319
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Advances in Catecholamines Analytical Detection Methods and Their Pretreatment Technologies

, , , , , , , & show all

References

  • Gorbunova, M. V.; Gutorova, S. V.; Berseneva, D. A.; Apyari, V. V.; Zaitsev, V. D.; Dmitrienko, S. G.; Zolotov, Y. A. Spectroscopic Methods for Determination of Catecholamines: A Mini-Review. Appl. Spectrosc. Rev. 2019, 54, 631–652. DOI: 10.1080/05704928.2018.1470980.
  • Xia, X.; Wang, Y.; Qin, Y.; Zhao, S.; Zheng, J. C. Exosome: A Novel Neurotransmission Modulator or Non-Canonical Neurotransmitter? Ageing Res. Rev. 2022, 74, 101558. DOI: 10.1016/j.arr.2021.101558.
  • Bacchella, C.; Dell’Acqua, S.; Nicolis, S.; Monzani, E.; Casella, L. The Reactivity of Copper Complexes with Neuronal Peptides Promoted by Catecholamines and Its Impact on Neurodegeneration. Coord. Chem. Rev. 2022, 471, 214756. DOI: 10.1016/j.ccr.2022.214756.
  • Hotamisligil, G. S. Foundations of Immunometabolism and Implications for Metabolic Health and Disease. Immunity 2017, 47, 406–420. DOI: 10.1016/j.immuni.2017.08.009.
  • Klein, M. O.; Battagello, D. S.; Cardoso, A. R.; Hauser, D. N.; Bittencourt, J. C.; Correa, R. G. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol. Neurobiol. 2019, 39, 31–59. DOI: 10.1007/s10571-018-0632-3.
  • Sundar, S.; Ganesh, V. Bio-Assisted Preparation of Efficiently Architectured Nanostructures of γ-Fe2O3 as a Molecular Recognition Platform for Simultaneous Detection of Biomarkers. Sci. Rep. 2020, 10, 15071. DOI: 10.1038/s41598-020-71934-7.
  • Polikarpova, D.; Makeeva, D.; Kolotilina, N.; Dolgonosov, A.; Peshkova, M.; Kartsova, L. Nanosized Cation Exchanger for the Electrophoretic Separation and Preconcentration of Catecholamines and Amino Acids. Electrophoresis 2020, 41, 1031–1038. DOI: 10.1002/elps.201900416.
  • Ji, X.; Palui, G.; Avellini, T.; Na, H. B.; Yi, C.; Knappenberger, K. L. Jr.; Mattoussi, H. On the pH-Dependent Quenching of Quantum Dot Photoluminescence by Redox Active Dopamine. J. Am. Chem. Soc. 2012, 134, 6006–6017. DOI: 10.1021/ja300724x.
  • Sajid, M.; Nazal, M. K.; Mansha, M.; Alsharaa, A.; Jillani, S. M. S.; Basheer, C. Chemically Modified Electrodes for Electrochemical Detection of Dopamine in the Presence of Uric Acid and Ascorbic Acid: A Review. TrAC, Trends Anal. Chem. 2016, 76, 15–29. DOI: 10.1016/j.trac.2015.09.006.
  • Sajid, M.; Baig, N.; Alhooshani, K. Chemically Modified Electrodes for Electrochemical Detection of Dopamine: Challenges and Opportunities. TrAC, Trends Anal. Chem. 2019, 118, 368–385. DOI: 10.1016/j.trac.2019.05.042.
  • Ling, X.; Chen, Z. Boronate Affinity Solid-Phase Extraction of Cis-Diol Compounds by a One-Step Electrochemically Synthesized Selective Polymer Sorbent. Anal. Bioanal. Chem. 2018, 410, 501–508. DOI: 10.1007/s00216-017-0740-9.
  • Wang, S.-T.; Huang, W.; Lu, W.; Yuan, B.-F.; Feng, Y.-Q. TiO2-Based Solid Phase Extraction Strategy for Highly Effective Elimination of Normal Ribonucleosides before Detection of 2'-Deoxynucleosides/Low-Abundance 2'-O-Modified Ribonucleosides. Anal. Chem. 2013, 85, 10512–10518. DOI: 10.1021/ac4025297.
  • He, H.; Zhou, Z.; Dong, C.; Wang, X.; Yu, Q.-W.; Lei, Y.; Luo, L.; Feng, Y. Facile Synthesis of a Boronate Affinity Sorbent from Mesoporous Nanomagnetic Polyhedral Oligomeric Silsesquioxanes Composite and Its Application for Enrichment of Catecholamines in Human Urine. Anal. Chim. Acta 2016, 944, 1–13. DOI: 10.1016/j.aca.2016.09.012.
  • Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular Imprinting: Perspectives and Applications. Chem. Soc. Rev. 2016, 45, 2137–2211. DOI: 10.1039/C6CS00061D.
  • Shi, N.; Bu, X.; Zhang, M.; Wang, B.; Xu, X.; Shi, X.; Hussain, D.; Xu, X.; Chen, D. Current Sample Preparation Methodologies for Determination of Catecholamines and Their Metabolites. Molecules 2022, 27, 2702. DOI: 10.3390/molecules27092702.
  • Su, Y.; Bian, S.; Sawan, M. Real-Time in Vivo Detection Techniques for Neurotransmitters: A Review. Analyst 2020, 145, 6193–6210. DOI: 10.1039/D0AN01175D.
  • Lakshmanakumar, M.; Nesakumar, N.; Kulandaisamy, A. J.; Rayappan, J. B. B. Principles and Recent Developments in Optical and Electrochemical Sensing of Dopamine: A Comprehensive Review. Measurement 2021, 183, 109873. DOI: 10.1016/j.measurement.2021.109873.
  • Fredj, Z.; Sawan, M. Advanced Nanomaterials-Based Electrochemical Biosensors for Catecholamines Detection: Challenges and Trends. Biosensors (Basel) 2023, 13, 211. DOI: 10.3390/bios13020211.
  • Lakard, S.; Pavel, I.-A.; Lakard, B. Electrochemical Biosensing of Dopamine Neurotransmitter: A Review. Biosensors (Basel) 2021, 11, 179. DOI: 10.3390/bios11060179.
  • Ou, Y.; Buchanan, A. M.; Witt, C. E.; Hashemi, P. Frontiers in Electrochemical Sensors for Neurotransmitter Detection: Towards Measuring Neurotransmitters as Chemical Diagnostics for Brain Disorders. Anal. Methods 2019, 11, 2738–2755. DOI: 10.1039/C9AY00055K.
  • Tohmola, N.; Itkonen, O.; Sane, T.; Markkanen, H.; Joenvaara, S.; Renkonen, R.; Hamalainen, E. Analytical and Preanalytical Validation of a New Mass Spectrometric Serum 5-Hydroxyindoleacetic Acid Assay as Neuroendocrine Tumor Marker. Clin. Chim. Acta 2014, 428, 38–43. DOI: 10.1016/j.cca.2013.10.025.
  • Verly, I. R.; Van Kuilenburg, A. B.; Abeling, N. G.; Goorden, S. M.; Fiocco, M.; Vaz, F. M.; Van Noesel, M. M.; Zwaan, C. M.; Kaspers, G. L.; Merks, J. H.; et al. Catecholamines Profiles at Diagnosis: Increased Diagnostic Sensitivity and Correlation with Biological and Clinical Features in Neuroblastoma Patients. Eur. J. Cancer 2017, 72, 235–243. DOI: 10.1016/j.ejca.2016.12.002.
  • Chen, D.; Zhang, J.-X.; Cui, W.-Q.; Zhang, J.-W.; Wu, D.-Q.; Yu, X.-R.; Luo, Y.-B.; Jiang, X.-Y.; Zhu, F.-P.; Hussain, D.; Xu, X. A Simultaneous Extraction/Derivatization Strategy Coupled with Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Free Catecholamines in Biological Fluids. J. Chromatogr. A 2021, 1654, 462474. DOI: 10.1016/j.chroma.2021.462474.
  • Clark, Z. D.; Cutler, J. M.; Pavlov, I. Y.; Strathmann, F. G.; Frank, E. L. Simple Dilute-and-Shoot Method for Urinary Vanillylmandelic Acid and Homovanillic Acid by Liquid Chromatography Tandem Mass Spectrometry. Clin. Chim. Acta 2017, 468, 201–208. DOI: 10.1016/j.cca.2017.03.004.
  • Chung, H.; Tajiri, S.; Hyoguchi, M.; Koyanagi, R.; Shimura, A.; Takata, F.; Dohgu, S.; Matsui, T. Analysis of Catecholamine and Their Metabolites in Mice Brain by Liquid Chromatography-Mass Spectrometry Using Sulfonated Mixed-Mode Copolymer Column. Anal. Sci. 2019, 35, 433–439. DOI: 10.2116/analsci.18P494.
  • Roiffe, R. R.; Ribeiro, W. D.; Sardela, V. F.; De La Cruz, M. N. S.; De Souza, K. R.; Pereira, H. M. G.; Aquino Neto, F. R. Development of a Sensitive and Fast Method for Detection of Catecholamines and Metabolites by Hrms. Microchem. J. 2019, 150, 104173. DOI: 10.1016/j.microc.2019.104173.
  • Yu, S.; Yin, Y.; Li, Q.; Yu, J.; Liu, W.; Wang, D.; Cheng, Q.; Xie, S.; Cheng, X.; Qiu, L. Validation of an Improved Liquid Chromatography Tandem Mass Spectrometry Method for Rapid and Simultaneous Analysis of Plasma Catecholamine and Their Metabolites. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1129, 121805. DOI: 10.1016/j.jchromb.2019.121805.
  • Murtada, K.; de Andres, F.; Galvan, I.; Rios, A.; Zougagh, M. LC-MS Determination of Catecholamines and Related Metabolites in Red Deer Urine and Hair Extracted Using Magnetic Multi-Walled Carbon Nanotube Poly(Styrene-Co-Divinylbenzene) Composite. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1136, 121878. DOI: 10.1016/j.jchromb.2019.121878.
  • Chen, L.; Singh, V.; Rickert, D.; Khaled, A.; Pawliszyn, J. High Throughput Determination of Free Biogenic Monoamines and Their Metabolites in Urine Using Thin-Film Solid Phase Microextraction. Talanta 2021, 232, 122438. DOI: 10.1016/j.talanta.2021.122438.
  • Jian, M.; Huang, H.; Li, K.; Chuan, L.; Li, L.; Jiang, L. A 3-Min UPLC-MS/MS Method for the Simultaneous Determination of Plasma Catecholamines and Their Metabolites: Method Verification and Diagnostic Efficiency. Clin. Biochem. 2021, 87, 67–73. DOI: 10.1016/j.clinbiochem.2020.10.009.
  • Zheng, L.; Zhao, X. E.; Zhu, S.; Tao, Y.; Ji, W.; Geng, Y.; Wang, X.; Chen, G.; You, J. A New Combined Method of Stable Isotope-Labeling Derivatization-Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction for the Determination of Neurotransmitters in Rat Brain Microdialysates by Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1054, 64–72. DOI: 10.1016/j.jchromb.2017.03.039.
  • Zheng, J.; Mandal, R.; Wishart, D. S. A Sensitive, High-Throughput LC-MS/MS Method for Measuring Catecholamines in Low Volume Serum. Anal. Chim. Acta 2018, 1037, 159–167. DOI: 10.1016/j.aca.2018.01.021.
  • Li, H.; Zhang, G.; Wang, W.; Jiao, L.-L.; Chen, C.-B.; Huo, J.-R.; Wu, W. Detection of Catecholamine Metabolites in Urine Based on Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Biomed. Chromatogr. 2022, 36, e5280. DOI: 10.1002/bmc.5280.
  • Peitzsch, M.; Prejbisz, A.; Kroiß, M.; Beuschlein, F.; Arlt, W.; Januszewicz, A.; Siegert, G.; Eisenhofer, G. Analysis of Plasma 3-Methoxytyramine, Normetanephrine and Metanephrine by Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry: Utility for Diagnosis of Dopamine-Producing Metastatic Phaeochromocytoma. Ann. Clin. Biochem. 2013, 50, 147–155. DOI: 10.1258/acb.2012.012112.
  • Chen, Y.; Yang, J.; Ou, X.; Zhang, X. An Organic Nanowire-Metal Nanoparticle Hybrid for the Highly Enhanced Fluorescence Detection of Dopamine. Chem. Commun. (Camb.) 2012, 48, 5883–5885. DOI: 10.1039/C2CC31688A.
  • Pourghobadi, Z.; Mirahmadpour, P.; Zare, H. Fluorescent Biosensor for the Selective Determination of Dopamine by TGA-Capped CdTe Quantum Dots in Human Plasma Samples. Opt. Mater. 2018, 84, 757–762. DOI: 10.1016/j.optmat.2018.08.003.
  • Jafarinejad, S.; Bigdeli, A.; Ghazi-Khansari, M.; Sasanpour, P.; Hormozi-Nezhad, M. R. Identification of Catecholamine Neurotransmitters Using a Fluorescent Electronic Tongue. ACS Chem. Neurosci. 2020, 11, 25–33. DOI: 10.1021/acschemneuro.9b00537.
  • An, J.; Shi, Y.; Fang, J.; Hu, Y.; Liu, Y. Multichannel Ratiometric Fluorescence Sensor Arrays for Rapid Visual Monitoring of Epinephrine, Norepinephrine, and Levodopa. Chem. Eng. J. 2021, 425, 130595. DOI: 10.1016/j.cej.2021.130595.
  • Makedonskaya, M. I.; Veselova, I. A.; Kalmykov, S. N.; Shekhovtsova, T. N. Novel Biosensing System for the Simultaneous Multiplex Fluorescent Determination of Catecholamines and Their Metabolites in Biological Liquids. J. Pharm. Biomed. Anal. 2018, 156, 133–141. DOI: 10.1016/j.jpba.2018.04.026.
  • Wang, H.; Fang, G.; Wang, K.; Wu, Z.; Yao, Q. Determination of Dopamine Using 2-(4-Boronophenyl)Quinoline-4-Carboxylic Acids as Fluorescent Probes. Anal. Lett. 2019, 52, 713–727. DOI: 10.1080/00032719.2018.1488258.
  • Wei, X.; Zhang, Z.; Wang, Z. A Simple Dopamine Detection Method Based on Fluorescence Analysis and Dopamine Polymerization. Microchem. J. 2019, 145, 55–58. DOI: 10.1016/j.microc.2018.10.004.
  • Bazany-Rodríguez, I. J.; Salomón-Flores, M. K.; Viviano-Posadas, A. O.; García-Eleno, M. A.; Barroso-Flores, J.; Martínez-Otero, D.; Dorazco-González, A. Chemosensing of Neurotransmitters with Selectivity and Naked Eye Detection of L-Dopa Based on Fluorescent Zn(II)-Terpyridine Bearing Boronic Acid Complexes. Dalton Trans. 2021, 50, 4255–4269. DOI: 10.1039/D0DT04228E.
  • Shi, Y.; Pang, Y.; Huang, N.; Sun, C.; Pan, Y.; Cheng, Y.; Long, Y.; Zheng, H. Competitive Method for Fluorescent Dopamine Detection in Cerebrospinal Fluid Based on the Peroxidase-Like Activity of Ficin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 209, 8–13. DOI: 10.1016/j.saa.2018.10.033.
  • Li, J.; Xu, K.; Chen, Y.; Zhao, J.; Du, P.; Zhang, L.; Zhang, Z.; Lu, X. Pt Nanoparticles Anchored on NH2-MIL-101 with Efficient Peroxidase-Like Activity for Colorimetric Detection of Dopamine. Chemosensors 2021, 9, 140. DOI: 10.3390/chemosensors9060140.
  • Tong, K. Y.; Zhao, J.; Tse, C.-W.; Wan, P.-K.; Rong, J.; Au-Yeung, H. Y. Selective Catecholamine Detection in Living Cells by a Copper-Mediated Oxidative Bond Cleavage. Chem. Sci. 2019, 10, 8519–8526. DOI: 10.1039/C9SC03338F.
  • Lin, Y.-K.; Yeh, Y.-C. Dual-Signal Microbial Biosensor for the Detection of Dopamine without Inference from Other Catecholamine Neurotransmitters. Anal. Chem. 2017, 89, 11178–11182. DOI: 10.1021/acs.analchem.7b02498.
  • Taki, M.; Iyoshi, S.; Ojida, A.; Hamachi, I.; Yamamoto, Y. Development of Highly Sensitive Fluorescent Probes for Detection of Intracellular Copper(I) in Living Systems. J. Am. Chem. Soc. 2010, 132, 5938–5939. DOI: 10.1021/ja100714p.
  • Liao, Y.; Zhou, X.; Xing, D. Quantum Dots and Graphene Oxide Fluorescent Switch Based Multivariate Testing Strategy for Reliable Detection of Listeria Monocytogenes. ACS Appl. Mater. Interfaces 2014, 6, 9988–9996. DOI: 10.1021/am503230h.
  • Talgorn, E.; De Vries, M. A.; Siebbeles, L. D. A.; Houtepen, A. J. Photoconductivity Enhancement in Multilayers of CdSe and CdTe Quantum Dots. ACS Nano 2011, 5, 3552–3558. DOI: 10.1021/nn2009134.
  • Zhang, Y.; Wang, B.; Xiong, H.; Wen, W.; Cheng, N. A Ratiometric Fluorometric Epinephrine and Norepinephrine Assay Based on Carbon Dot and CdTe Quantum Dots Nanocomposites. Microchem. J. 2019, 146, 66–72. DOI: 10.1016/j.microc.2018.12.060.
  • Anjali Devi, J. S.; Anulekshmi, A. H.; Salini, S.; Aparna, R. S.; George, S. Boronic Acid Functionalized Nitrogen Doped Carbon Dots for Fluorescent Turn-on Detection of Dopamine. Microchim. Acta 2017, 184, 4081–4090. DOI: 10.1007/s00604-017-2433-7.
  • Amjadi, M.; Hallaj, T.; Manzoori, J. L.; Shahbazsaghir, T. An Amplified Chemiluminescence System Based on Si-Doped Carbon Dots for Detection of Catecholamines. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 201, 223–228. DOI: 10.1016/j.saa.2018.04.058.
  • Abbasi-Moayed, S.; Hormozi-Nezhad, M. R.; Maaza, M. A Multichannel Single-Well Sensor Array for Rapid and Visual Discrimination of Catecholamine Neurotransmitters. Sens. Actuators, B 2019, 296, 126691. DOI: 10.1016/j.snb.2019.126691.
  • Ding, C.; Deng, Z.; Chen, J.; Jin, Y. One-Step Microwave Synthesis of N,S Co-Doped Carbon Dots from 1,6-Hexanediamine Dihydrochloride for Cell Imaging and Ion Detection. Colloids Surf. B Biointerfaces 2020, 189, 110838. DOI: 10.1016/j.colsurfb.2020.110838.
  • Le, T. H.; Lee, H. J.; Kim, J. H.; Park, S. J. Detection of Ferric Ions and Catecholamine Neurotransmitters via Highly Fluorescent Heteroatom Co-Doped Carbon Dots. Sensors (Basel) 2020, 20, 3470. DOI: 10.3390/s20123470.
  • Diaz-Diestra, D.; Thapa, B.; Beltran-Huarac, J.; Weiner, B. R.; Morell, G. L-Cysteine Capped ZnS:Mn Quantum Dots for Room-Temperature Detection of Dopamine with High Sensitivity and Selectivity. Biosens. Bioelectron. 2017, 87, 693–700. DOI: 10.1016/j.bios.2016.09.022.
  • Kulchat, S.; Boonta, W.; Todee, A.; Sianglam, P.; Ngeontae, W. A Fluorescent Sensor Based on Thioglycolic Acid Capped Cadmium Sulfide Quantum Dots for the Determination of Dopamine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 196, 7–15. DOI: 10.1016/j.saa.2018.01.062.
  • Noipa, T.; Ngeontae, W. Thioglycolic Acid-Capped Cds Quantum Dots Modified with Co2+ as a Fluorescent Sensor for Dopamine. Bull. Mater. Sci. 2018, 41, 109. DOI: 10.1007/s12034-018-1626-y.
  • Pehlivan, Z. S.; Torabfam, M.; Kurt, H.; Ow-Yang, C.; Hildebrandt, N.; Yuce, M. Aptamer and Nanomaterial Based Fret Biosensors: A Review on Recent Advances (2014-2019). Mikrochim. Acta 2019, 186, 563. DOI: 10.1007/s00604-019-3659-3.
  • Hildebrandt, N.; Spillmann, C. M.; Algar, W. R.; Pons, T.; Stewart, M. H.; Oh, E.; Susumu, K.; Diaz, S. A.; Delehanty, J. B.; Medintz, I. L. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem. Rev. 2017, 117, 536–711. DOI: 10.1021/acs.chemrev.6b00030.
  • Jafarinejad, S.; Ghazi-Khansari, M.; Ghasemi, F.; Sasanpour, P.; Hormozi-Nezhad, M. R. Colorimetric Fingerprints of Gold Nanorods for Discriminating Catecholamine Neurotransmitters in Urine Samples. Sci. Rep. 2017, 7, 8266. DOI: 10.1038/s41598-017-08704-5.
  • Sun, C.; Yuan, F.; Li, H.; Wu, X. A Specific Fluorescent Nanoprobe for Dopamine Based on the Synergistic Action of Citrate and Gold Nanoparticles on Tb(III) Luminescence. Mikrochim. Acta 2018, 185, 317. DOI: 10.1007/s00604-018-2844-0.
  • Zhao, B.; Li, Y. Facile Synthesis of near-Infrared-Excited NaYF:Yb3+, Tm3+ Nanoparticles for Label-Free Detection of Dopamine in Biological Fluids. Talanta 2018, 179, 478–484. DOI: 10.1016/j.talanta.2017.11.042.
  • Koh, D. Y.; Kadam, A. N.; Lee, S.-W. Manganese-Induced Highly Fluorescent Oligodopamine for Sensitive Detection of Dopamine Neurotransmitter by Catalytic Action of H2O2/MnO2 Nanosheets. Phys. Status Solidi A 2022, 219, 2100788. DOI: 10.1002/pssa.202100788.
  • Zhao, X.; He, D.; Wang, Y.; Fu, C. Facile Fabrication of Tungsten Disulfide Quantum Dots (WS2 Qds) as Effective Probes for Fluorescence Detection of Dopamine (DA). Mater. Chem. Phys. 2018, 207, 130–134. DOI: 10.1016/j.matchemphys.2017.12.045.
  • Aparna, R. S.; Syamchand, S. S.; George, S. Tannic Acid Stabilised Copper Nanocluster Developed through Microwave Mediated Synthesis as a Fluorescent Probe for the Turn on Detection of Dopamine. J. Clust. Sci. 2017, 28, 2223–2238. DOI: 10.1007/s10876-017-1221-1.
  • Li, G.-Z.; Tian, F. Guanine-Decorated Graphene Nanostructures for Sensitive Monitoring of Neuron-Specific Enolase Based on an Enzyme-Free Electrocatalytic Reaction. Anal. Sci. 2013, 29, 1195–1201. DOI: 10.2116/analsci.29.1195.
  • Le, T. H.; Lee, D. H.; Kim, J. H.; Park, S. J. Synthesis of Enhanced Fluorescent Graphene Quantum Dots for Catecholamine Neurotransmitter Sensing. Korean J. Chem. Eng. 2020, 37, 1000–1007. DOI: 10.1007/s11814-020-0507-4.
  • Teniou, A.; Rhouati, A.; Catanante, G. A Simple Fluorescent Aptasensing Platform Based on Graphene Oxide for Dopamine Determination. Appl. Biochem. Biotechnol. 2022, 194, 1925–1937. DOI: 10.1007/s12010-022-03802-1.
  • Matser, Y. A. H.; Verly, I. R. N.; Van Der Ham, M.; De Sain-Van Der Velden, M. G. M.; Verhoeven-Duif, N. M.; Ash, S.; Cangemi, G.; Barco, S.; Popovic, M. B.; Van Kuilenburg, A. B. P.; Tytgat, G. A. M, ; Group, S. C. W. Optimising Urinary Catecholamine Metabolite Diagnostics for Neuroblastoma. Pediatr. Blood Cancer 2023, 70, e30289. DOI: 10.1002/pbc.30289.
  • Rostami, S.; Mehdinia, A.; Jabbari, A. Intrinsic Peroxidase-Like Activity of Graphene Nanoribbons for Label-Free Colorimetric Detection of Dopamine. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 114, 111034. DOI: 10.1016/j.msec.2020.111034.
  • Godoy-Reyes, T. M.; Costero, A. M.; Gaviña, P.; Martínez-Máñez, R.; Sancenón, F. A Colorimetric Probe for the Selective Detection of Norepinephrine Based on a Double Molecular Recognition with Functionalized Gold Nanoparticles. ACS Appl. Nano Mater. 2019, 2, 1367–1373. DOI: 10.1021/acsanm.8b02254.
  • Mohseni, N.; Bahram, M. Highly Selective and Sensitive Determination of Dopamine in Biological Samples via Tuning the Particle Size of Label-Free Gold Nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 193, 451–457. DOI: 10.1016/j.saa.2017.12.033.
  • Ghasemi, A.; Rabiee, N.; Ahmadi, S.; Hashemzadeh, S.; Lolasi, F.; Bozorgomid, M.; Kalbasi, A.; Nasseri, B.; Shiralizadeh Dezfuli, A.; Aref, A. R.; et al. Optical Assays Based on Colloidal Inorganic Nanoparticles. Analyst 2018, 143, 3249–3283. DOI: 10.1039/C8AN00731D.
  • Rostami, S.; Mehdinia, A.; Niroumand, R.; Jabbari, A. Enhanced LSPR Performance of Graphene Nanoribbons-Silver Nanoparticles Hybrid as a Colorimetric Sensor for Sequential Detection of Dopamine and Glutathione. Anal. Chim. Acta 2020, 1120, 11–23. DOI: 10.1016/j.aca.2020.04.060.
  • Reddy, N. R.; Rhodes, S.; Fang, J. Colorimetric Detection of Dopamine with J-Aggregate Nanotube-Integrated Hydrogel Thin Films. ACS Omega 2020, 5, 18198–18204. DOI: 10.1021/acsomega.0c01803.
  • Kaur, V.; Sharma, M.; Sen, T. DNA Origami-Templated Bimetallic Nanostar Assemblies for Ultra-Sensitive Detection of Dopamine. Front. Chem. 2021, 9, 772267. DOI: 10.3389/fchem.2021.772267.
  • Hussein, M. A.; El-Said, W. A.; Abu-Zied, B. M.; Choi, J.-W. Nanosheet Composed of Gold Nanoparticle/Graphene/Epoxy Resin Based on Ultrasonic Fabrication for Flexible Dopamine Biosensor Using Surface-Enhanced Raman Spectroscopy. Nano Converg. 2020, 7, 15. DOI: 10.1186/s40580-020-00225-8.
  • Zhou, X.; Qin, M.; Zhu, J.; Wang, C.; Zhu, G.; Wang, H.; Yang, L. Rapid and Sensitive Surface-Enhanced Resonance Raman Spectroscopy Detection for Norepinephrine in Biofluids. J. Raman Spectrosc/ 2019, 50, 314–321. DOI: 10.1002/jrs.5519.
  • Lu, D.; Fan, M.; Cai, R.; Huang, Z.; You, R.; Huang, L.; Feng, S.; Lu, Y. Silver Nanocube Coupling with a Nanoporous Silver Film for Dual-Molecule Recognition Based Ultrasensitive Sers Detection of Dopamine. Analyst 2020, 145, 3009–3016. DOI: 10.1039/D0AN00177E.
  • Vo, V.-T.; Gwon, Y.; Phung, V.-D.; Son, Y.-D.; Kim, J.-H.; Lee, S.-W. Ag-Deposited Porous Silicon as a Sers-Active Substrate for the Sensitive Detection of Catecholamine Neurotransmitters. Electron. Mater. Lett. 2021, 17, 292–298. DOI: 10.1007/s13391-021-00281-0.
  • Pagano, R.; Syrgiannis, Z.; Bettini, S.; Ingrosso, C.; Valli, L.; Giancane, G.; Prato, M. Localized and Surface plasmons coupling for Ultrasensitive Dopamine Detection by Means of SPR-Based Perylene Bisimide/Au Nanostructures Thin Film. Adv. Mater. Inter. 2021, 8, 2101023. DOI: 10.1002/admi.202101023.
  • Amiri, M.; Dadfarnia, S.; Haji Shabani, A. M.; Sadjadi, S. Non-Enzymatic Sensing of Dopamine by Localized Surface Plasmon Resonance Using Carbon Dots-Functionalized Gold Nanoparticles. J. Pharm. Biomed. Anal. 2019, 172, 223–229. DOI: 10.1016/j.jpba.2019.04.037.
  • Bergmann, M. L.; Schmedes, A. Highly Sensitive LC-MS/MS Analysis of Catecholamines in Plasma. Clin. Biochem. 2020, 82, 51–57. DOI: 10.1016/j.clinbiochem.2020.03.006.
  • Hrdlicka, V.; Barek, J.; Navratil, T. Differential Pulse Voltammetric Determination of Homovanillic Acid as a Tumor Biomarker in Human Urine after Hollow Fiber-Based Liquid-Phase Microextraction. Talanta 2021, 221, 121594. DOI: 10.1016/j.talanta.2020.121594.
  • Schuller, M.; Tran, K. T. T.; Oiestad, E. L.; Pedersen-Bjergaard, S. Membrane-Based Liquid-Phase Microextraction of Basic Pharmaceuticals-a Study on the Optimal Extraction Window. J. Chromatogr. A 2022, 1664, 462769. DOI: 10.1016/j.chroma.2021.462769.
  • Augusto, F.; Hantao, L. W.; Mogollon, N. G. S.; Braga, S. C. G. N. New Materials and Trends in Sorbents for Solid-Phase Extraction. TrAC, Trends Anal. Chem. 2013, 43, 14–23. DOI: 10.1016/j.trac.2012.08.012.
  • Shen, Y.; Luo, X.; Li, H.; Guan, Q.; Cheng, L. A Simple and Robust Liquid Chromatography Tandem Mass Spectrometry Assay for Determination of Plasma Free Metanephrines and Its Application to Routine Clinical Testing for Diagnosis of Pheochromocytoma. Biomed. Chromatogr. 2019, 33, e4622. DOI: 10.1002/bmc.4622.
  • Shen, Y.; Cheng, L.; Guan, Q.; Li, H.; Lu, J.; Wang, X. Development and Validation of a Liquid Chromatography Tandem Mass Spectrometry Method for the Measurement of Urinary Catecholamines in Diagnosis of Pheochromocytoma. Biomed. Chromatogr. 2017, 31, e4003. DOI: 10.1002/bmc.4003.
  • Casella, I. G.; Gioia, D.; Rutilo, M. A Multi-Walled Carbon Nanotubes/Cellulose Acetate Composite Electrode (MWCNT/CA) as Sensing Probe for the Amperometric Determination of Some Catecholamines. Sens. Actuators, B 2018, 255, 3533–3540. DOI: 10.1016/j.snb.2017.09.188.
  • Xie, L.; Chen, L.; Gu, P.; Wei, L.; Kang, X. A Convenient Method for Extraction and Analysis with High-Pressure Liquid Chromatography of Catecholamine Neurotransmitters and Their Metabolites. J. Vis. Exp. 2018, 1, e56445. DOI: 10.3791/56445.
  • Chen, L.; Wang, H.; Xu, Z.; Zhang, Q.; Liu, J.; Shen, J.; Zhang, W. High-Throughput and Selective Solid-Phase Extraction of Urinary Catecholamines by Crown Ether-Modified Resin Composite Fiber. J. Chromatogr. A 2018, 1561, 48–55. DOI: 10.1016/j.chroma.2018.05.041.
  • Chen, L.; Tang, Y.; Xu, B.; Xu, Z.; Shen, J.; Zhang, W. Automated on-Line Packed Fiber Solid Phase Extraction for Determination of Urinary Catecholamines. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1139, 121983. DOI: 10.1016/j.jchromb.2020.121983.
  • Luo, W.; Van Beek, T. A.; Chen, B.; Zuilhof, H.; Salentijn, G. I. J. Boronate Affinity Paper Spray Mass Spectrometry for Determination of Elevated Levels of Catecholamines in Urine. Anal. Chim. Acta 2022, 1235, 340508. DOI: 10.1016/j.aca.2022.340508.
  • Hou, X.; Huang, W.; Tong, Y.; Tian, M. Hollow Dummy Template Imprinted Boronate-Modified Polymers for Extraction of Norepinephrine, Epinephrine and Dopamine Prior to Quantitation by HPLC. Mikrochim. Acta 2019, 186, 686. DOI: 10.1007/s00604-019-3801-2.
  • Mastrianni, K. R.; Kemnitzer, W. E.; Miller, K. W. P. A Novel, Automated Dispersive Pipette Extraction Technology Greatly Simplifies Catecholamine Sample Preparation for Downstream LC-MS/MS Analysis. SLAS Technol. 2019, 24, 117–123. DOI: 10.1177/2472630318792659.
  • Xing, Y.; Li, J.; Chen, M.; Wang, X.; Hou, X. Tannic Acid-Directed Synthesis of Magnetic and Boronic Acid-Functionalized Metal-Organic Frameworks for Selective Extraction and Quantification of Catecholamines in Human Urine. Mikrochim. Acta 2021, 188, 225. DOI: 10.1007/s00604-021-04852-8.
  • Wu, J.; Li, Z.; Jia, L. Solid Phase Extraction and Capillary Electrophoretic Separation of Racemic Catecholamines by Using Magnetic Particles Coated with a Copolymer Prepared from Poly(3,4-Dihydroxyphenylalanine) and Polyethyleneimine. Mikrochim. Acta 2019, 186, 627. DOI: 10.1007/s00604-019-3731-z.
  • Zhang, S.; Tang, Y.; Chen, Y.; Zhang, J.; Wei, Y. Boronic Acid-Modified Polyhedral Oligomeric Silsesquioxanes on Polydopamine-Coated Magnetized Graphene Oxide for Selective and High-Capacity Extraction of the Catecholamines Epinephrine, Dopamine and Isoprenaline. Mikrochim. Acta 2020, 187, 77. DOI: 10.1007/s00604-019-4036-y.
  • Arthur, C. L.; Pawliszyn, J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem. 1990, 62, 2145–2148. DOI: 10.1021/ac00218a019.
  • Duan, C.; Shen, Z.; Wu, D.; Guan, Y. Recent Developments in Solid-Phase Microextraction for on-Site Sampling and Sample Preparation. TrAC, Trends Anal. Chem. 2011, 30, 1568–1574. DOI: 10.1016/j.trac.2011.08.005.
  • Miranda, L. F. C.; Goncalves, R. R.; C. Queiroz, M. E. A Dual Ligand Sol-Gel Organic-Silica Hybrid Monolithic Capillary for in-Tube SPME-MS/MS to Determine Amino Acids in Plasma Samples. Molecules 2019, 24, 1658. DOI: 10.3390/molecules24091658.
  • Espina-Benitez, M. B.; Randon, J.; Demesmay, C.; Dugas, V. Development and Application of a New in-Line Coupling of a Miniaturized Boronate Affinity Monolithic Column with Capillary Zone Electrophoresis for the Selective Enrichment and Analysis of Cis-Diol-Containing Compounds. J. Chromatogr. A 2017, 1494, 65–76. DOI: 10.1016/j.chroma.2017.03.014.
  • Espina-Benitez, M. B.; Marconi, F.; Randon, J.; Demesmay, C.; Dugas, V. Evaluation of Boronate Affinity Solid-Phase Extraction Coupled in-Line to Capillary Isoelectric Focusing for the Analysis of Catecholamines in Urine. Anal. Chim. Acta 2018, 1034, 195–203. DOI: 10.1016/j.aca.2018.06.017.
  • Bessonova, E.; Kartsova, L.; Gallyamova, V. Ionic Liquids Based on Imidazole for Online Concentration of Catecholamines in Capillary Electrophoresis. J. Sep. Sci. 2017, 40, 2304–2311. DOI: 10.1002/jssc.201601394.
  • Fang, W.-L.; Xia, L.-J.; Huang, X.; Guo, X.-F.; Ding, J.; Wang, H.; Feng, Y.-Q. Highly Sensitive Determination for Catecholamines Using Boronate Affinity Polymer Monolith Microextraction with in-Situ Derivatization and HPLC Fluorescence Detection. Chromatographia 2018, 81, 1381–1389. DOI: 10.1007/s10337-018-3592-3.
  • Abdel-Rehim, M.; Altun, Z.; Blomberg, L. Microextraction in Packed Syringe (Meps) for Liquid and Gas Chromatographic Applications. Part II-Determination of Ropivacaine and Its Metabolites in Human Plasma Samples Using Meps with Liquid Chromatography/Tandem Mass Spectrometry. J. Mass Spectrom. 2004, 39, 1488–1493. DOI: 10.1002/jms.731.
  • Yang, L.; Said, R.; Abdel-Rehim, M. Sorbent, Device, Matrix and Application in Microextraction by Packed Sorbent (MEPS): a Review. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1043, 33–43. DOI: 10.1016/j.jchromb.2016.10.044.
  • Xiong, X.; Zhang, Y. Simple, Rapid, and Cost-Effective Microextraction by the Packed Sorbent Method for Quantifying of Urinary Free Catecholamines and Metanephrines Using Liquid Chromatography-Tandem Mass Spectrometry and Its Application in Clinical Analysis. Anal. Bioanal. Chem. 2020, 412, 2763–2775. DOI: 10.1007/s00216-020-02436-8.
  • Fu, L.; Xia, W. Max Phases as Nanolaminate Materials: Chemical Composition, Microstructure, Synthesis, Properties, and Applications. Adv. Eng. Mater. 2021, 23, 2001191. DOI: 10.1002/adem.202001191.
  • Hu, K.; Pang, T.; Shi, Y.; Han, P.; Zhao, Y.; Zhao, W.; Zeng, H.; Zhang, S.; Zhang, Z. Magnetic Borate-Modified Mxene: A Highly Affinity Material for the Extraction of Catecholamines. Anal. Chim. Acta 2021, 1176, 338769. DOI: 10.1016/j.aca.2021.338769.
  • Anastassiades, M.; Lehotay, S. J.; Stajnbaher, D.; Schenck, F. J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. DOI: 10.1093/jaoac/86.2.412.
  • He, M.; Wei, Y.; Wang, R.; Wang, C.; Zhang, B.; Han, L. Boronate Affinity Magnetic Nanoparticles with Hyperbranched Polymer Brushes for the Adsorption of Cis-Diol Biomolecules. Mikrochim. Acta 2019, 186, 683. DOI: 10.1007/s00604-019-3785-y.
  • Wu, Q.; Wu, D.; Guan, Y. Hybrid Titania-Zirconia Nanoparticles Coated Adsorbent for Highly Selective Capture of Nucleosides from Human Urine in Physiological Condition. Anal. Chem. 2014, 86, 10122–10130. DOI: 10.1021/ac502876u.
  • Wan, L.; Zhu, H.; Guan, Y.; Huang, G. Nanocoating Cellulose Paper Based Microextraction Combined with Nanospray Mass Spectrometry for Rapid and Facile Quantitation of Ribonucleosides in Human Urine. Talanta 2017, 169, 209–215. DOI: 10.1016/j.talanta.2017.03.085.
  • Wang, S.-T.; Chen, D.; Ding, J.; Yuan, B.-F.; Feng, Y.-Q. Borated Titania, a New Option for the Selective Enrichment of Cis-Diol Biomolecules. Chemistry 2013, 19, 606–612. DOI: 10.1002/chem.201203109.
  • Le, J.; Sun, T.; Peng, R.; Yuan, T.-F.; Feng, Y.-Q.; Wang, S.-T.; Li, Y. LC-MS/MS Determination of Plasma Catecholamines after Selective Extraction by Borated Zirconia. Mikrochim. Acta 2020, 187, 165. DOI: 10.1007/s00604-020-4145-7.
  • Kook, J. K.; Phung, V.-D.; Koh, D.-Y.; Lee, S.-W. Facile Synthesis of Boronic Acid-Functionalized Magnetic Nanoparticles for Efficient Dopamine Extraction. Nano Converg. 2019, 6, 30. DOI: 10.1186/s40580-019-0200-7.
  • He, X.; Yu, Y.; Li, Y. Facile Synthesis of Boronic Acid-Functionalized Magnetic Metal-Organic Frameworks for Selective Extraction and Quantification of Catecholamines in Rat Plasma. RSC Adv. 2018, 8, 41976–41985. DOI: 10.1039/C8RA07356B.
  • Li, D.; Tang, N.; Wang, Y.; Zhang, Z.; Ding, Y.; Tian, X. Efficient Synthesis of Boronate Affinity-Based Catecholamine-Imprinted Magnetic Nanomaterials for Trace Analysis of Catecholamine in Human Urine. New J. Chem. 2022, 46, 16618–16626. DOI: 10.1039/D2NJ02552C.
  • Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturini, M.; Profumo, A. Newest Applications of Molecularly Imprinted Polymers for Extraction of Contaminants from Environmental and Food Matrices: A Review. Anal. Chim. Acta 2017, 974, 1–26. DOI: 10.1016/j.aca.2017.04.042.
  • Podjava, A.; Šilaks, A. Synthesis and Sorptive Properties of Molecularly Imprinted Polymer for Simultaneous Isolation of Catecholamines and Their Metabolites from Biological Fluids. J. Liq. Chromatogr. R. T 2021, 44, 181–188. DOI: 10.1080/10826076.2021.1874980.
  • Yuan, X.; Gao, X.; Yuan, Y.; Ji, Y.; Xiong, Z.; Zhao, L. Fe3O4/Graphene Molecularly Imprinted Composite for Selective Separation of Catecholamine Neurotransmitters and Their Analysis in Rat Brain Tissues. Talanta 2021, 224, 121843. DOI: 10.1016/j.talanta.2020.121843.
  • Hassanpour-Sabet, R.; Seyfinejad, B.; Marzi Khosrowshahi, E.; Nemati, M.; Afshar Mogaddam, M. R.; Jouyban, A. UIO-66-Based Metal-Organic Framework for Dispersive Solid-Phase Extraction of Vanillylmandelic Acid from Urine before Analysis by Capillary Electrophoresis. RSC Adv. 2022, 12, 28728–28737. DOI: 10.1039/D2RA02916B.
  • Cai, H.-L.; Zhu, R.-H.; Li, H.-D. Determination of Dansylated Monoamine and Amino Acid Neurotransmitters and Their Metabolites in Human Plasma by Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. Anal. Biochem. 2010, 396, 103–111. DOI: 10.1016/j.ab.2009.09.015.
  • Lin, Y.; Spiller, K.; Aras, R.; Jian, W. UPLC-MS/MS Assay for the Simultaneous Determination of Catecholamines and Their Metabolites at Low pg/mg in Rat/Mouse Striatum. J. Pharm. Biomed. Anal. 2022, 213, 114697. DOI: 10.1016/j.jpba.2022.114697.
  • Lian, J.; Liu, P.; Li, X.; Bian, B.; Zhang, X.; Liu, Z.; Zhang, X.; Fan, G.; Gao, L.; Liu, Q. Multi-Layer CeO2-Wrapped Ag2S Microspheres with Enhanced Peroxidase-Like Activity for Sensitive Detection of Dopamine. Colloids Surf., A 2019, 565, 1–7. DOI: 10.1016/j.colsurfa.2018.12.047.
  • Azaryan, A.; Ligor, T.; Buszewski, B.; Temerdashev, A.; Dmitrieva, E.; Gashimova, E. LC-MS/MS Determination of Catecholamines in Urine Using FMOC-Cl Derivatization on Solid-Phase Extraction Cartridge. Chromatographia 2018, 81, 1487–1494. DOI: 10.1007/s10337-018-3610-5.
  • Van Faassen, M.; Bischoff, R.; Eijkelenkamp, K.; De Jong, W. H. A.; Van Der Ley, C. P.; Kema, I. P. In Matrix Derivatization Combined with LC-MS/MS Results in Ultrasensitive Quantification of Plasma Free Metanephrines and Catecholamines. Anal. Chem. 2020, 92, 9072–9078. DOI: 10.1021/acs.analchem.0c01263.
  • Ellis, A. G.; Zeglinski, P. T.; Coleman, K. E.; Whiting, M. J. Dilute, Derivatise and Shoot: Measurement of Urinary Free Metanephrines and Catecholamines as Ethyl Derivatives by LC-MS/MS. Clin. Mass Spectrom. 2017, 4-5, 34–41. DOI: 10.1016/j.clinms.2017.08.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.