237
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Emerging Insights into the Use of Advanced Nanomaterials for the Electrochemiluminescence Biosensor of Pesticide Residues in Plant-Derived Foodstuff

, , , , , , , , & show all

References

  • Adedeji, A. A.; Ekramirad, N.; Rady, A.; Hamidisepehr, A.; Donohue, K. D.; Villanueva, R. T.; Parrish, C. A.; Li, M. Non-Destructive Technologies for Detecting Insect Infestation in Fruits and Vegetables under Postharvest Conditions: A Critical Review. Foods 2020, 9, 927. DOI: 10.3390/foods9070927.
  • Kakoki, S.; Kamimuro, T.; Tsuda, K.; Sakamaki, Y. Effect of Partial Pesticide Spraying on the Number of Major Pests and Damage to New Shoots of Tea Plants. J. Asia-Pac. Entomol. 2019, 22, 826–837. DOI: 10.1016/j.aspen.2019.06.007.
  • Yalamalle, V.; Tomar, B.; Kumar, A.; Ahammed, S. T. Seed Soak Method for Application of Plant Protectants for Increasing Pesticide Use Efficiency, Healthy Crop and Higher Yield in Garlic (Allium sativum L.). Sci. Hortic. 2019, 257, 108703. DOI: 10.1016/j.scienta.2019.108703.
  • Musarurwa, H.; Chimuka, L.; Pakade, V. E.; Tavengwa, N. T. Recent Developments and Applications of QuEChERS Based Techniques on Food Samples during Pesticide Analysis. J. Food Compos. Anal. 2019, 84, 103314. DOI: 10.1016/j.jfca.2019.103314.
  • Hertz-Picciotto, I.; Sass, J. B.; Engel, S.; Bennett, D. H.; Bradman, A.; Eskenazi, B.; Lanphear, B.; Whyatt, R. Organophosphate Exposures during Pregnancy and Child Neurodevelopment: Recommendations for Essential Policy Reforms. PLOS Med. 2018, 15, e1002671. DOI: 10.1371/journal.pmed.1002671.
  • Umapathi, R.; Ghoreishian, S. M.; Sonwal, S.; Rani, G. M.; Huh, Y. S. Portable Electrochemical Sensing Methodologies for On-site Detection of Pesticide Residues in Fruits and Vegetables. Coord. Chem. Rev. 2022, 453, 214305. DOI: 10.1016/j.ccr.2021.214305.
  • Shao, Y.; Wang, M.; Cao, J.; She, Y.; Cao, Z.; Hao, Z.; Jin, F.; Wang, J.; Abd El-Aty, A. A Method for the Rapid Determination of Pesticides Coupling Thin-Layer Chromatography and Enzyme Inhibition Principles. Food Chem. 2023, 416, 135822. DOI: 10.1016/j.foodchem.2023.135822.
  • Attig, J. B.; Latrous, L.; Zougagh, M.; Ríos, Á. Ionic Liquid and Magnetic Multiwalled Carbon Nanotubes for Extraction of N-Methylcarbamate Pesticides from Water Samples Prior Their Determination by Capillary Electrophoresis. Talanta 2021, 226, 122106. DOI: 10.1016/j.talanta.2021.122106.
  • Ayala-Cabrera, J. F.; Montero, L.; Meckelmann, S. W.; Uteschil, F.; Schmitz, O. J. Review on Atmospheric Pressure Ionization Sources for Gas Chromatography-Mass Spectrometry. Part II: Current Applications. Anal. Chim. Acta 2023, 1238, 340379. DOI: 10.1016/j.aca.2022.340379.
  • Mousavi, M.-M.; Nemati, M.; Alizadeh Nabili, A. A.; Mahmoudpour, M.; Arefhosseini, S. Application of Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography/Mass Spectrometry as Effective Tool for Trace Analysis of Organochlorine Pesticide Residues in Honey Samples. J. Iran. Chem. Soc. 2016, 13, 2211–2218. DOI: 10.1007/s13738-016-0939-2.
  • Mousavi, M. M.; Arefhosseini, S.; Alizadeh Nabili, A. A.; Mahmoudpour, M.; Nemati, M. Development of an Ultrasound‐Assisted Emulsification Microextraction Method for the Determination of Chlorpyrifos and Organochlorine Pesticide Residues in Honey Samples Using Gas Chromatography with Mass Spectrometry. J. Sep. Sci. 2016, 39, 2815–2822. DOI: 10.1002/jssc.201600197.
  • Lucci, E.; Dal Bosco, C.; Antonelli, L.; Fanali, C.; Fanali, S.; Gentili, A.; Chankvetadze, B. Enantioselective High-Performance Liquid Chromatographic Separations to Study Occurrence and Fate of Chiral Pesticides in Soil, Water, and Agricultural Products. J. Chromatogr. A 2022, 1685, 463595. DOI: 10.1016/j.chroma.2022.463595.
  • Chen, L.; Yan, X.; Zhou, X.; Peng, P.; Sun, Q.; Zhao, F. Advances in the On-line Solid-Phase Extraction-Liquid Chromatography-Mass Spectrometry Analysis of Emerging Organic Contaminants. TrAC Trends Anal. Chem. 2023, 160, 116976. DOI: 10.1016/j.trac.2023.116976.
  • Yue, Y.; Chen, J.; Zhang, M.; Yin, Y.; Dong, Y. Determination of Organophosphorus Pesticides in Vegetables and Fruit by an Indirect Competitive Enzyme-Linked Immunosorbent Assay (ic-ELISA) and a Lateral-Flow Immunochromatographic (LFIC) Strip Assay. Anal. Lett. 2022, 55, 1701–1718. DOI: 10.1080/00032719.2021.2023170.
  • Mahmoudpour, M.; Karimzadeh, Z.; Ebrahimi, G.; Hasanzadeh, M.; Ezzati Nazhad Dolatabadi, J. Synergizing Functional Nanomaterials with Aptamers Based on Electrochemical Strategies for Pesticide Detection: Current Status and Perspectives. Crit. Rev. Anal. Chem. 2022, 52, 1818–1845. DOI: 10.1080/10408347.2021.1919987.
  • Li, J.; Jia, H.; Ren, X.; Li, Y.; Liu, L.; Feng, R.; Ma, H.; Wei, Q. Dumbbell Plate‐Shaped AIEgen‐Based Luminescent MOF with High Quantum Yield as Self‐Enhanced ECL Tags: Mechanism Insights and Biosensing Application. Small 2022, 18, e2106567. DOI: 10.1002/smll.202106567.
  • Li, S.; Pang, C.; Ma, X.; Wu, Y.; Wang, M.; Xu, Z.; Luo, J. Aggregation-Induced Electrochemiluminescence and Molecularly Imprinted Polymer Based Sensor with Fe3O4@ Pt Nanoparticle Amplification for Ultrasensitive Ciprofloxacin Detection. Microchem. J. 2022, 178, 107345. DOI: 10.1016/j.microc.2022.107345.
  • Zhao, Y.; Wang, R.; Wang, Y.; Jie, G.; Zhou, H. Dual-Channel Molecularly Imprinted Sensor Based on Dual-Potential Electrochemiluminescence of Zn-MOFs for Double Detection of Trace Chloramphenicol. Food Chem. 2023, 413, 135627. DOI: 10.1016/j.foodchem.2023.135627.
  • Shen, Y.; Gao, X.; Lu, H.-J.; Nie, C.; Wang, J. Electrochemiluminescence-Based Innovative Sensors for Monitoring the Residual Levels of Heavy Metal Ions in Environment-Related Matrices. Coord. Chem. Rev. 2023, 476, 214927. DOI: 10.1016/j.ccr.2022.214927.
  • Shen, Y.; Wei, Y.; Zhu, C.; Cao, J.; Han, D.-M. Ratiometric Fluorescent Signals-Driven Smartphone-Based Portable Sensors for Onsite Visual Detection of Food Contaminants. Coord. Chem. Rev. 2022, 458, 214442. DOI: 10.1016/j.ccr.2022.214442.
  • Li, Y.; Zhou, H.; Zhang, J.; Cui, B.; Fang, Y. Determination of Nitrite in Food Based on Its Sensitizing Effect on Cathodic Electrochemiluminescence of Conductive PTH-DPP Films. Food Chem. 2022, 397, 133760. DOI: 10.1016/j.foodchem.2022.133760.
  • Abdussalam, A.; Xu, G. Recent Advances in Electrochemiluminescence Luminophores. Anal. Bioanal. Chem. 2022, 414, 131–146. DOI: 10.1007/s00216-021-03329-0.
  • Qin, D.; Meng, S.; Wu, Y.; Mo, G.; Deng, B. Aggregation-Induced Electrochemiluminescence Resonance Energy Transfer with Dual Quenchers for the Sensitive Detection of Prostate-Specific Antigen. Sens. Actuators B 2022, 367, 132176. DOI: 10.1016/j.snb.2022.132176.
  • Liu, Z.; Qi, W.; Xu, G. Recent Advances in Electrochemiluminescence. Chem. Soc. Rev. 2015, 44, 3117–3142. DOI: 10.1039/c5cs00086f.
  • Fan, Y.; Liu, Z.; Wang, J.; Cui, C.; Hu, L. An “Off–On” Electrochemiluminescence Aptasensor for Determination of Lincomycin Based on CdS QDs/Carboxylated g-C3N4. Mikrochim. Acta 2022, 190, 11. DOI: 10.1007/s00604-022-05587-w.
  • Duan, X.; Zhang, N.; Li, Z.; Zhang, L.; Sun, F.; Zhou, Z.; Liu, H.; Guo, Y.; Sun, X.; Jiang, J.; Zhang, D. Ultrasensitive Electrochemiluminescent Aptasensor for Trace Detection of Kanamycin Based-on Novel Semi-Sandwich Gadolinium Phthalocyanine Complex and Dysprosium Metal-Organic Framework. J. Colloid Interface Sci. 2023, 632, 171–178. DOI: 10.1016/j.jcis.2022.11.016.
  • Che, Z.-Y.; Wang, X.-Y.; Ma, X.; Ding, S.-N. Bipolar Electrochemiluminescence Sensors: From Signal Amplification Strategies to Sensing Formats. Coord. Chem. Rev. 2021, 446, 214116. DOI: 10.1016/j.ccr.2021.214116.
  • Du, F.; Chen, Y.; Meng, C.; Lou, B.; Zhang, W.; Xu, G. Recent Advances in Electrochemiluminescence Immunoassay Based on Multiple-Signal Strategy. Curr. Opin. Electrochem. 2021, 28, 100725. DOI: 10.1016/j.coelec.2021.100725.
  • Muzyka, K.; Saqib, M.; Liu, Z.; Zhang, W.; Xu, G. Progress and Challenges in Electrochemiluminescent Aptasensors. Biosens. Bioelectron. 2017, 92, 241–258. DOI: 10.1016/j.bios.2017.01.015.
  • Qi, H.; Zhang, C. Electrogenerated Chemiluminescence Biosensing. Anal. Chem. 2020, 92, 524–534. DOI: 10.1021/acs.analchem.9b03425.
  • Lee, S.; Cho, W. S.; Park, J. Y.; Lee, H. J.; Lee, J.-L.; Lee, K. H.; Hong, K. Water Washable and Flexible Light-Emitting Fibers Based on Electrochemiluminescent Gels. ACS Appl. Mater. Interfaces 2022, 14, 17709–17718. DOI: 10.1021/acsami.2c01438.
  • Zhang, H.-R.; Wang, Y.-Z.; Zhao, W.; Xu, J.-J.; Chen, H.-Y. Visual Color-Switch Electrochemiluminescence Biosensing of Cancer Cell Based on Multichannel Bipolar Electrode Chip. Anal. Chem. 2016, 88, 2884–2890. DOI: 10.1021/acs.analchem.5b04716.
  • Wei, X-h.; Qiao, X.; Fan, J.; Hao, Y.; Zhang, Y.; Zhou, Y.; Xu, M. A Label-Free ECL Aptasensor for Sensitive Detection of Carcinoembryonic Antigen Based on CdS QDs@ MOF and TEOA@ Au as bi-Coreactants of Ru (Bpy) 32+. Microchem. J. 2022, 173, 106910. DOI: 10.1016/j.microc.2021.106910.
  • Zhang, Y.; Zhang, R.; Yang, X.; Qi, H.; Zhang, C. Recent Advances in Electrogenerated Chemiluminescence Biosensing Methods for Pharmaceuticals. J. Pharm. Anal. 2019, 9, 9–19. DOI: 10.1016/j.jpha.2018.11.004.
  • Zhou, H.; Liu, J.; Zhang, S. Quantum Dot-Based Photoelectric Conversion for Biosensing Applications. TrAC Trends Anal. Chem. 2015, 67, 56–73. DOI: 10.1016/j.trac.2014.12.007.
  • Lu, Q.; Zhang, J.; Wu, Y.; Chen, S. Conjugated Polymer Dots/Oxalate Anodic Electrochemiluminescence System and Its Application for Detecting Melamine. RSC Adv. 2015, 5, 63650–63654. DOI: 10.1039/C5RA10809H.
  • Yuan, Y.; Han, S.; Hu, L.; Parveen, S.; Xu, G. Coreactants of Tris (2,2′-Bipyridyl) Ruthenium (II) Electrogenerated Chemiluminescence. Electrochim. Acta 2012, 82, 484–492. DOI: 10.1016/j.electacta.2012.03.156.
  • Wu, Q.; Miao, W.; Zhang, Y.; Gao, H.; Hui, D. Mechanical Properties of Nanomaterials: A Review. Nanotechnol. Rev. 2020, 9, 259–273. DOI: 10.1515/ntrev-2020-0021.
  • Verdian, A. Apta-Nanosensors for Detection and Quantitative Determination of Acetamiprid–a Pesticide Residue in Food and Environment. Talanta 2018, 176, 456–464. DOI: 10.1016/j.talanta.2017.08.070.
  • Xie, Y.; Li, J.; Peng, Z.; Yao, Y.; Chen, S. A First-Principle Study on the Atomic-Level Mechanism of Surface Effect in Nanoparticles. Mater. Today Commun. 2020, 24, 100948. DOI: 10.1016/j.mtcomm.2020.100948.
  • Mahmoudpour, M.; Ding, S.; Lyu, Z.; Ebrahimi, G.; Du, D.; Dolatabadi, J. E. N.; Torbati, M.; Lin, Y. Aptamer Functionalized Nanomaterials for Biomedical Applications: Recent Advances and New Horizons. Nano Today 2021, 39, 101177. DOI: 10.1016/j.nantod.2021.101177.
  • Fenzl, C.; Hirsch, T.; Baeumner, A. J. Nanomaterials as Versatile Tools for Signal Amplification in (Bio) Analytical Applications. TrAC Trends Anal. Chem. 2016, 79, 306–316. DOI: 10.1016/j.trac.2015.10.018.
  • Liu, Y.; Wang, H.; Xiong, C.; Yuan, Y.; Chai, Y.; Yuan, R. A Sensitive Electrochemiluminescence Immunosensor Based on Luminophore Capped Pd@ Au Core-Shell Nanoparticles as Signal Tracers and Ferrocenyl Compounds as Signal Enhancers. Biosens. Bioelectron. 2016, 81, 334–340. DOI: 10.1016/j.bios.2016.03.014.
  • Zhu, M. J.; Pan, J. B.; Wu, Z. Q.; Gao, X. Y.; Zhao, W.; Xia, X. H.; Xu, J. J.; Chen, H. Y. Electrogenerated Chemiluminescence Imaging of Electrocatalysis at a Single Au‐Pt Janus Nanoparticle. Angew. Chem. 2018, 130, 4074–4078. DOI: 10.1002/ange.201800706.
  • Villa-Manso, A. M.; Guerrero-Esteban, T.; Pariente, F.; Toyos-Rodríguez, C.; de la Escosura-Muñiz, A.; Revenga-Parra, M.; Gutiérrez-Sánchez, C.; Lorenzo, E. Bifunctional Au@ Pt/Au Nanoparticles as Electrochemiluminescence Signaling Probes for SARS-CoV-2 Detection. Talanta 2023, 260, 124614. DOI: 10.1016/j.talanta.2023.124614.
  • Shi, X.; Liu, H.; Zhang, M.; Yang, F.; Li, J.; Guo, Y.; Sun, X. Ultrasensitive Electrochemiluminescence Aptasensor Based on AuNPs@ MWCNTs and Au@ AgNPs for Detection of Profenofos Residues. Sens. Actuators B 2021, 348, 130663. DOI: 10.1016/j.snb.2021.130663.
  • Mahmoudpour, M.; Torbati, M.; Mousavi, M.-M.; de la Guardia, M.; Ezzati Nazhad Dolatabadi, J. Nanomaterial-Based Molecularly Imprinted Polymers for Pesticides Detection: Recent Trends and Future Prospects. TrAC Trends Anal. Chem. 2020, 129, 115943. DOI: 10.1016/j.trac.2020.115943.
  • Abdel-Haleem, F. M.; Gamal, E.; Rizk, M. S.; Madbouly, A.; El Nashar, R. M.; Anis, B.; Elnabawy, H. M.; Khalil, A. S.; Barhoum, A. Molecularly Imprinted Electrochemical Sensor-Based Fe2O3@ MWCNTs for Ivabradine Drug Determination in Pharmaceutical Formulation, Serum, and Urine Samples. Front. Bioeng. Biotechnol. 2021, 9, 648704. DOI: 10.3389/fbioe.2021.648704.
  • El Nashar, R. M.; Ghani, N. T. A.; El Gohary, N. A.; Barhoum, A.; Madbouly, A. Molecularly Imprinted Polymers Based Biomimetic Sensors for Mosapride Citrate Detection in Biological Fluids. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 123–129. DOI: 10.1016/j.msec.2017.03.087.
  • Li, H.; Xie, T.; Shi, D.; Jin, J.; Xie, C. Enhanced Electrochemiluminescence of Luminol at the Gold Nanoparticle/Carbon Nanotube/Electropolymerised Molecular Imprinting Composite Membrane Interface for Selective Recognition of Triazophos. Int. J. Environ. Anal. Chem. 2016, 96, 1300–1311. DOI: 10.1080/03067319.2016.1250261.
  • Yang, Y.; Fang, G.; Wang, X.; Zhang, F.; Liu, J.; Zheng, W.; Wang, S. Electrochemiluminescent Graphene Quantum Dots Enhanced by MoS2 as Sensing Platform: A Novel Molecularly Imprinted Electrochemiluminescence Sensor for 2-Methyl-4-Chlorophenoxyacetic Acid Assay. Electrochim. Acta 2017, 228, 107–113. DOI: 10.1016/j.electacta.2017.01.043.
  • Zhou, Y.; Chen, M.; Zhuo, Y.; Chai, Y.; Xu, W.; Yuan, R. In Situ Electrodeposited Synthesis of Electrochemiluminescent Ag Nanoclusters as Signal Probe for Ultrasensitive Detection of Cyclin-D1 from Cancer Cells. Anal. Chem. 2017, 89, 6787–6793. DOI: 10.1021/acs.analchem.7b01154.
  • Mansuriya, B. D.; Altintas, Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care—An Updated Review (2018–2021). Nanomaterials 2021, 11, 2525. DOI: 10.3390/nano11102525.
  • Chen, Y.; Cao, Y.; Ma, C.; Zhu, J.-J. Carbon-Based Dots for Electrochemiluminescence Sensing. Mater. Chem. Front. 2020, 4, 369–385. DOI: 10.1039/C9QM00572B.
  • Chen, A.; Liang, W.; Wang, H.; Zhuo, Y.; Chai, Y.; Yuan, R. Anodic Electrochemiluminescence of Carbon Dots Promoted by Nitrogen Doping and Application to Rapid Cancer Cell Detection. Anal. Chem. 2020, 92, 1379–1385. DOI: 10.1021/acs.analchem.9b04537.
  • Kamyabi, M. A.; Moharramnezhad, M. A Novel Cathodic Electrochemiluminescent Sensor Based on CuS/Carbon Quantum Dots/g-C3N4 Nanosheets and Boron Nitride Quantum Dots for the Sensitive Detection of Organophosphate Pesticide. Microchem. J. 2022, 179, 107421. DOI: 10.1016/j.microc.2022.107421.
  • Gu, Y.; Wang, J.; Shi, H.; Pan, M.; Liu, B.; Fang, G.; Wang, S. Electrochemiluminescence Sensor Based on Upconversion Nanoparticles and Oligoaniline-Crosslinked Gold Nanoparticles Imprinting Recognition Sites for the Determination of Dopamine. Biosens. Bioelectron. 2019, 128, 129–136. DOI: 10.1016/j.bios.2018.12.043.
  • Tang, F.; Hua, Q.; Wang, X.; Luan, F.; Wang, L.; Li, Y.; Zhuang, X.; Tian, C. A Novel Electrochemiluminescence Sensor Based on a Molecular Imprinting Technique and UCNPs@ ZIF-8 Nanocomposites for Sensitive Determination of Imidacloprid. Analyst 2022, 147, 3917–3923. DOI: 10.1039/d2an01005d.
  • Karimzadeh, Z.; Mahmoudpour, M.; Guardia, M.; Ezzati Nazhad Dolatabadi, J.; Jouyban, A. Aptamer-Functionalized Metal Organic Frameworks as an Emerging Nanoprobe in the Food Safety Field: Promising Development Opportunities and Translational Challenges. TrAC Trends Anal. Chem. 2022, 152, 116622. DOI: 10.1016/j.trac.2022.116622.
  • Zhou, L.; Jiang, D.; Wang, Y.; Li, H.; Shan, X.; Wang, W.; Chen, Z. A Highly-Enhanced Electrochemiluminescence Luminophore Generated by a Metal–Organic Framework-Linked Perylene Derivative and Its Application for Ractopamine Assay. Analyst 2021, 146, 2029–2036. DOI: 10.1039/d0an02186e.
  • Hu, G.-B.; Xiong, C.-Y.; Liang, W.-B.; Zeng, X.-S.; Xu, H.-L.; Yang, Y.; Yao, L.-Y.; Yuan, R.; Xiao, D.-R. Highly Stable Mesoporous Luminescence-Functionalized MOF with Excellent Electrochemiluminescence Property for Ultrasensitive Immunosensor Construction. ACS Appl. Mater. Interfaces 2018, 10, 15913–15919. DOI: 10.1021/acsami.8b05038.
  • Wang, S.; Wang, M.; Li, C.; Li, H.; Ge, C.; Zhang, X.; Jin, Y. A Highly Sensitive and Stable Electrochemiluminescence Immunosensor for Alpha-Fetoprotein Detection Based on luminol-AgNPs@ Co/Ni-MOF Nanosheet Microflowers. Sens. Actuators B 2020, 311, 127919. DOI: 10.1016/j.snb.2020.127919.
  • Yang, X.; Yu, Y.-Q.; Peng, L.-Z.; Lei, Y.-M.; Chai, Y.-Q.; Yuan, R.; Zhuo, Y. Strong Electrochemiluminescence from MOF Accelerator Enriched Quantum Dots for Enhanced Sensing of Trace cTnI. Anal. Chem. 2018, 90, 3995–4002. DOI: 10.1021/acs.analchem.7b05137.
  • Wang, S.; Wang, J.; Cheng, W.; Yang, X.; Zhang, Z.; Xu, Y.; Liu, H.; Wu, Y.; Fang, M. A Zr Metal–Organic Framework Based on Tetrakis (4-Carboxyphenyl) Silane and Factors Affecting the Hydrothermal Stability of Zr-MOFs. Dalton Trans. 2015, 44, 8049–8061. DOI: 10.1039/c5dt00421g.
  • Ma, X.; Pang, C.; Li, S.; Li, J.; Wang, M.; Xiong, Y.; Su, L.; Luo, J.; Xu, Z.; Lin, L. Biomimetic Synthesis of Ultrafine Mixed-Valence Metal–Organic Framework Nanowires and Their Application in Electrochemiluminescence Sensing. ACS Appl. Mater. Interfaces 2021, 13, 41987–41996. DOI: 10.1021/acsami.1c10074.
  • Fu, X.; Huang, J.; Lai, X.; Rong, J.; Qi, G.; Lin, Z.; Fu, F.; Dong, Y. Strategy and Mechanism for Strong and Stable Electrochemiluminescence of Graphitic Carbon Nitride. Electrochim. Acta 2023, 444, 142025. DOI: 10.1016/j.electacta.2023.142025.
  • Zhao, T.; Zhou, Q.; Lv, Y.; Han, D.; Wu, K.; Zhao, L.; Shen, Y.; Liu, S.; Zhang, Y. Ultrafast Condensation of Carbon Nitride on Electrodes with Exceptional Boosted Photocurrent and Electrochemiluminescence. Angew. Chem. Int. Ed. Engl. 2020, 59, 1139–1143. DOI: 10.1002/anie.201911822.
  • Inagaki, M.; Tsumura, T.; Kinumoto, T.; Toyoda, M. Graphitic Carbon Nitrides (g-C3N4) with Comparative Discussion to Carbon Materials. Carbon 2019, 141, 580–607. DOI: 10.1016/j.carbon.2018.09.082.
  • Mo, G.; He, X.; Qin, D.; Meng, S.; Wu, Y.; Deng, B. Spatially-Resolved Dual-Potential Sandwich Electrochemiluminescence Immunosensor for the Simultaneous Determination of Carbohydrate Antigen 19–9 and Carbohydrate Antigen 24-2. Biosens. Bioelectron. 2021, 178, 113024. DOI: 10.1016/j.bios.2021.113024.
  • Chen, W.; Yao, X.; Zhou, X.; Zhao, K.; Deng, A.; Li, J. Electrochemiluminescence Based Competitive Immunoassay for Sudan I by Using Gold-Functionalized Graphitic Carbon Nitride and Au/Cu Alloy Nanoflowers. Microchim. Acta 2018, 185, 1. DOI: 10.1007/s00604-018-2790-x.
  • Tian, D.; Wang, J.; Zhuang, Q.; Wu, S.; Yu, Y.; Ding, K. An Electrochemiluminescence Biosensor Based on Graphitic Carbon Nitride Luminescence Quenching for Detection of AFB1. Food Chem. 2023, 404, 134183. DOI: 10.1016/j.foodchem.2022.134183.
  • Wang, B.; Zhong, X.; Chai, Y.; Yuan, R. Ultrasensitive Electrochemiluminescence Biosensor for Organophosphate Pesticides Detection Based on Carboxylated Graphitic Carbon Nitride-Poly (Ethylenimine) and Acetylcholinesterase. Electrochim. Acta 2017, 224, 194–200. DOI: 10.1016/j.electacta.2016.12.077.
  • Liu, H.; Liu, Z.; Yi, J.; Ma, D.; Xia, F.; Tian, D.; Zhou, C. A Dual-Signal Electroluminescence Aptasensor Based on Hollow Cu/Co-MOF-Luminol and g-C3N4 for Simultaneous Detection of Acetamiprid and Malathion. Sens. Actuators B 2021, 331, 129412. DOI: 10.1016/j.snb.2020.129412.
  • Chen, S.; Li, A.; Zhang, L.; Gong, J. Molecularly Imprinted Ultrathin Graphitic Carbon Nitride Nanosheets–Based Electrochemiluminescence Sensing Probe for Sensitive Detection of Perfluorooctanoic Acid. Anal. Chim. Acta 2015, 896, 68–77. DOI: 10.1016/j.aca.2015.09.022.
  • Liang, H.; Song, D.; Gong, J. Signal-on Electrochemiluminescence of Biofunctional CdTe Quantum Dots for Biosensing of Organophosphate Pesticides. Biosens. Bioelectron. 2014, 53, 363–369. DOI: 10.1016/j.bios.2013.10.011.
  • He, Y.; Hu, F.; Zhao, J.; Yang, G.; Zhang, Y.; Chen, S.; Yuan, R. Bifunctional Moderator-Powered Ratiometric Electrochemiluminescence Enzymatic Biosensors for Detecting Organophosphorus Pesticides Based on Dual-Signal Combined Nanoprobes. Anal. Chem. 2021, 93, 8783–8790. DOI: 10.1021/acs.analchem.1c00179.
  • Yang, G.; He, Y.; Zhao, J.; Chen, S.; Yuan, R. Ratiometric Electrochemiluminescence Biosensor Based on Ir Nanorods and CdS Quantum Dots for the Detection of Organophosphorus Pesticides. Sens. Actuators B 2021, 341, 130008. DOI: 10.1016/j.snb.2021.130008.
  • He, Y.; Du, J.; Luo, J.; Chen, S.; Yuan, R. Coreactant-Free Electrochemiluminescence Biosensor for the Determination of Organophosphorus Pesticides. Biosens. Bioelectron. 2020, 150, 111898. DOI: 10.1016/j.bios.2019.111898.
  • Yang, Q.; Zhao, S.; Li, H.; Li, F. Acidic pH and Thiol-Driven Homogeneous Cathodic Electrochemiluminescence Strategy for Determining the Residue of Organophosphorus Pesticide in Chinese Cabbage. Food Chem. 2022, 393, 133349. DOI: 10.1016/j.foodchem.2022.133349.
  • Zhang, X.; Tian, L.; Sun, Z.; Wu, Q.; Shan, X.; Yang, S.; Li, H.; Li, C.; Chen, R.; Lu, J. Ultrasensitive Electrochemiluminescence Biosensor for Determination of Malathion Based on a Multiple Signal Amplification Strategy. Microchem. J. 2023, 188, 108456. DOI: 10.1016/j.microc.2023.108456.
  • Shan, X.; Lu, J.; Wu, Q.; Sun, Z.; Zhang, X.; Li, C.; Yang, S.; Li, H.; Tian, L. Solid-State Electrochemiluminescence Sensor Based on the Carbon Fibers Derived from ZIFs-Containing Electrospun Fibers for Chlorpyrifos Detection. Microchem. J. 2023, 185, 108221. DOI: 10.1016/j.microc.2022.108221.
  • Lu, J.; Shan, X.; Wu, Q.; Zhao, Y.; Li, C.; Li, H.; Yang, S.; Tian, L. ZnO-Fe2O3 Based Electrochemiluminescence Sensor for Sensitive Detection of Malathion. Microchem. J. 2023, 186, 108321. DOI: 10.1016/j.microc.2022.108321.
  • Zhang, X.; Tian, L.; Sun, Z.; Wu, Q.; Shan, X.; Zhao, Y.; Chen, R.; Lu, J. A Molecule-Imprinted Electrochemiluminescence Sensor Based on Self-Accelerated Ru (Bpy) 32+@ ZIF-7 for Ultra-Sensitive Detection of Procymidone. Food Chem. 2022, 391, 133235. DOI: 10.1016/j.foodchem.2022.133235.
  • Zhang, M.; Kong, Q.; Huang, J.; Xiang, Y.; Wang, G.; Han, J.; Guo, Y.; Zhao, S.; Sun, X. Electrochemiluminescence Aptasensor Based on 3D Flower-like ZnONPs Catalysis for the Detection of Diazinon in Vegetables. Sens. Actuators B 2022, 361, 131690. DOI: 10.1016/j.snb.2022.131690.
  • Xiu, F.; Lu, Y.; Qi, Y.; Wang, Y.; He, J. Ultrasensitive and Practical Chemiluminescence Sensing Pesticide Residue Acetamiprid in Agricultural Products and Environment: Combination of Synergistically Coupled Co-amplifying Signal and Smart Interface Engineering. Talanta 2021, 235, 122811. DOI: 10.1016/j.talanta.2021.122811.
  • Li, Y.; Yang, F.; Yuan, R.; Zhong, X.; Zhuo, Y. Electrochemiluminescence Covalent Organic Framework Coupling with CRISPR/Cas12a-Mediated Biosensor for Pesticide Residue Detection. Food Chem. 2022, 389, 133049. DOI: 10.1016/j.foodchem.2022.133049.
  • Qi, H.; Li, H.; Li, F. N-Heterocyclic Ir (III) Complex Targeting G-Quadruplex Structure to Boost Label-Free and Immobilization-Free Electrochemiluminescent Sensing. Biosens. Bioelectron. 2023, 220, 114839. DOI: 10.1016/j.bios.2022.114839.
  • Su, C.; Song, Q.; Jiang, D.; Dong, C.; Shan, X.; Chen, Z. An Electrochemiluminescence Aptasensor for Diethylstilbestrol Assay Based on Resonance Energy Transfer between Ag3PO4-Cu-MOF (ii) and Silver Nanoparticles. Analyst 2021, 146, 4254–4260. DOI: 10.1039/d1an00599e.
  • Liu, C.; Cai, L.; Wang, X.; Guo, Y.; Fang, G.; Wang, S. Construction of Molecularly Imprinted Sensor Based on Covalent Organic Frameworks DAFB-DCTP-Doped Carbon Nitride Nanosheets with High Electrochemiluminescence Activity for Sensitive Detection of Carbaryl. Microchem. J. 2022, 178, 107416. DOI: 10.1016/j.microc.2022.107416.
  • Liu, C.; Cai, L.; Wang, Y.; Wang, H.; Fang, G.; Wang, S. Controllable Enhanced Ru (Bpy) 32+ Electrochemiluminescence Detection Systems Based on Eu@ MOF253@ AuNPs/GCE for the Sensitive Detection of Carbaryl in Food. J. Agric. Food Chem. 2022, 70, 6264–6271. DOI: 10.1021/acs.jafc.2c01932.
  • Fu, H.; Tan, P.; Wang, R.; Li, S.; Liu, H.; Yang, Y.; Wu, Z. Advances in Organophosphorus Pesticides Pollution: Current Status and Challenges in Ecotoxicological, Sustainable Agriculture, and Degradation Strategies. J. Hazard. Mater. 2022, 424, 127494. DOI: 10.1016/j.jhazmat.2021.127494.
  • Eddleston, M. Novel Clinical Toxicology and Pharmacology of Organophosphorus Insecticide Self-Poisoning. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 341–360. DOI: 10.1146/annurev-pharmtox-010818-021842.
  • Guo, X.; Wang, H.; Song, Q.; Li, N.; Liang, Q.; Su, W.; Liang, M.; Ding, X.; Sun, C.; Lowe, S.; Sun, Y. Association between Exposure to Organophosphorus Pesticides and the Risk of Diabetes among US Adults: Cross-Sectional Findings from the National Health and Nutrition Examination Survey. Chemosphere 2022, 301, 134471. DOI: 10.1016/j.chemosphere.2022.134471.
  • Zhang, S. W.; Wang, R.; Wang, F.; Cai, M. Assessment of Currently Used and Restricted Organophosphorus Pesticides and Their Degradation Products in Urban Drinking Water: An Investigation of Eight Cities in Yangtze River Delta Urban Agglomeration, East China. J. Hazard. Mater. Adv. 2023, 9, 100211. DOI: 10.1016/j.hazadv.2022.100211.
  • Miao, S. S.; Wu, M. S.; Ma, L. Y.; He, X. J.; Yang, H. Electrochemiluminescence Biosensor for Determination of Organophosphorous Pesticides Based on Bimetallic Pt-Au/Multi-Walled Carbon Nanotubes Modified Electrode. Talanta 2016, 158, 142–151. DOI: 10.1016/j.talanta.2016.05.030.
  • Chen, H.; Zhang, H.; Yuan, R.; Chen, S. Novel Double-Potential Electrochemiluminescence Ratiometric Strategy in Enzyme-Based Inhibition Biosensing for Sensitive Detection of Organophosphorus Pesticides. Anal. Chem. 2017, 89, 2823–2829. DOI: 10.1021/acs.analchem.6b03883.
  • Zhang, X.; Liu, Y.; Jiao, Y.; Gao, Q.; Yan, X.; Yang, Y. Facile Construction of Fe@ Zeolite Imidazolate Framework-67 to Selectively Remove Uranyl Ions from Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2018, 91, 309–315. DOI: 10.1016/j.jtice.2018.05.033.
  • Gong, W.; Yang, S.; Zhang, F.; Tian, F.; Chen, J.; Yin, Z.; Ding, S.; Yang, W.; Luo, R. A Dual-Quenched ECL Immunosensor for Ultrasensitive Detection of Retinol Binding Protein 4 Based on Luminol@ AuPt/ZIF-67 and MnO2@ CNTs. J. Nanobiotechnol. 2021, 19, 272. DOI: 10.1186/s12951-021-01020-1.
  • Pellicer-Castell, E.; Belenguer-Sapiña, C.; Amorós, P.; El Haskouri, J.; Herrero-Martínez, J. M.; Mauri-Aucejo, A. R. Mesoporous Silica Sorbent with Gold Nanoparticles for Solid-Phase Extraction of Organochlorine Pesticides in Water Samples. J. Chromatogr. A 2022, 1662, 462729. DOI: 10.1016/j.chroma.2021.462729.
  • Ashesh, A.; Singh, S.; Linthoingambi Devi, N.; Chandra Yadav, I. Organochlorine Pesticides in Multi-Environmental Matrices of India: A Comprehensive Review on Characteristics, Occurrence, and Analytical Methods. Microchem. J. 2022, 177, 107306. DOI: 10.1016/j.microc.2022.107306.
  • Shi, X.; Sun, J.; Yao, Y.; Liu, H.; Huang, J.; Guo, Y.; Sun, X. Novel Electrochemical Aptasensor with Dual Signal Amplification Strategy for Detection of Acetamiprid. Sci. Total Environ. 2020, 705, 135905. DOI: 10.1016/j.scitotenv.2019.135905.
  • Lu, Z.; Ye, W.; Feng, P.; Dai, M.; Bian, D.; Ren, Y.; Zhu, Q.; Mao, T.; Su, W.; Li, F.; et al. Low Concentration Acetamiprid-Induced Oxidative Stress Hinders the Growth and Development of Silkworm Posterior Silk Glands. Pestic. Biochem. Physiol. 2021, 174, 104824. DOI: 10.1016/j.pestbp.2021.104824.
  • Anjitha, R.; Antony, A.; Shilpa, O.; Anupama, K. P.; Mallikarjunaiah, S.; Gurushankara, H. P. Malathion Induced Cancer-Linked Gene Expression in Human Lymphocytes. Environ. Res. 2020, 182, 109131. DOI: 10.1016/j.envres.2020.109131.
  • Ma, X.; Li, H.; Xiong, J.; Mehler, W. T.; You, J. Developmental Toxicity of a Neonicotinoid Insecticide, Acetamiprid to Zebrafish Embryos. J. Agric. Food Chem. 2019, 67, 2429–2436. DOI: 10.1021/acs.jafc.8b05373.
  • Wan, Y.; Wang, Y.; Xia, W.; He, Z.; Xu, S. Neonicotinoids in Raw, Finished, and Tap Water from Wuhan, Central China: Assessment of Human Exposure Potential. Sci. Total Environ. 2019, 675, 513–519. DOI: 10.1016/j.scitotenv.2019.04.267.
  • Guo, X.; Chen, C.; Yin, S.; Huang, L.; Qin, W. Controlled Synthesis and Photocatalytic Properties of Ag3PO4 Microcrystals. J. Alloys Compd. 2015, 619, 293–297. DOI: 10.1016/j.jallcom.2014.09.065.
  • Xue, D.; Zhang, Z.; Wang, Y. Enhanced Methane Sensing Performance of SnO2 Nanoflowers Based Sensors Decorated with Au Nanoparticles. Mater. Chem. Phys. 2019, 237, 121864. DOI: 10.1016/j.matchemphys.2019.121864.
  • Su, C.; Dong, C.; Jiang, D.; Shan, X.; Chen, Z. Construction of Electrochemiluminescence Aptasensor for Acetamiprid Detection Using Flower-Liked SnO2 Nanocrystals Encapsulated Ag3PO4 Composite as Luminophore. Microchem. J. 2023, 187, 108374. DOI: 10.1016/j.microc.2022.108374.
  • Li, S.; Tian, T.; Zhang, T.; Cai, X.; Lin, Y. Advances in Biological Applications of Self-Assembled DNA Tetrahedral Nanostructures. Mater. Today 2019, 24, 57–68. DOI: 10.1016/j.mattod.2018.08.002.
  • Guo, Y.; Yang, F.; Yao, Y.; Li, J.; Cheng, S.; Dong, H.; Zhang, H.; Xiang, Y.; Sun, X. Novel Au-Tetrahedral Aptamer Nanostructure for the Electrochemiluminescence Detection of Acetamiprid. J. Hazard. Mater. 2021, 401, 123794. DOI: 10.1016/j.jhazmat.2020.123794.
  • Guo, H.; Chen, A.; Zhou, J.; Li, Y.; He, X.; Chen, L.; Zhang, Y. Efficient Extraction and Determination of Carbamate Pesticides in Vegetables Based on a Covalent Organic Frameworks with Acylamide Sites. J. Chromatogr. A 2022, 1664, 462799. DOI: 10.1016/j.chroma.2021.462799.
  • Rakkhun, W.; Jantra, J.; Cheubong, C.; Teepoo, S. Colorimetric Test Strip Cassette Readout with a Smartphone for On-site and Rapid Screening Test of Carbamate Pesticides in Vegetables. Microchem. J. 2022, 181, 107837. DOI: 10.1016/j.microc.2022.107837.
  • Jung, S.; Kim, S.; Kim, I.; Chung, M.-S.; Moon, B.; Shin, S.; Lee, J. Risk Assessment of Ethyl Carbamate in Alcoholic Beverages in Korea Using the Margin of Exposure Approach and Cancer Risk Assessment. Food Control 2021, 124, 107867. DOI: 10.1016/j.foodcont.2021.107867.
  • Jalili, R.; Chenaghlou, S.; Khataee, A.; Khalilzadeh, B.; Rashidi, M.-R. An Electrochemiluminescence Biosensor for the Detection of Alzheimer’s Tau Protein Based on Gold Nanostar Decorated Carbon Nitride Nanosheets. Molecules 2022, 27, 431. DOI: 10.3390/molecules27020431.
  • Hu, J.; Zhang, Y.; Chai, Y.; Yuan, R. Boron Carbon Nitride Nanosheets-Ru Nanocomposite Self-Enhancement Electrochemiluminescence Emitter with a Three-Dimensional DNA Network Structure as a Signal Amplifier for Ultrasensitive Detection of TK1 mRNA. Anal. Chem. 2022, 94, 11345–11351. DOI: 10.1021/acs.analchem.2c02110.
  • Shen, Y.; Zhang, Y.; Gao, Z. F.; Ye, Y.; Wu, Q.; Chen, H.-Y.; Xu, J.-J. Recent Advances in Nanotechnology for Simultaneous Detection of Multiple Pathogenic Bacteria. Nano Today 2021, 38, 101121. DOI: 10.1016/j.nantod.2021.101121.
  • Majdinasab, M.; Marty, J. L. Recent Advances in Electrochemical Aptasensors for Detection of Biomarkers. Pharmaceuticals 2022, 15, 995. DOI: 10.3390/ph15080995.
  • He, L.; Huang, R.; Xiao, P.; Liu, Y.; Jin, L.; Liu, H.; Li, S.; Deng, Y.; Chen, Z.; Li, Z.; He, N. Current Signal Amplification Strategies in Aptamer-Based Electrochemical Biosensor: A Review. Chin. Chem. Lett. 2021, 32, 1593–1602. DOI: 10.1016/j.cclet.2020.12.054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.