143
Views
0
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Advances in Optical Probes for the Detection of Hydrazine in Environmental and Biological Systems

& ORCID Icon

References

  • Ragnarsson, U. Synthetic Methodology for Alkyl Substituted Hydrazines. Chem. Soc. Rev. 2001, 30, 205–213. DOI: 10.1039/b010091a.
  • Zhao, F.; Nie, S.; Wu, L.; Yuan, Q.; Wang, X. Porous, Ultrathin PtAgBiTe Nanosheets for Direct Hydrazine Hydrate Fuel Cell Devices. Adv. Mater. 2023, e2303672. DOI: 10.1002/adma.202303672.
  • Huang, S.; Qi, X.; Liu, T.; Wang, K.; Zhang, W.; Li, J.; Zhang, Q. Towards Safer Rocket Fuels: Hypergolic Imidazolylidene-Borane Compounds as Replacements for Hydrazine Derivatives. Chemistry 2016, 22, 10187–10193. DOI: 10.1002/chem.201601343.
  • Zhong, L.; Zhang, X.; Tang, C.; Chen, Y.; Shen, T.; Zhu, C.; Ying, H. Hydrazine Hydrate and Organosolv Synergetic Pretreatment of Corn Stover to Enhance Enzymatic Saccharification and co-Production of High-Quality Antioxidant Lignin. Bioresour. Technol. 2018, 268, 677–683. DOI: 10.1016/j.biortech.2018.08.063.
  • Tang, Y.; Zhou, X.; Lei, M.; Wang, H.; Lu, A.; Zhang, G.; Zhu, L.; Lv, K.; Tang, H. Highly Efficient Catalytic Debromination of Tetrabromodiphenyl Ether with Hydrazine as Reducing Agent: The Role of the Interaction between the Catalyst and the Reducing Agent. Chem. Eng. J. 2022, 433, 134364. DOI: 10.1016/j.cej.2021.134364.
  • Le, Y.; Yao, G.; Zhong, H.; Jin, B.; He, R.; Jin, F. Rapid Catalytic Reduction of NaHCO3 into Formic Acid and Methane with Hydrazine over Raney Ni Catalyst. Catal. Today 2017, 298, 124–129. DOI: 10.1016/j.cattod.2017.05.043.
  • Naga Babu, A.; Krishna Mohan, G. V.; Kalpana, K.; Ravindhranath, K. Removal of Lead from Water Using Calcium Alginate Beads Doped with Hydrazine Sulphate-Activated Red Mud as Adsorbent. J. Anal. Methods Chem. 2017, 2017, 4650594–4650513. DOI: 10.1155/2017/4650594.
  • Narsimha, G.; Neogi, S.; Dutta, B. K. Parametric and Rate Studies of Reduction of Cr(VI) in Slurry of Contaminated Soil with Hydrazine and Sonochemical Augmentation. Soil Sedim. Contam. Int. J. 2020, 29, 880–900. DOI: 10.1080/15320383.2020.1783507.
  • Garrod, S.; Bollard, M. E.; Nicholls, A. W.; Connor, S. C.; Connelly, J.; Nicholson, J. K.; Holmes, E. Integrated Metabonomic Analysis of the Multiorgan Effects of Hydrazine Toxicity in the Rat. Chem. Res. Toxicol. 2005, 18, 115–122. DOI: 10.1021/tx0498915.
  • Tafazoli, S.; Mashregi, M.; O'Brien, P. J. Role of Hydrazine in Isoniazid-Induced Hepatotoxicity in a Hepatocyte Inflammation Model. Toxicol. Appl. Pharmacol. 2008, 229, 94–101. DOI: 10.1016/j.taap.2008.01.002.
  • Binyamin, Y.; Frenkel, A.; Brotfain, E.; Koyfman, L.; Shliom, O.; Klein, M. Elevated CPK Levels after Hydrazine Inhalation Exposure in an F16 Aircraft Technician. Toxicol. Rep. 2018, 5, 927–928. DOI: 10.1016/j.toxrep.2018.08.023.
  • Umar, A.; Rahman, M. M.; Kim, S. H.; Hahn, Y. B. Zinc Oxide Nanonail Based Chemical Sensor for Hydrazine Detection. Chem. Commun. (Camb) 2008, 2, 166–168. DOI: 10.1039/b711215g.
  • Takemine, S.; Motegi, M.; Takayanagi, M.; Usui, S.; Kuroda, I. Determination of Hydrazine in Air by Liquid Chromatography/Tandem Mass Spectrometry Combined with Precolumn Derivatization. Talanta 2023, 258, 124411. DOI: 10.1016/j.talanta.2023.124411.
  • Christofi, M.; Markopoulou, C. K.; Tzanavaras, P. D.; Zacharis, C. K. UHPLC-Fluorescence Method for the Determination of Trace Levels of Hydrazine in Allopurinol and Its Formulations: Validation Using Total-Error Concept. J. Pharm. Biomed. Anal. 2020, 187, 113354. DOI: 10.1016/j.jpba.2020.113354.
  • Nan, C.; Dong, J.; Tian, H.; Shi, H.; Shen, S.; Xu, J.; Li, X.; Shi, T. Oxidations of Hydrazine and Substituted Hydrazines by Hexachloroiridate(IV) in Aqueous Solution: Kinetic and Mechanistic Analyses. J. Mol. Liq. 2018, 256, 489–496. DOI: 10.1016/j.molliq.2018.01.143.
  • Chiani, E.; Azizi, S. N.; Ghasemi, S. Superior Electrocatalyst Based on Mesoporous Silica Nanoparticles/Carbon Nanotubes Modified by Platinum-Copper Bimetallic Nanoparticles for Amperometric Detection of Hydrazine. Int. J. Hydrogen Energy 2022, 47, 20087–20102. DOI: 10.1016/j.ijhydene.2022.04.118.
  • Afshari, M.; Dinari, M.; Momeni, M. M. The Graphitic Carbon Nitride/Polyaniline/Silver Nanocomposites as a Potential Electrocatalyst for Hydrazine Detection. J. Electroanal. Chem. 2019, 833, 9–16. DOI: 10.1016/j.jelechem.2018.11.022.
  • Ferreira, R. M.; Morawski, F. M.; Pessanha, E. C.; de Lima, S. L. S.; da Costa, D. S.; Ribeiro, G. A. C.; Vaz, J.; Mouta, R.; Tanaka, A. A.; Liu, L.; et al. Facile Gram-Scale Synthesis of NiO Nanoflowers for Highly Selective and Sensitive Electrocatalytic Detection of Hydrazine. ACS Omega 2023, 8, 11978–11986. DOI: 10.1021/acsomega.2c07638.
  • Du, J.; Lu, J. Hydrazine-Induced Post-Chemiluminescence Phenomenon of Permanganate-Luminol Reaction and Its Applications. Luminescence 2004, 19, 328–332. DOI: 10.1002/bio.785.
  • Liu, J.; Jiang, J.; Dou, Y.; Zhang, F.; Liu, X.; Qu, J.; Zhu, Q. A Novel Chemiluminescent Probe for Hydrazine Detection in Water and HeLa Cells. Org. Biomol. Chem. 2019, 17, 6975–6979. DOI: 10.1039/c9ob01407a.
  • Tamima, U.; Sarkar, S.; Islam, M. R.; Shil, A.; Kim, K. H.; Reo, Y. J.; Jun, Y. W.; Banna, H.; Lee, S.; Ahn, K. H. A Small-Molecule Fluorescence Probe for Nuclear ATP. Angew Chem. Int. Ed. Engl. 2023, 62, e202300580. DOI: 10.1002/anie.202300580.
  • Singer, N. K.; Sanchez-Murcia, P. A.; Ernst, M.; Gonzalez, L. Unravelling the Turn-On Fluorescence Mechanism of a Fluorescein-Based Probe in GABA(A) Receptors. Angew Chem. Int. Ed. Engl. 2022, 61, e202205198. DOI: 10.1002/anie.202205198.
  • Liew, S. S.; Zeng, Z.; Cheng, P.; He, S.; Zhang, C.; Pu, K. Renal-Clearable Molecular Probe for near-Infrared Fluorescence Imaging and Urinalysis of SARS-CoV-2. J. Am. Chem. Soc. 2021, 143, 18827–18831. DOI: 10.1021/jacs.1c08017.
  • Zlitni, A.; Gowrishankar, G.; Steinberg, I.; Haywood, T.; Sam Gambhir, S. Maltotriose-Based Probes for Fluorescence and Photoacoustic Imaging of Bacterial Infections. Nat. Commun. 2020, 11, 1250. DOI: 10.1038/s41467-020-14985-8.
  • Kawatani, M.; Yamamoto, K.; Yamada, D.; Kamiya, M.; Miyakawa, J.; Miyama, Y.; Kojima, R.; Morikawa, T.; Kume, H.; Urano, Y. Fluorescence Detection of Prostate Cancer by an Activatable Fluorescence Probe for PSMA Carboxypeptidase Activity. J. Am. Chem. Soc. 2019, 141, 10409–10416. DOI: 10.1021/jacs.9b04412.
  • Tse, H.; Li, Q.; Chan, S.; You, Q.; Lee, A. W. M.; Chan, W. A Ratiometric Fluorescent and Colorimetric Probe for Selective Detection of Hydrazine. RSC Adv. 2016, 6, 14678–14681. DOI: 10.1039/C5RA26683A.
  • Zhang, A.; Liu, Y.; Pan, J.; Pontanari, F.; Chia-Hao Chang, A.; Wang, H.; Gao, S.; Wang, C.; Chang, A. C. Delivery of Mitochondria Confers Cardioprotection through Mitochondria Replenishment and Metabolic Compliance. Mol. Ther. 2023, 31, 1468–1479. DOI: 10.1016/j.ymthe.2023.02.016.
  • Liu, Y.; Birsoy, K. Metabolic Sensing and Control in Mitochondria. Mol. Cell 2023, 83, 877–889. DOI: 10.1016/j.molcel.2023.02.016.
  • Ran, Y.-Z.; Xu, H.-R.; Li, K.; Yu, K.-K.; Yang, J.; Yu, X.-Q. Development of a Mitochondria-Targeted Fluorescent Probe for Hydrazine Monitoring in Living Cells. RSC Adv. 2016, 6, 111016–111019. DOI: 10.1039/C6RA24110G.
  • Liu, P.; Wu, W. N.; Wang, Y.; Fan, Y. C.; Xu, Z. H. A Dual-Ratiometric Mitochondria-Targeted Fluorescent Probe to Detect Hydrazine in Soil Samples and Biological Imaging. J. Hazard. Mater. 2022, 440, 129713. DOI: 10.1016/j.jhazmat.2022.129713.
  • Shi, X.; Yin, C.; Wen, Y.; Zhang, Y.; Huo, F. A Probe with Double Acetoxyl Moieties for Hydrazine and Its Application in Living Cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 203, 106–111. DOI: 10.1016/j.saa.2018.05.112.
  • Wu, H.; Wang, Y.; Wu, W. N.; Xu, Z. Q.; Xu, Z. H.; Zhao, X. L.; Fan, Y. C. A Novel 'Turn-On’ Coumarin-Based Fluorescence Probe with Aggregation-Induced Emission (AIE) for Sensitive Detection of Hydrazine and Its Imaging in Living Cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 222, 117272. DOI: 10.1016/j.saa.2019.117272.
  • Qu, P.; Ma, X.; Chen, W.; Zhu, D.; Bai, H.; Wei, X.; Chen, S.; Xu, M. A Coumarin-Based Fluorescent Probe for Ratiometric Detection of Hydrazine and Its Application in Living Cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 210, 381–386. DOI: 10.1016/j.saa.2018.11.007.
  • Tian, X.; Li, M.; Zhang, Y.; Gong, S.; Wang, X.; Wang, Z.; Wang, S. A Coumarin-Based Fluorescent Probe for Hydrazine Detection and Its Applications in Real Water Samples and Living Cells. J. Photochem. Photobiol. A 2023, 437, 114467. DOI: 10.1016/j.jphotochem.2022.114467.
  • Hu, C.; Sun, W.; Cao, J. F.; Gao, P.; Wang, J. Y.; Fan, J. L.; Song, F. L.; Sun, S. G.; Peng, X. J. A Ratiometric near-Infrared Fluorescent Probe for Hydrazine and Its in Vivo Applications. Org. Lett. 2013, 15, 4022–4025. DOI: 10.1021/ol401838p.
  • Song, Y.; Chen, G.; Han, X.; You, J.; Yu, F. A Highly Sensitive near-Infrared Ratiometric Fluorescent Probe for Imaging of Mitochondrial Hydrazine in Cells and in Mice Models. Sens. Actuators B 2019, 286, 69–76. DOI: 10.1016/j.snb.2019.01.116.
  • Li, T.; Liu, J.; Song, L.; Li, Z.; Qi, Q.; Huang, W. A Hemicyanine-Based Fluorescent Probe for Hydrazine Detection in Aqueous Solution and Its Application in Real Time Bioimaging of Hydrazine as a Metabolite in Mice. J. Mater. Chem. B 2019, 7, 3197–3200. DOI: 10.1039/C9TB00132H.
  • Wang, Z.; Liu, Q.; Cai, S.; Liu, C.; He, S.; Zhao, L.; Zeng, X.; Gong, J. A near-Infrared and Lager Stocks Shift Xanthene-Indolium Sensor for Probing Hydrazine in Mitochondria. Dyes Pigm. 2022, 203, 110382. DOI: 10.1016/j.dyepig.2022.110382.
  • Wang, Y.; Xue, X. L.; Zhang, Q.; Wang, K. P.; Chen, S.; Tang, L.; Hu, Z. Q. A Hemicyanine-Based near-Infrared Fluorescent Probe for Vapor-Phase Hydrazine Detection and Bioimaging in a Complete Aqueous Media. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 279, 121406. DOI: 10.1016/j.saa.2022.121406.
  • Wang, X.; Zhang, J.; Zhu, J.; Yuan, Z.; Xu, H.; Ran, J. Monitoring Isoniazid Metabolism in Vivo Using a near-Infrared Fluorescent Probe. Anal. Methods 2022, 14, 2284–2292. DOI: 10.1039/d2ay00185c.
  • Kong, X.; Dong, B.; Wang, C.; Zhang, N.; Song, W.; Lin, W. A Novel Mitochondria-Targeted Fluorescent Probe for Imaging Hydrazine in Living Cells, Tissues and Animals. J. Photochem. Photobiol. A 2018, 356, 321–328. DOI: 10.1016/j.jphotochem.2018.01.009.
  • Vijay, N.; Velmathi, S. Near-Infrared-Emitting Probes for Detection of Nanomolar Hydrazine in a Complete Aqueous Medium with Real-Time Application in Bioimaging and Vapor-Phase Hydrazine Detection. ACS Sustain. Chem. Eng. 2020, 8, 4457–4463. DOI: 10.1021/acssuschemeng.9b07445.
  • Xu, W. Z.; Liu, W. Y.; Zhou, T. T.; Yang, Y. T.; Li, W. A Novel Fluorescein-Based ‘Turn-on’ Probe for the Detection of Hydrazine and Its Application in Living Cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 193, 324–329. DOI: 10.1016/j.saa.2017.12.040.
  • Guo, S. H.; Leng, T. H.; Wang, K.; Shen, Y. J.; Wang, C. Y. A near-Infrared Xanthene-Based Fluorescent Probe for Selective Detection of Hydrazine and Its Application in Living Cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 223, 117344. DOI: 10.1016/j.saa.2019.117344.
  • Hao, Y.; Zhang, Y.; Ruan, K.; Meng, F.; Li, T.; Guan, J.; Du, L.; Qu, P.; Xu, M. A Highly Selective Long-Wavelength Fluorescent Probe for Hydrazine and Its Application in Living Cell Imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 184, 355–360. DOI: 10.1016/j.saa.2017.04.041.
  • Shi, X.; Huo, F.; Chao, J.; Zhang, Y.; Yin, C. An Isophorone-Based NIR Probe for Hydrazine in Real Water Samples and Hermetic Space. New J. Chem. 2019, 43, 10025–10029. DOI: 10.1039/C9NJ01661A.
  • Zhang, S.; Chen, D.; Yan, L.; Xie, Y.; Mu, X.; Zhu, J. A near-Infrared Fluorescence Probe for Hydrazine Based on Dicyanoisophorone. Microchem. J. 2020, 157, 105066. DOI: 10.1016/j.microc.2020.105066.
  • Luo, L.; Cheng, J.; Chen, S.; Zhang, P.; Chen, S.; Tang, Z.; Zeng, R.; Xu, M.; Hao, Y. A near-Infrared Ratiometric Fluorescent Probe for Hydrazine and Its Application for Gaseous Sensing and Cell Imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 296, 122692. DOI: 10.1016/j.saa.2023.122692.
  • Ma, J.; Fan, J.; Li, H.; Yao, Q.; Xia, J.; Wang, J.; Peng, X. Probing Hydrazine with a near-Infrared Fluorescent Chemodosimeter. Dyes Pigm. 2017, 138, 39–46. DOI: 10.1016/j.dyepig.2016.11.026.
  • Marini, M.; Nardini, A.; Martínez Vázquez, R.; Conci, C.; Bouzin, M.; Collini, M.; Osellame, R.; Cerullo, G.; Kariman, B. S.; Farsari, M.; et al. Microlenses Fabricated by Two-Photon Laser Polymerization for Cell Imaging with Non-Linear Excitation Microscopy, Adv. Funct. Mater. 2023, 33, 2213926.
  • Zhao, Z.; Zhou, Y.; Liu, B.; He, J.; Zhao, J.; Cai, Y.; Fan, J.; Li, X.; Wang, Z.; Lu, Z.; et al. Two-Photon Synthetic Aperture Microscopy for Minimally Invasive Fast 3D Imaging of Native Subcellular Behaviors in Deep Tissue. Cell 2023, 186, 2475–2491 e22. DOI: 10.1016/j.cell.2023.04.016.
  • Liu, C.; Liu, K.; Tian, M.; Lin, W. A Ratiometric Fluorescent Probe for Hydrazine Detection with Large Fluorescence Change Ratio and Its Application for Fluorescence Imaging in Living Cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 212, 42–47. DOI: 10.1016/j.saa.2018.12.026.
  • Li, X.; Yin, J.; Liu, W.; Yang, Y.; Xu, W.; Li, W. A Novel Double Fluorescence-Suppressed Probe for the Detection of Hydrazine. ChemistrySelect 2019, 4, 14069–14074. DOI: 10.1002/slct.201902960.
  • Xu, W.; Li, X.; Yin, J.; Han, M.; Liu, W.; Yang, Y.; Li, W. A Novel Fluorescent Probe for Hydrazine Based on Acetyl-Deprotection and Iminocoumarin Formation. J. Photochem. Photobiol. A 2020, 390, 112262. DOI: 10.1016/j.jphotochem.2019.112262.
  • Liu, B.; Liu, Q.; Shah, M.; Wang, J.; Zhang, G.; Pang, Y. Fluorescence Monitor of Hydrazine in Vivo by Selective Deprotection of Flavonoid. Sens. Actuators B 2014, 202, 194–200. DOI: 10.1016/j.snb.2014.05.010.
  • Jing, W.; Chen, C.; Wang, G.; Han, M.; Chen, S.; Jiang, X.; Shi, C.; Sun, P.; Yang, Z.; Shi, B.; Jiang, X. Metabolic Modulation of Intracellular Ammonia via Intravesical Instillation of Nanoporter-Encased Hydrogel Eradicates Bladder Carcinoma. Adv. Sci. (Weinh) 2023, 10, e2206893.
  • Liu, M.; Li, Y.; Wang, H. Z.; Wang, H. J.; Qiao, R. T.; Jeppesen, E. Ecosystem Complexity Explains the Scale-Dependence of Ammonia Toxicity on Macroinvertebrates. Water Res. 2022, 226, 119266. DOI: 10.1016/j.watres.2022.119266.
  • Tong, C.; Fan, L.; Cai, G.; Shi, S.; Yang, Y.; Guo, Y. Design of a Sustainable Light-up Flavonol Probe for Dual-Ratiometric Fluorescent Sensing and Visual Differentiating Ammonia and Hydrazine. Food Chem. 2023, 421, 136216. DOI: 10.1016/j.foodchem.2023.136216.
  • Sinha, S.; Gaur, P.; Dev, S.; Mukhopadhyay, S.; Mukherjee, T.; Ghosh, S. Hydrazine Responsive Molecular Material: Optical Signaling and Mushroom Cell Staining. Sens. Actuators B 2015, 221, 418–426. DOI: 10.1016/j.snb.2015.06.100.
  • Li, J.; Hu, Y.; Li, Z.; Liu, W.; Deng, T.; Li, J. Photoactivatable Red Chemiluminescent AIEgen Probe for in Vitro/Vivo Imaging Assay of Hydrazine. Anal. Chem. 2021, 93, 10601–10610. DOI: 10.1021/acs.analchem.1c01804.
  • Garg, B.; Bisht, T.; Ling, Y. C. Colorimetric Recognition of Hydrazine in Aqueous Solution by a Bromophenol Blue-Tethered Ion-Pair-like Ratiometric Probe. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 251, 119456. DOI: 10.1016/j.saa.2021.119456.
  • Hu, S.; Wang, J.; Luo, M.; Wu, Z.; Hou, Y.; Chen, X. A Novel ESIPT Fluorescent Probe Derived from 3-Hydroxyphthalimide for Hydrazine Detection in Aqueous Solution and Living Cells. Anal. Bioanal. Chem. 2021, 413, 5463–5468. DOI: 10.1007/s00216-021-03530-1.
  • Li, M.; He, J.; Wang, Z.; Jiang, Q.; Yang, H.; Song, J.; Yang, Y.; Xu, X.; Wang, S. Novel Nopinone-Based Turn-on Fluorescent Probe for Hydrazine in Living Cells with High Selectivity. Ind. Eng. Chem. Res. 2019, 58, 22754–22762. DOI: 10.1021/acs.iecr.9b04413.
  • Wang, S.; Ma, S.; Zhang, J.; She, M.; Liu, P.; Zhang, S.; Li, J. A Highly Sensitive and Selective near-Infrared Fluorescent Probe for Imaging Hydrazine in Living Tissues and Mice. Sens. Actuators B 2018, 261, 418–424. DOI: 10.1016/j.snb.2018.01.126.
  • Jiang, X.; Lu, Z.; Shangguan, M.; Yi, S.; Zeng, X.; Zhang, Y.; Hou, L. A Fluorescence ‘Turn-on’ Sensor for Detecting Hydrazine in Environment. Microchem. J. 2020, 152, 104376. DOI: 10.1016/j.microc.2019.104376.
  • Cui, Y.; Xu, C.; Wu, T.; Nie, Y.; Zhou, Y. Near-Infrared Cyanine-Based Fluorescent Probe: Rapidly Visualizing the in Situ Release of Hydrazine in Living Cells and Zebrafish. Sens. Actuators B 2022, 350, 130878. DOI: 10.1016/j.snb.2021.130878.
  • Qian, Y.; Lin, J.; Han, L.; Lin, L.; Zhu, H. A Resorufin-Based Colorimetric and Fluorescent Probe for Live-Cell Monitoring of Hydrazine. Biosens. Bioelectron. 2014, 58, 282–286. DOI: 10.1016/j.bios.2014.02.059.
  • Lu, Z.; Fan, W.; Shi, X.; Lu, Y.; Fan, C. Two Distinctly Separated Emission Colorimetric NIR Fluorescent Probe for Fast Hydrazine Detection in Living Cells and Mice upon Independent Excitations. Anal. Chem. 2017, 89, 9918–9925. DOI: 10.1021/acs.analchem.7b02149.
  • Lu, Z.; Shi, X.; Ma, Y.; Fan, W.; Lu, Y.; Wang, Z.; Fan, C. A Simple Two-Output near-Infrared Fluorescent Probe for Hydrazine Detection in Living Cells and Mice. Sens. Actuators B 2018, 258, 42–49. DOI: 10.1016/j.snb.2017.11.125.
  • Wang, S.; Liu, J.; Song, L.; Qi, Q.; Li, Z.; Huang, W. A Selective and Sensitive near-Infrared Fluorescent Probe for in Vivo Real Time Tracking of Exogenous and Metabolized Hydrazine, a Genotoxic Impurity. J. Mater. Chem. B 2020, 8, 10353–10359. DOI: 10.1039/d0tb02063j.
  • Li, K.-B.; Chen, Y.; Zhou, T.; Wang, T.; Wu, D.; Pan, Y.; Zhang, S.; Shi, W.; Wang, F.; Ren, J. Chloro-Hydroxyl-Merocyanine Based Turn-on Fluorescent Probes for the Detection of Hydrazine in Water and Living Cells. Dyes Pigm. 2022, 200, 110109. DOI: 10.1016/j.dyepig.2022.110109.
  • Goswami, S.; Aich, K.; Das, S.; Basu Roy, S.; Pakhira, B.; Sarkar, S. A Reaction Based Colorimetric as Well as Fluorescence ‘Turn On’ Probe for the Rapid Detection of Hydrazine. RSC Adv. 2014, 4, 14210–14214. DOI: 10.1039/c3ra46663a.
  • Xu, Y. X.; Song, Y. M.; Chen, C. Y.; Shen, J. W.; Zhu, H. L. A pH-Applicative Fluorescent Probe with Long Measuring Range for Monitoring Hydrazine in Water Samples and Arabidopsis thaliana. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 270, 120758. DOI: 10.1016/j.saa.2021.120758.
  • Hao, Y.; Zhang, Y.; Ruan, K.; Chen, W.; Zhou, B.; Tan, X.; Wang, Y.; Zhao, L.; Zhang, G.; Qu, P.; Xu, M. A Naphthalimide-Based Chemodosimetric Probe for Ratiometric Detection of Hydrazine. Sens. Actuators B 2017, 244, 417–424. DOI: 10.1016/j.snb.2016.12.145.
  • Wu, Q.; Zheng, J.; Zhang, W.; Wang, J.; Liang, W.; Stadler, F. J. A New Quinoline-Derived Highly-Sensitive Fluorescent Probe for the Detection of Hydrazine with Excellent Large-Emission-Shift Ratiometric Response. Talanta 2019, 195, 857–864. DOI: 10.1016/j.talanta.2018.12.015.
  • Lv, H.; Sun, H.; Wang, S.; Kong, F. A Novel Dicyanoisophorone Based Red-Emitting Fluorescent Probe with a Large Stokes Shift for Detection of Hydrazine in Solution and Living Cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 196, 160–167. DOI: 10.1016/j.saa.2018.02.026.
  • Zhu, M.; Xu, Y.; Sang, L.; Zhao, Z.; Wang, L.; Wu, X.; Fan, F.; Wang, Y.; Li, H. An ICT-Based Fluorescent Probe with a Large Stokes Shift for Measuring Hydrazine in Biological and Water Samples. Environ. Pollut. 2020, 256, 113427. DOI: 10.1016/j.envpol.2019.113427.
  • Hu, X. W.; Zhang, M. H.; Cheng, J. Y.; Man, R. J.; Li, D. D. A Berberrubine-Derived Fluorescent Probe for Hydrazine and Its Practical Application in Water and Food Samples. Anal. Chim. Acta 2021, 1172, 338504. DOI: 10.1016/j.aca.2021.338504.
  • Cui, L.; Peng, Z.; Ji, C.; Huang, J.; Huang, D.; Ma, J.; Zhang, S.; Qian, X.; Xu, Y. Hydrazine Detection in the Gas State and Aqueous Solution Based on the Gabriel Mechanism and Its Imaging in Living Cells. Chem. Commun. (Camb) 2014, 50, 1485–1487. DOI: 10.1039/c3cc48304e.
  • Guo, Z.; Wang, M.; Li, X.; Jia, X.; Wang, X.; Zhang, P.; Wei, C.; Li, X. A Hepatocyte-Targeting Fluorescent Probe for Imaging Isoniazid-Induced Hydrazine in HepG2 Cells and Zebrafish. Chem. Commun. (Camb) 2020, 56, 14183–14186. DOI: 10.1039/d0cc05330a.
  • Li, B.; He, Z.; Zhou, H.; Zhang, H.; Li, W.; Cheng, T.; Liu, G. Reaction Based Colorimetric and Fluorescence Probes for Selective Detection of Hydrazine. Dyes Pigm. 2017, 146, 300–304. DOI: 10.1016/j.dyepig.2017.07.023.
  • Wang, L.; Liu, F. Y.; Liu, H. Y.; Dong, Y. S.; Liu, T. Q.; Liu, J. F.; Yao, Y. W.; Wan, X. J. A Novel Pyrazoline-Based Fluorescent Probe for Detection of Hydrazine in Aqueous Solution and Gas State and Its Imaging in Living Cells. Sens. Actuators B 2016, 229, 441–452. DOI: 10.1016/j.snb.2016.02.001.
  • Cui, L.; Ji, C.; Peng, Z.; Zhong, L.; Zhou, C.; Yan, L.; Qu, S.; Zhang, S.; Huang, C.; Qian, X.; Xu, Y. Unique Tri-Output Optical Probe for Specific and Ultrasensitive Detection of Hydrazine. Anal. Chem. 2014, 86, 4611–4617. DOI: 10.1021/ac5007552.
  • Teng, M.; Zhou, Z.; Qin, Y.; Zhao, Y.; Zhao, C.; Cao, J. A Water-Soluble Fluorescence Sensor with High Specificity for Detecting Hydrazine in River Water Detection and A549 Cell Imaging. Sens. Actuators B 2020, 311, 127914. DOI: 10.1016/j.snb.2020.127914.
  • Chen, Y.; Mo, W.; Cheng, Z.; Kong, F.; Chen, C.; Li, X.; Ma, H. A Portable System Based on Turn-on Fluorescent Probe for the Detection of Hydrazine in Real Environment. Dyes Pigm. 2022, 198, 110004. DOI: 10.1016/j.dyepig.2021.110004.
  • Tang, T.; Chen, Y. Q.; Fu, B. S.; He, Z. Y.; Xiao, H.; Wu, F.; Wang, J. Q.; Wang, S. R.; Zhou, X. A Novel Resorufin Based Fluorescent “Turn-on” Probe for the Selective Detection of Hydrazine and Application in Living Cells. Chin. Chem. Lett. 2016, 27, 540–544. DOI: 10.1016/j.cclet.2016.01.024.
  • Muthusamy, S.; Yin, S.; Rajalakshmi, K.; Meng, S.; Zhu, D.; Xie, M.; Xie, J.; Lodi, R. S.; Xu, Y. Development of a Quinoline-Derived Turn-on Fluorescent Probe for Real Time Detection of Hydrazine and Its Applications in Environment and Bioimaging. Dyes Pigm. 2022, 206, 110618. DOI: 10.1016/j.dyepig.2022.110618.
  • Yan, F.; Zhang, H.; Li, X.; Sun, X.; Jiang, Y.; Cui, Y. A Fluorescein-Coumarin Based Ratiometric Fluorescent Probe for Detecting Hydrazine and Its Real Applications in Cells Imaging. Talanta 2021, 223, 121779. DOI: 10.1016/j.talanta.2020.121779.
  • Zhu, D.; Rajalakshmi, K.; Wang, R.; Wu, H.; Kannan, P.; Song, J. W.; Lee, H. J.; Muthusamy, S. A Coumarin Derivative-Based Turn-on Fluorescent Probe for Real-Time Applications of Hydrazine Detection in Environment and Bioimaging. Dyes Pigm. 2023, 216, 111370. 216111370. DOI: 10.1016/j.dyepig.2023.111370.
  • Chen, W.; Liu, W.; Liu, X. J.; Kuang, Y. Q.; Yu, R. Q.; Jiang, J. H. A Novel Fluorescent Probe for Sensitive Detection and Imaging of Hydrazine in Living Cells. Talanta 2017, 162, 225–231. DOI: 10.1016/j.talanta.2016.10.026.
  • Zhang, Y.; Qu, Y.; Zhang, Y.; Gao, Y.; Wang, L. Development of a Fluorescent Strategy for Quantification of Fluoride Ions in Foods and Toothpaste. Chem. Eng. J. 2022, 448, 137631. DOI: 10.1016/j.cej.2022.137631.
  • Wang, X.; Zhou, Y.; Xu, C.; Song, H.; Pang, X.; Liu, X. A Dual-Responsive Fluorescent Probe for Detection of Fluoride Ion and Hydrazine Based on Test Strips. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 211, 125–131. DOI: 10.1016/j.saa.2018.12.004.
  • Choi, M. G.; Hwang, J. Y.; Moon, J. O.; Sung, J. Y.; Chang, S. K. Hydrazine-Selective Chromogenic and Fluorogenic Probe Based on Levulinated Coumarin. Org. Lett. 2011, 13, 5260–5263. DOI: 10.1021/ol202136q.
  • Tiensomjitr, K.; Noorat, R.; Chomngam, S.; Wechakorn, K.; Prabpai, S.; Kanjanasirirat, P.; Pewkliang, Y.; Borwornpinyo, S.; Kongsaeree, P. A Chromogenic and Fluorogenic Rhodol-Based Chemosensor for Hydrazine Detection and Its Application in Live Cell Bioimaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 195, 136–141. DOI: 10.1016/j.saa.2018.01.033.
  • Tang, L.; Zhou, L.; Liu, A.; Yan, X.; Zhong, K.; Liu, X.; Gao, X.; Li, J. A New Cascade Reaction-Based Colorimetric and Fluorescence “Turn on” Dual-Function Probe for Cyanide and Hydrazine Detection. Dyes Pigm. 2021, 186, 109034. DOI: 10.1016/j.dyepig.2020.109034.
  • Fan, J.; Sun, W.; Hu, M.; Cao, J.; Cheng, G.; Dong, H.; Song, K.; Liu, Y.; Sun, S.; Peng, X. An ICT-Based Ratiometric Probe for Hydrazine and Its Application in Live Cells. Chem. Commun. (Camb) 2012, 48, 8117–8119. DOI: 10.1039/c2cc34168a.
  • Kou, J.; Meng, Z.; Wang, X.; Wang, Z.; Yang, Y. Coumarin Functionalized Cellulose-Based Fluorescent Probe for Detection of Hydrazine and Its Applications in Environmental Analysis. React. Funct. Polym. 2023, 182, 105453. DOI: 10.1016/j.reactfunctpolym.2022.105453.
  • Liu, Y.; Ren, D.; Zhang, J.; Li, H.; Yang, X.-F. A Fluorescent Probe for Hydrazine Based on a Newly Developed 1-Indanone-Fused Coumarin Scaffold. Dyes Pigm 2019, 162, 112–119. DOI: 10.1016/j.dyepig.2018.10.012.
  • Yang, X.; Liu, Y.; Wu, Y.; Ren, X.; Zhang, D.; Ye, Y. A NIR Ratiometric Probe for Hydrazine “Naked Eye” Detection and Its Imaging in Living Cell. Sens. Actuators B 2017, 253, 488–494. DOI: 10.1016/j.snb.2017.06.165.
  • Zeng, C.; Xu, Z.; Song, C.; Qin, T.; Jia, T.; Zhao, C.; Wang, L.; Liu, B.; Peng, X. Naphthalene-Based Fluorescent Probe for on-Site Detection of Hydrazine in the Environment. J. Hazard. Mater. 2023, 445, 130415. DOI: 10.1016/j.jhazmat.2022.130415.
  • Chen, B.; Sun, X.; Li, X.; Ågren, H.; Xie, Y. TICT Based Fluorescence “Turn-on” Hydrazine Probes. Sens. Actuators B 2014, 199, 93–100. DOI: 10.1016/j.snb.2014.03.087.
  • Gupta, R. C.; Dwivedi, S. K.; Ali, R.; Razi, S. S.; Tiwari, R.; Krishnamoorthi, S.; Misra, A. A Sensitive TICT Probe Exhibiting Ratiometric Fluorescence Repose to Detect Hydrazine in Solution and Gas Phase. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 232, 118153. DOI: 10.1016/j.saa.2020.118153.
  • Wu, C.; Xie, R.; Pang, X.; Li, Y.; Zhou, Z.; Li, H. A Colorimetric and near-Infrared Ratiometric Fluorescent Probe for Hydrazine Detection and Bioimaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 243, 118764. DOI: 10.1016/j.saa.2020.118764.
  • Qiu, X. Y.; Liu, S. J.; Hao, Y. Q.; Sun, J. W.; Chen, S. Phenothiazine-Based Fluorescence Probe for Ratiometric Imaging of Hydrazine in Living Cells with Remarkable Stokes Shift. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 227, 117675. DOI: 10.1016/j.saa.2019.117675.
  • Zheng, X. X.; Wang, S. Q.; Wang, H. Y.; Zhang, R. R.; Liu, J. T.; Zhao, B. X. Novel Pyrazoline-Based Selective Fluorescent Probe for the Detection of Hydrazine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 138, 247–251. DOI: 10.1016/j.saa.2014.11.045.
  • Xu, Y.; Li, H.; Wu, X.; Chen, Y.; Hang, H.; Tong, H.; Wang, L. Fluorescence Fiber-Optic Turn-on Detection of Trace Hydrazine Vapor with Dicyanovinyl-Functionalized Triazatruxene-Based Hyperbranched Conjugated Polymer Nanoparticles. Polym. Chem. 2017, 8, 2484–2489. DOI: 10.1039/C7PY00015D.
  • Tang, C.; Tong, H.; Liu, B.; Wang, X.; Jin, Y.; Tian, E.; Wang, F. Robust ERalpha-Targeted near-Infrared Fluorescence Probe for Selective Hydrazine Imaging in Breast Cancer. Anal. Chem. 2022, 94, 14012–14020. DOI: 10.1021/acs.analchem.2c03395.
  • Jung, M. J.; Kim, S. J.; Lee, M. H. Lee, pi-Extended Tetraphenylethylene Containing a Dicyanovinyl Group as an Ideal Fluorescence Turn-On and Naked-Eye Color Change Probe for Hydrazine Detection. ACS Omega 2020, 5, 28369–28374. DOI: 10.1021/acsomega.0c04370.
  • Mu, S.; Gao, H.; Li, C.; Li, S.; Wang, Y.; Zhang, Y.; Ma, C.; Zhang, H.; Liu, X. A Dual-Response Fluorescent Probe for Detection and Bioimaging of Hydrazine and Cyanide with Different Fluorescence Signals. Talanta 2021, 221, 121606. DOI: 10.1016/j.talanta.2020.121606.
  • Lai, Q.; Si, S.; Qin, T.; Li, B.; Wu, H.; Liu, B.; Xu, H.; Zhao, C. A Novel Red-Emissive Probe for Colorimetric and Ratiometric Detection of Hydrazine and Its Application in Plant Imaging. Sens. Actuators B 2020, 307, 127640. DOI: 10.1016/j.snb.2019.127640.
  • Liu, J.; Li, T.; Wang, S.; Qi, Q.; Song, H.; Li, Z.; Yang, L.; Huang, W. A Sensitive and Selective Fluorescent Probe for Hydrazine with a Unique Nonaromatic Fluorophore. RSC Adv. 2020, 10, 5572–5578. DOI: 10.1039/c9ra10882c.
  • Yan, S.; Guo, H.; Tan, J.; Jiang, J.; Liang, J.; Yan, S.; Xiao, H. Two Novel Spirobifluorene-Based Two-Photon Fluorescent Probes for the Detection of Hydrazine in Solution and Living Cells. Talanta 2020, 218, 121210. DOI: 10.1016/j.talanta.2020.121210.
  • Lan, H.; Guo, T.; Dan, F.; Li, Y.; Tang, Q. Ratiometric Fluorescence Chemodosimeter for Hydrazine in Aqueous Solution and Gas Phase Based on Quinoline-Malononitrile. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 271, 120892. DOI: 10.1016/j.saa.2022.120892.
  • Huang, J.; Zhou, Y.; Wang, W.; Zhu, J.; Li, X.; Fang, M.; Wu, Z.; Zhu, W.; Li, C. A Fluorescent Probe Based on Triphenylamine with AIE and ICT Characteristics for Hydrazine Detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 286, 122011. DOI: 10.1016/j.saa.2022.122011.
  • Wang, J. Y.; Liu, Z. R.; Ren, M.; Lin, W. 2-benzothiazoleacetonitrile Based Two-Photon Fluorescent Probe for Hydrazine and Its Bio-Imaging and Environmental Applications. Sci. Rep. 2017, 7, 1530. DOI: 10.1038/s41598-017-01656-w.
  • Zhang, T.; Zhu, L.; Lin, W. A near Infrared Ratiometric Fluorescent Probe with Aggregation Induced Emission (AIE) Characteristics for Hydrazine Detection in Vitro and in Vivo. Dyes Pigm. 2021, 188, 109177. DOI: 10.1016/j.dyepig.2021.109177.
  • Li, W.; Hu, Y.; Song, Y.; Gu, Y.; Yang, W. New Carbazole Fluorescent Sensor for Ultrasensitive and Ratiometric Sensing of SO2 Derivatives and Hydrazine. J. Photochem. Photobiol. A 2020, 389, 112269. DOI: 10.1016/j.jphotochem.2019.112269.
  • Zhang, T.; Lai, Y.; Lin, W. Design of a Ratiometric near-Infrared Fluorescent Probe with Double Excitation for Hydrazine Detection in Vitro and in Vivo. Sci. Total Environ. 2022, 837, 155462. DOI: 10.1016/j.scitotenv.2022.155462.
  • Jiang, Y.; Chen, Y.; Yang, Q.; Zhu, S.; Shen, J. Bifunctional Fluorescent Probe for Detecting and Imaging Hydrazine Hydrate Both in Vitro and in Vivo. J. Mol. Struct. 2022, 1256, 132509. DOI: 10.1016/j.molstruc.2022.132509.
  • Li, Z.; Zhang, W.; Liu, C.; Yu, M.; Zhang, H.; Guo, L.; Wei, L. A Colorimetric and Ratiometric Fluorescent Probe for Hydrazine and Its Application in Living Cells with Low Dark Toxicity. Sens. Actuators B 2017, 241, 665–671. DOI: 10.1016/j.snb.2016.10.141.
  • Wu, J.; Pan, J.; Ye, Z.; Zeng, L.; Su, D. A Smart Fluorescent Probe for Discriminative Detection of Hydrazine and Bisulfite from Different Emission Channels. Sens. Actuators B 2018, 274, 274–284. DOI: 10.1016/j.snb.2018.07.161.
  • Li, J.; Cui, Y.; Bi, C.; Feng, S.; Yu, F.; Yuan, E.; Xu, S.; Hu, Z.; Sun, Q.; Wei, D.; Yoon, J. Oligo(Ethylene-Glycol)-Functionalized Ratiometric Fluorescent Probe for the Detection of Hydrazine in Vitro and in Vivo. Anal. Chem. 2019, 91, 7360–7365. DOI: 10.1021/acs.analchem.9b01223.
  • Jung, Y.; Ju, I. G.; Choe, Y. H.; Kim, Y.; Park, S.; Hyun, Y. M.; Oh, M. S.; Kim, D. Hydrazine Expose: The Next-Generation Fluorescent Probe. ACS Sens. 2019, 4, 441–449. DOI: 10.1021/acssensors.8b01429.
  • Xu, W.; Liu, W.; Zhou, T.; Yang, Y.; Li, W. A Novel PBT-Based Fluorescent Probe for Hydrazine Detection and Its Application in Living Cells. J. Photochem. Photobiol. A 2018, 356, 610–616. DOI: 10.1016/j.jphotochem.2018.02.004.
  • Karawek, A.; Mayurachayakul, P.; Santiwat, T.; Sukwattanasinitt, M.; Niamnont, N. Electrospun Nanofibrous Sheet Doped with a Novel Triphenylamine Based Salicylaldehyde Fluorophore for Hydrazine Vapor Detection. J. Photochem. Photobiol. A 2021, 404, 112879. DOI: 10.1016/j.jphotochem.2020.112879.
  • Yang, Y. Z.; Qing, M.; Luo, X. Y.; Xie, J.; Zhang, L. N. A Dual-Response Fluorescent Probe for Discriminative Sensing of Hydrazine and Bisulfite as Well as Intracellular Imaging with Different Emission. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 270, 120795. DOI: 10.1016/j.saa.2021.120795.
  • Luo, Z.; Liu, B.; Qin, T.; Zhu, K.; Zhao, C.; Pan, C.; Wang, L. Cyclization of Chalcone Enables Ratiometric Fluorescence Determination of Hydrazine with a High Selectivity. Sens. Actuators B 2018, 263, 229–236. DOI: 10.1016/j.snb.2018.02.120.
  • Liu, Z.; Yang, Z.; Chen, S.; Liu, Y.; Sheng, L.; Tian, Z.; Huang, D.; Xu, H. A Smart Reaction-Based Fluorescence Probe for Ratio Detection of Hydrazine and Its Application in Living Cells. Microchem. J. 2020, 156, 104809. DOI: 10.1016/j.microc.2020.104809.
  • Wu, X.; Li, Y.; Yang, S.; Tian, H.; Sun, B. A Multiple-Detection-Point Fluorescent Probe for the Rapid Detection of Mercury(II), Hydrazine and Hydrogen Sulphide. Dyes Pigm. 2020, 174, 108056. DOI: 10.1016/j.dyepig.2019.108056.
  • Wu, C.; Xu, H.; Li, Y.; Xie, R.; Li, P.; Pang, X.; Zhou, Z.; Li, H.; Zhang, Y. A ‘‘Naked-Eye’’ Colorimetric and Ratiometric Fluorescence Probe for Trace Hydrazine. Anal. Methods 2019, 11, 2591–2596. DOI: 10.1039/C9AY00535H.
  • Wang, H.; Li, Y.; Yang, S.; Tian, H.; Liu, Y.; Sun, B. A Dual-Function Fluorescent Probe for Discriminative Detection of Hydrogen Sulfide and Hydrazine. J. Photochem. Photobiol. A 2019, 377, 36–42. DOI: 10.1016/j.jphotochem.2019.03.039.
  • Zhang, S.; Li, L.; Zhu, J.; Mu, X.; Yan, L.; Wu, X. A Dual Spectroscopic Probe Based on Benzothiazole for Detection of Hydrazine. ChemistrySelect 2021, 6, 7551–7556. DOI: 10.1002/slct.202102307.
  • He, X.; Deng, Z.; Xu, W.; Li, Y.; Xu, C.; Chen, H.; Shen, J. A Novel Dual-Response Chemosensor for Bioimaging of Exogenous/Endogenous Hypochlorite and Hydrazine in Living Cells, Pseudomonas aeruginosa and Zebrafish. Sens. Actuators B 2020, 321, 128450. DOI: 10.1016/j.snb.2020.128450.
  • Suna, G.; Gunduz, S.; Topal, S.; Ozturk, T.; Karakuş, E. A Unique Triple-Channel Fluorescent Probe for Discriminative Detection of Cyanide, Hydrazine, and Hypochlorite. Talanta 2023, 257, 124365. DOI: 10.1016/j.talanta.2023.124365.
  • Liu, S. S.; Wu, W. N.; Zhao, X. L.; Fan, Y. C.; Wang, Y.; Xu, Z. H. A Dual-Emission Fluorescence Probe for the Detection of Viscosity and Hydrazine in Environmental and Biological Samples. Anal. Chim. Acta 2023, 1245, 340867. DOI: 10.1016/j.aca.2023.340867.
  • He, Y.; Li, Z.; Shi, B.; An, Z.; Yu, M.; Wei, L.; Ni, Z. A New near-Infrared Ratiometric Fluorescent Probe for Hydrazine. RSC Adv. 2017, 7, 25634–25639. DOI: 10.1039/C7RA04270A.
  • Li, D.; Liu, L.; Yang, H.; Ma, J.; Wang, H.; Pan, J. A Novel Dual-Response Triphenylamine-Based Fluorescence Sensor for Special Detection of Hydrazine in Water. Mater. Sci. Eng.: B 2022, 276, 115556. DOI: 10.1016/j.mseb.2021.115556.
  • Zhu, B.; Wu, X.; Rodrigues, J.; Hu, X.; Sheng, R.; Bao, G. M. A Dual-Analytes Responsive Fluorescent Probe for Discriminative Detection of ClO- and N2H4 in Living Cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 246, 118953. DOI: 10.1016/j.saa.2020.118953.
  • Liu, L.; Le, Y.; Teng, M.; Zhou, Z.; Zhang, D.; Zhao, C.; Cao, J. A Novel Fluorescence Sensor for Hydrazine Based on Pyrazole Formation Reaction. Dyes Pigm. 2018, 151, 1–6. DOI: 10.1016/j.dyepig.2017.12.005.
  • Wang, M.; Wang, X.; Li, X.; Yang, Z.; Guo, Z.; Zhang, J.; Ma, J.; Wei, C. A Coumarin-Fused ‘off-On’ Fluorescent Probe for Highly Selective Detection of Hydrazine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 230, 118075. DOI: 10.1016/j.saa.2020.118075.
  • Wang, J.; Wang, C.; Jiang, S.; Ma, W.; Xu, B.; Liu, L.; Tian, W. A Covalent Organic Polymer for Turn-on Fluorescence Sensing of Hydrazine. J. Mater. Chem. C 2022, 10, 2807–2813. DOI: 10.1039/D1TC04335H.
  • Lee, M. H.; Yoon, B.; Kim, J. S.; Sessler, J. L. Naphthalimide Trifluoroacetyl Acetonate: A Hydrazine-Selective Chemodosimetric Sensor. Chem. Sci. 2013, 4, 4121–4126. DOI: 10.1039/c3sc51813b.
  • Roy, B.; Halder, S.; Guha, A.; Bandyopadhyay, S. Highly Selective Sub-Ppm Naked-Eye Detection of Hydrazine with Conjugated-1,3-Diketo Probes: Imaging Hydrazine in Drosophila Larvae. Anal. Chem. 2017, 89, 10625–10636. DOI: 10.1021/acs.analchem.7b03503.
  • Goswami, S.; Das, S.; Aich, K.; Sarkar, D.; Mondal, T. K. A Coumarin Based Chemodosimetric Probe for Ratiometric Detection of Hydrazine. Tetrahedron Lett. 2014, 55, 2695–2699. DOI: 10.1016/j.tetlet.2014.03.041.
  • Chen, R.; Shi, G. J.; Wang, J. J.; Qin, H. F.; Zhang, Q.; Chen, S.; Wen, Y.; Guo, J. B.; Wang, K. P.; Hu, Z. Q. A Highly-Sensitive ‘Turn-on’ Probe Based on Coumarin Beta-Diketone for Hydrazine Detection in PBS and Living Cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 252, 119510. DOI: 10.1016/j.saa.2021.119510.
  • Wu, W. N.; Wu, H.; Wang, Y.; Mao, X. J.; Zhao, X. L.; Xu, Z. Q.; Fan, Y. C.; Xu, Z. H. A Highly Sensitive and Selective off-on Fluorescent Chemosensor for Hydrazine Based on Coumarin Beta-Diketone. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 188, 80–84. DOI: 10.1016/j.saa.2017.06.062.
  • Zhang, Z.; Zhuang, Z.; Song, L.; Lin, X.; Zhang, S.; Zheng, G.; Zhan, F. A FRET-Based Ratiometric Fluorescent Probe for Hydrazine and Its Application in Living Cells. J. Photochem. Photobiol. A 2018, 358, 10–16. DOI: 10.1016/j.jphotochem.2018.02.005.
  • Shi, X.; Yin, C.; Zhang, Y.; Wen, Y.; Huo, F. A Novel Ratiometric and Colorimetric Fluorescent Probe for Hydrazine Based on Ring-Opening Reaction and Its Applications. Sens. Actuators B 2019, 285, 368–374. DOI: 10.1016/j.snb.2019.01.075.
  • Erdemir, S.; Malkondu, S. A Colorimetric and Fluorometric Probe for Hydrazine through Subsequent Ring-Opening and Closing Reactions: Its Environmental Applications. Microchem. J. 2020, 152, 104375. DOI: 10.1016/j.microc.2019.104375.
  • Zhang, S.; Xie, Y.; Yan, L. Ultra-Fast and Visual Detection of Hydrazine Hydrate Based on a Simple Coumarin Derivative. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 230, 118028. DOI: 10.1016/j.saa.2020.118028.
  • Zhang, W.; Huo, F.; Liu, T.; Yin, C. Ratiometric Fluorescence Probe for Hydrazine Vapor Detection and Biological Imaging. J. Mater. Chem. B 2018, 6, 8085–8089. DOI: 10.1039/c8tb02536c.
  • Dai, X.; Wang, Z.-Y.; Du, Z.-F.; Miao, J.-Y.; Zhao, B.-X. A Simple but Effective near-Infrared Ratiometric Fluorescent Probe for Hydrazine and Its Application in Bioimaging. Sens. Actuators B 2016, 232, 369–374. DOI: 10.1016/j.snb.2016.03.159.
  • Han, X.; Tian, C.; Yuan, M. S.; Li, Z.; Wang, W.; Li, T.; Chen, S. W.; Wang, J. Colorimetric Hydrazine Detection and Fluorescent Hydrogen Peroxide Imaging by Using a Multifunctional Chemical Probe. Anal. Chim. Acta 2019, 1052, 137–144. DOI: 10.1016/j.aca.2018.11.039.
  • Cheng, X.; Zhang, R.; Cai, X.; Liu, B. A Reusable and Naked-Eye Molecular Probe with Aggregation-Induced Emission (AIE) Characteristics for Hydrazine Detection. J. Mater. Chem. B 2017, 5, 3565–3571. DOI: 10.1039/c7tb00436b.
  • Shi, B.; He, Y.; Zhang, P.; Wang, Y.; Yu, M.; Zhang, H.; Wei, L.; Li, Z. Turn on Fluorescent Detection of Hydrazine with a 1,8-Naphthalimde Derivative. Dyes Pigm. 2017, 147, 152–159. DOI: 10.1016/j.dyepig.2017.08.010.
  • Man, R. J.; Wu, M. K.; Yang, B.; Yang, Y. S. A Novel Fluorescent Probe for Selective Detection of Hydrazine and Its Application in Imaging. Biosensors (Basel) )2021, 11, 11050130. DOI: 10.3390/bios11050130.
  • Huang, S.; Zheng, L.; Zheng, S.; Guo, H.; Yang, F. First Fluorescence Sensor for Hydrazine Ion: An Effective “Turn-on” Detection Based on Thiophene-Cyanodistyrene Schiff-Base. J. Photochem. Photobiol. A 2022, 427, 113851. DOI: 10.1016/j.jphotochem.2022.113851.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.