121304. DOI: 10.1016/j.talanta.2020.121304.
  • Xu, X.; Du, C.; Ma, F.; Shen, Y.; Zhou, J. Forensic Soil Analysis Using Laser-Induced Breakdown Spectroscopy (LIBS) and Fourier Transform Infrared Total Attenuated Reflectance Spectroscopy (FTIR-ATR): Principles and Case Studies. Forensic Sci. Int. 2020, 310, 110222. DOI: 10.1016/j.forsciint.2020.110222.
  • Chauhan, R.; Kumar, R.; Diwan, P. K.; Sharma, V. Thermogravimetric Analysis and Chemometric Based Methods for Soil Examination: Application to Soil Forensics. Forensic Chem. 2020, 17, 100191. DOI: 10.1016/j.forc.2019.100191.
  • Zeng, R.; Rossiter, D. G.; Zhao, Y. G.; Li, D. C.; Zhang, G. L. Forensic Soil Identification: Comparing Matching by Color, vis-NFIR Spectroscopy and Easily-Measured Physio-Chemical Properties. Forensic Sci. Int. 2020, 317, 110544. DOI: 10.1016/j.forsciint.2020.110544.
  • Seybold, C. A.; Ferguson, R.; Wysocki, D.; Bailey, S.; Anderson, J.; Nester, B.; Schoeneberger, P.; Wills, S.; Libohova, Z.; Hoover, D.; Thomas, P. Application of Mid-Infrared Spectroscopy in Soil Survey. Soil Sci. Soc. Am. J. 2019, 83, 1746–1759. DOI: 10.2136/sssaj2019.06.0205.
  • Mazzetto, J. M. L.; Melo, V. F.; Bonfleur, E. J.; Vidal-Torrado, P.; Dieckow, J. Potential of Soil Organic Matter Molecular Chemistry Determined by Pyrolysis-Gas Chromatography/Mass Spectrometry for Forensic Investigations. Sci. Justice. 2019, 59, 635–642. DOI: 10.1016/j.scijus.2019.07.003.
  • Morgan, R. M.; Scott, K. R.; Ainley, J.; Bull, P. A. Journey History Reconstruction from the Soils and Sediments on Footwear: An Empirical Approach. Sci. Justice. 2019, 59, 306–316. DOI: 10.1016/j.scijus.2018.11.002.
  • Fløjgaard, C.; Frøslev, T. G.; Brunbjerg, A. K.; Bruun, H. H.; Moeslund, J.; Hansen, A. J.; Ejrnæs, R. Predicting Provenance of Forensic Soil Samples: Linking Soil to Ecological Habitats by Metabarcoding and Supervised Classification. PLoS One. 2019, 14, e0202844. DOI: 10.1371/journal.pone.0202844.
  • Mancini, M.; Weindorf, D. C.; Silva, S. H. G.; Chakraborty, S.; dos Santos Teixeira, A. F.; Guilherme, L. R. G.; Curi, N. Parent Material Distribution Mapping from Tropical Soils Data via Machine Learning and Portable X-Ray Fluorescence (pXRF) Spectrometry in Brazil. Geoderma. 2019, 354, 113885. DOI: 10.1016/j.geoderma.2019.113885.
  • Foran, D. R.; Badgley, A. J. Bacterial Profiling of Soil for Forensic Investigations: Consideration of Ex Situ Changes in Questioned and Known Soil Samples. J. Forensic Sci. 2020, 65, 471–480. DOI: 10.1111/1556-4029.14202.
  • Kikkawa, H. S.; Naganuma, K.; Kumisaka, K.; Sugita, R. Semi-Automated Scanning Electron Microscopy Energy Dispersive X-Ray Spectrometry Forensic Analysis of Soil Samples. Forensic Sci. Int. 2019, 305, 109947. DOI: 10.1016/j.forsciint.2019.109947.
  • Habtom, H.; Pasternak, Z.; Matan, O.; Azulay, C.; Gafny, R.; Jurkevitch, E. Applying Microbial Biogeography in Soil Forensics. Forensic Sci. Int. Genet. 2019, 38, 195–203. DOI: 10.1016/j.fsigen.2018.11.010.
  • McCulloch, G.; Dawson, L. A.; Ross, J. M.; Morgan, R. M. The Discrimination of Geoforensic Trace Material from Close Proximity Locations by Organic Profiling Using HPLC and Plant Wax Marker Analysis by GC. Forensic Sci. Int. 2018, 288, 310–326. DOI: 10.1016/j.forsciint.2018.02.009.
  • Tighe, M.; Forster, N.; Guppy, C.; Savage, D.; Grave, P.; Young, I. M. Georeferenced Soil Provenancing with Digital Signatures. Sci. Rep. 2018, 8, 3162. DOI: 10.1038/s41598-018-21530-7.
  • Chauhan, R.; Kumar, R.; Sharma, V. Soil Forensics: A Spectroscopic Examination of Trace Evidence. Microchem. J. 2018, 139, 74–84. DOI: 10.1016/j.microc.2018.02.020.
  • Damaso, N.; Mendel, J.; Mendoza, M.; von Wettberg, E. J.; Narasimhan, G.; Mills, D. Bioinformatics Approach to Assess the Biogeographical Patterns of Soil Communities: The Utility for Soil Provenance. J. Forensic Sci. 2018, 63, 1033–1042. DOI: 10.1111/1556-4029.13741.
  • Melo, V. F.; Mazzetto, J. M. L.; Dieckow, J.; Bonfleur, E. J. Factor Analysis of Organic Soils for Site Discrimination in a Forensic Setting. Forensic Sci. Int. 2018, 290, 244–250. DOI: 10.1016/j.forsciint.2018.07.005.
  • Correa, R. S.; Melo, V. F.; Abreu, G. G. F.; Sousa, M. H.; Chaker, J. A.; Gomes, J. A. Soil Forensics: How Far Can Soil Clay Analysis Distinguish between Soil Vestiges? Sci. Justice. 2018, 58, 138–144. DOI: 10.1016/j.scijus.2017.09.003.
  • Cheshire, K.; Morgan, R. M.; Holmes, J. The Potential for Geochemical Discrimination of Single- and Mixed-Source Soil Samples from Close Proximity Urban Parkland Locations. Australian J. Forensic Sci. 2017, 49, 161–174. DOI: 10.1080/00450618.2016.1144789.
  • McCulloch, G.; Dawson, L. A.; Brewer, M. J.; Morgan, R. M. The Identification of Markers for Geoforensic HPLC Profiling at Close Proximity Sites. Forensic Sci. Int. 2017, 272, 127–141. DOI: 10.1016/j.forsciint.2017.01.009.
  • Uitdehaag, S.; Wiarda, W.; Donders, T.; Kuiper, I. Forensic Comparison of Soil Samples Using Nondestructive Elemental Analysis. J. Forensic Sci. 2017, 62, 861–868. DOI: 10.1111/1556-4029.13313.
  • Krongchai, C.; Jakmunee, J.; Funsueb, S.; Kittiwachana, S. Application of Multiple Self-Organizing Maps for Classification of Soil Samples in Thailand according to Their Geographic Origins. J. Chemometrics. 2017, 31, e2871. DOI: 10.1002/cem.2871.
  • Demanèche, S.; Schauser, L.; Dawson, L.; Franqueville, L.; Simonet, P. Microbial Soil Community Analyses for Forensic Science: Application to a Blind Test. Forensic Sci. Int. 2017, 270, 153–158. DOI: 10.1016/j.forsciint.2016.12.004.
  • Pye, K. Geological and Soil Evidence Forensic Applications; CRC Press: Boca Raton (FL), 2007
  • Althubaiti, A. Sample Size Determination: A Practical Guide for Health Researchers. J. Gen. Fam. Med. 2023, 24, 72–78. DOI: 10.1002/jgf2.600.
  • Campbell, M. K.; Thomson, S.; Ramsay, C. R.; MacLennan, G. S.; Grimshaw, J. M. Sample Size Calculator for Cluster Randomized Trials. Comput. Biol. Med. 2004, 34, 113–125. DOI: 10.1016/S0010-4825(03)00039-8.
  • Whitley, E.; Ball, J. Statistics Review 4: Sample Size Calculations. Crit. Care. 2002, 6, 335–341. DOI: 10.1186/cc1521.
  • Hartemink, A. E.; Zhang, Y.; Bockheim, J. G.; Curi, N.; Silva, S. H. G.; Grauer-Gray, J.; Lowe, D. J.; Krasilnikov, P. Chapter Three – Soil Horizon Variation: A Review. Adv. Agronomy. 2020, 160, 125–185.
  • Noble, C. V.; Drew, R. W.; Slabaugh, J. D. Soil Survey of Dade County Area, Florida; USDA NRCS: Gainesville (FL); 1996.
  • Che Soh, M.; B. Crime and Urbanization: Revisited Malaysian Case. Procedia Soc. Behav. Sci. 2012, 42, 291–299. DOI: 10.1016/j.sbspro.2012.04.193.
  • British Geological Survey (BGS). Landoforms. https://www.bgs.ac.uk/discovering-geology/geological-processes/landforms/#:∼:text=Landforms%20are%20features%20on%20the%20Earth%E2%80%99s%20surface%20that,features%2C%20such%20as%20ocean%20basins%20and%20mid-ocean%20ridges. (accessed Aug 20, 2023).
  • United States Environmental Protection Agency (EPA). Report on the Environment: Land Use. https://www.epa.gov/report-environment/land-use. (accessed Aug 20, 2023).
  • Stetler, L. D. Geomorphology. In Reference Module in Earth Systems and Environmental Sciences; Elsevier, 2014. DOI: 10.1016/B978-0-12-409548-9.09078-3.
  • Bastian, L. V. Residual Soil Mineralogy and Dune Division, Swan Coastal Plain, Western Australia. Aust. J. Earth Sci. 1996, 43, 31–44. DOI: 10.1080/08120099608728233.
  • Ministero Delle Politiche Agricole, D. M. Approvazione Dei “Metodi Ufficiali di Analisi Chimica Del Suolo. Gazzetta Ufficiale Suppl, Order. 1999, 248. http://ctntes.arpa.piemonte.it/Bonifiche/Documenti/Norme/13_Set_99.pdf.
  • Sappi Fine Paper North America. Defining and Communicating color: The CIELAB system, 2013.
  • Geisen, S.; Mitchell, E. A. D.; Adl, S.; Bonkowski, M.; Dunthorn, M.; Ekelund, F.; Fernandez, L. D.; Jousset, A.; Krashevska, V.; Singer, D.; et al. Soil Protists: A Fertile Frontier in Soil Biology Research. FEMS Microbiol. Rev. 2018, 42, 293–323. DOI: 10.1093/femsre/fuy006.
  • Deiner, K.; Bik, H. M.; Machler, E.; Seymour, M.; Lacoursiere-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D. M.; daVere, N.; et al. Environmental DNA Metabarcoding: Transforming How we Survey Animal and Plant Communities. Mol. Ecol. 2017, 26, 5872–5895. DOI: 10.1111/mec.14350.
  • Young, J. M.; Linacre, A. Massively Parallel Sequencing is Unlocking the Potential of Environmental Trace Evidence. Forensic Sci. Int. Genet. 2021, 50, 102393. DOI: 10.1016/j.fsigen.2020.102393.
  • Edouard, J.; Zohar, P. A Walk on the Dirt: Soil Microbial Forensics from Ecological Theory to the Crime Lab. FEMS Microbiol. Rev. 2020, 45, 053.
  • Julia, S. A.; Noah, F.; Robert, R. D. The Future of Environmental DNA in Forensic Science. Appl. Environ. Microbiol. 2020, 86, e01504-19.
  • Cunha, L. D.; Serve, L.; Gadel, F.; Blazi, J.-L. Lignin-Derived Phenolic Compounds in the Particulate Organic Matter of a French Mediterranean River: Seasonal and Spatial Variations. Org. Geochem. 2001, 32, 305–320. DOI: 10.1016/S0146-6380(00)00173-X.
  • Genetta, M. Y.; Ira, S. L. Recent Forensic Applications of Enhanced Chromatographic Separation Methods. J. Separat. Sci. 2022, 45, 369–381.
  • Dove, H.; Mayes, R. W. Protocol for the Analysis of n-Alkanes and Other Plant-Wax Compounds and for Their Use as Markers for Quantifying the Nutrient Supply of Large Mammalian Herbivores. Nat. Protoc. 2006, 1, 1680–1697. DOI: 10.1038/nprot.2006.225.
  • Vogts, A.; Moossen, H.; Rommerskirchen, F.; Rullkötter, J. Distribution Patterns and Stable Carbon Isotopic Composition of Alkanes and Alkan-1-Ols from Plant Waxes of African Rain Forest and Savanna C3 Species. Org. Geochem. 2009, 40, 1037–1054. DOI: 10.1016/j.orggeochem.2009.07.011.
  • Elisa, B. Portable X-Ray Fluorescence (PXRF) Spectrometry of Earth Materials: Considerations for Forensic Analysis. Geol. Soc., Lond., Spec. Publ. 2019, 492, 225–238. DOI: 10.1144/SP492-2017-346.
  • Lee, L. C.; Jemain, A. A. On Overview of PCA Application Strategy in Processing High Dimensionality Forensic Data. Microchem. J. 2021, 169, 106608. DOI: 10.1016/j.microc.2021.106608.
  • Lee, L. C.; Liong, C. Y.; Jemain, A. A. Partial Least Squares-Discriminant Analysis (PLS-DA) for Classification of High-Dimensional (HD): A Review of Contemporary Practice Strategies and Knowledge Gaps. Analyst. 2018, 143, 3526–3539. DOI: 10.1039/c8an00599k.
  • Sarker, I. H. Machine Learning: algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. DOI: 10.1007/s42979-021-00592-x.
  • Nowroozi, E.; Dehghantanha, A.; Parizi, R. M.; Choo, K.-K. R. A Survey of Machine Learning Techniques in Adversarial Image Forensics. Comput. Security. 2021, 100, 102092. DOI: 10.1016/j.cose.2020.102092.
  • Sharma, Rishi, Bhute, Ashish Ramesh, Bastia, Binaya Kumar, Diksha,. Application of Artificial Intelligence and Machine Learning Technology for the Prediction of Postmortem Interval: A Systematic Review of Preclinical and Clinical Studies. Forensic Sci. Int. 2022, 340, 111473. DOI: 10.1016/j.forsciint.2022.111473.
  • Cerdeira, J. O.; Silva, P. D.; Cadima, J.; Minhoto, M. R package ‘subselect’: Selecting Variable Subsets, 2023. https://cran.r-project.org/web/packages/subselect/index.html.
  • Rossel, R. A. V.; Cattle, S. R.; Ortega, A.; Fouad, Y. In Situ Measurements of Soil Colour, Mineral Composition and Clay Content by vis-NIR Spectroscopy. Geoderma. 2009, 150, 253–266. DOI: 10.1016/j.geoderma.2009.01.025.
  • Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H. The Spectral Image Processing System (SIPS)—Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sens. Environ. 1993, 44, 145–163. DOI: 10.1016/0034-4257(93)90013-N.
  • Mahalanobis, P. C. Reprint of: Mahalanobis, P.C. (1936) "on the Generalised Distance in Statistics. Sankhya: Indian J. Stats. 2018, 80-A, 1–7.
  • Chein-I, C. An Information-Theoretic Approach to Spectral Variability, Similarity, and Discrimination for Hyperspectral Image Analysis. IEEE Transact. Info. Theory. 2000, 46, 1927–1932.
  • Friedman, J. H. Multivariate Adaptive Regression Splines. Annals Statist. 1991, 19, 1–67.
  • Caritat, P. D.; Mann, A. An Improved Method for Assessing the Degree of Geochemical Similarity (DOGS2) between Samples from Multi-Element Geochemical Datasets. GEEA. 2019, 19, 58–73. DOI: 10.1144/geochem2018-021.
  • Coombs, M. J.; Kotlyar, B. B.; Ludington, S.; Folger, H.; Mossotti, V. G. Multielement Geochemical Dataset of Surficial Materials for the Northern Great Basin. US Geol. Surv. Open-File Rep. 2002, 2, 227.
  • Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Soft. 2014, 61, 1–36. DOI: 10.18637/jss.v061.i06.
  • Hall, M. A. Correlation-Based Feature Selection for Discrete and Numeric Class Machine Learning. In Proceedings of the Seventeenth International Conference on Machine Learning (ICML); P. Langley, Ed.; Morgan Kaufmann Publishers: Waikato, (NZ), 2000; pp 359–366
  • Morrison, G. S. Measuring the Validity and Reliability of Forensic Likelihood-Ratio Systems. Sci. Justice. 2011, 51, 91–98. DOI: 10.1016/j.scijus.2011.03.002.
  • Mello, F. A. O.; Bellinaso, H.; Mello, D. C.; Safanelli, J. L.; Mendes, D. S.; Amorim, W.; Gomez, M. T. A.; Poppiel, A. M. R.; Silvero, R. R.; Gholizadeh, N. E. Q.; et al. Soil Parent Material Prediction through Satellite Multispectral Analysis on a Regional Scale at the Western Paulista Plateau, Brazil. Geoderma Reg. 2021, 26, e00412. DOI: 10.1016/j.geodrs.2021.e00412.
  • Zhang, J.; Liu, W.; Simayijiang, H.; Hu, P.; Yan, J. Application of Microbiome in Forensics. Genomics. Proteomics Bioinform. 2023, 21, 97–107. DOI: 10.1016/j.gpb.2022.07.007.
  • Foster, N. R.; Martin, B.; Hoogewerff, J.; Aberle, M. G.; Caritat, P.; De; Roffey, P.; Edwards, R.; Malik, A.; Thwaites, P.; Waycott, M.; Young, J. The Utility of Dust for Forensic Intelligence: Exploring Collection Methods and Detection Limits for Environmental DNA, Elemental and Mineralogical Analyses of Dust Samples. Forensic Sci. Int. 2023, 344, 111599. DOI: 10.1016/j.forsciint.2023.111599.
  • Bendik, J.; Kalia, R.; Sukumaran, J.; Richardot, W. H.; Hoh, E.; Kelley, S. Automated High Confidence Compound Identification of Electron Ionization Mass Spectra for Nontargeted Analysis. J. Chromatogr. A. 2021, 1660, 462656. DOI: 10.1016/j.chroma.2021.462656.
  • Zhang, X.; Saini, A.; Hao, C.; Harner, T. Passive Air Sampling and Nontargeted Analysis for Screening POP-like Chemicals in the Atmosphere: Opportunities and Challenges. TrAC, Trends Anal. Chem. 2020, 132, 116052. DOI: 10.1016/j.trac.2020.116052.
  • Liang, W.; Zheng, F.; Chen, T.; Zhang, X.; Xia, Y.; Li, Z.; Lu, X.; Zhao, C.; Xu, G. Nontargeted Screening Method for Veterinary Drugs and Their Metabolites Based on Fragmentation Characteristics from Ultrahigh-Performance Liquid Chromatography-High Resolution Mass Spectrometry. Food Chem. 2022, 369, 130928. DOI: 10.1016/j.foodchem.2021.130928.
  • Ghazi, M. G. M.; Lee, L. C.; Sino, H.; Halim, M. I. A. Review of Contemporary Chemometric Strategies Applied on Preparing GC-MS Data in Forensic Analysis. Microchem. J. 2022, 181, 107732. DOI: 10.1016/j.microc.2022.107732.
  • Krzanowski, W. J. Principles of Multivariate Analysis; Oxford University Press: Oxford, 1988.
  • Khare, S. K.; March, S.; Barua, P. D.; Gadre, V. M.; Acharya, U. R. Application of Data Fusion for Automated Detection of Children with Developmental and Mental Disorders: A Systematic Review of the Last Decade. Inform. Fusion. 2023, 99, 101898. DOI: 10.1016/j.inffus.2023.101898.
  • Asachi, M.; Camargo-Valero, M. A. Multi-Sensors Data Fusion for Monitoring of Powdered and Granule Products: Current Status and Future Perspectives. Adv. Powder Technol. 2023, 34, 104055. DOI: 10.1016/j.apt.2023.104055.
  • Li, J.; Hong, D.; Gao, L.; Yao, J.; Zheng, K.; Zhang, B.; Chanussot, J. Deep Learning in Multimodal Remote Sensing Data Fusion: A Comprehensive Review. Int. J. Appl. Earth Obser. Geoinform. 2022, 112, 102926. DOI: 10.1016/j.jag.2022.102926.
  • Elmes, G. A.; Roedl, G.; Conley, J.; Forensic, G. I. S. The Role of Geospatial Technologies for Investigating Crime and Providing Evidence; Springer Netherlands, 2014.
  • Fantappiè, M.; L'Abate, G.; Schillaci, C.; Costantini, E. A. Digital Soil Mapping of Italy to Map Derived Soil Profiles with Neural Networks. Geoderma Reg. 2023, 32, e00619. DOI: 10.1016/j.geodrs.2023.e00619.
  • Shi, T.; He, L.; Wang, R.; Li, Z.; Hu, Z.; Wu, G. Digital Mapping of Heavy Metals in Urban Soils: A Review and Research Challenges. CATENA. 2023, 228, 107183. DOI: 10.1016/j.catena.2023.107183.
  • Aitken, C. G. G.; Taroni, F. Statistics and the Evaluation of Evidence for Forensic Scientists, 2nd ed.; John Wiley & Sons, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.