185
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Advances in Organic Sensors for the Detection of Ag+ Ions: A Comprehensive Review (2019–2023)

References

  • Gan, Y.; Huang, X.; Li, S.; Liu, N.; Li, Y. C.; Freidenreich, A.; Wang, W.; Wang, R.; Dai, J. Source Quantification and Potential Risk of Mercury, Cadmium, Arsenic, Lead, and Chromium in Farmland Soils of Yellow River Delta. J. Clean. Prod. 2019, 221, 98–107. DOI: 10.1016/j.jclepro.2019.02.157.
  • Buccolieri, A.; Buccolieri, G.; Dell’Atti, A.; Perrone, M. R.; Turnone, A. Natural Sources and Heavy Metals. Ann. Chim. 2006, 96, 167–181. DOI: 10.1002/ADIC.200690017.
  • Emenike, E. C.; Iwuozor, K. O.; Anidiobi, S. U. Heavy Metal Pollution in Aquaculture: Sources, Impacts and Mitigation Techniques. Biol. Trace Elem. Res. 2021, 200, 4476–4492. DOI: 10.1007/S12011-021-03037-X.
  • Ansari, T. M.; Marr, I. L.; Tariq, N. Heavy Metals in Marine Pollution Perspective–A Mini Review. J. Appl. Sci. 2003, 4, 1–20. DOI: 10.3923/jas.2004.1.20.
  • Rehman, K.; Fatima, F.; Waheed, I.; Akash, M. S. H. Prevalence of Exposure of Heavy Metals and Their Impact on Health Consequences. J. Cell Biochem. 2018, 119, 157–184. DOI: 10.1002/JCB.26234.
  • Liu, D.; Shi, Q.; Liu, C.; Sun, Q.; Zeng, X. Effects of Endocrine-Disrupting Heavy Metals on Human Health. Toxics 2023, 11, 322. DOI: 10.3390/TOXICS11040322.
  • Barillo, D. J.; Marx, D. E. Silver in Medicine: A Brief History BC 335 to Present. Burns 2014, 40 Suppl 1, S3–S8. DOI: 10.1016/J.BURNS.2014.09.009.
  • Purcell, T. W.; Peters, J. J. Sources of Silver in the Environment. Environ. Toxicol. Chem. 1998, 17, 539–546. DOI: 10.1002/etc.5620170404.
  • Drake, P. L.; Hazelwood, K. J. Exposure-Related Health Effects of Silver and Silver Compounds: A Review. Ann. Occup. Hyg. 2005, 49, 575–585. DOI: 10.1093/ANNHYG/MEI019.
  • Quadros, M. E.; Marr, L. C. Environmental and Human Health Risks of Aerosolized Silver Nanoparticles. Air Waste Manag Assoc. 2012, 60, 770–781. DOI: 10.3155/1047-3289.60.7.770.
  • Al-Saidi, H. M.; Khan, S. A Review on Organic Fluorimetric Colorimetric Chemosensors for the Detection of Ag(I). Crit. Rev. Anal. Chem. 2022, 52, 1–27. DOI: 10.1080/10408347.2022.2133561.
  • Gleason, R. L.; Hahn, D. W. The Effects of Oxygen on the Detection of Mercury Using Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2001, 56, 419–430. DOI: 10.1016/S0584-8547(01)00169-0.
  • Miao, P.; Liu, L.; Li, Y.; Li, G. A Novel Electrochemical Method to Detect Mercury (II) Ions. Electrochem. Commun. 2009, 11, 1904–1907. DOI: 10.1016/j.elecom.2009.08.013.
  • Aranda, P. R.; Colombo, L.; Perino, E.; De Vito, I. E.; Raba, J. Solid-Phase Preconcentration and Determination of Mercury(II) Using Activated Carbon in Drinking Water by X-Ray Fluorescence Spectrometry. X-Ray Spectrom. 2013, 42, 100–104. DOI: 10.1002/xrs.2440.
  • Vasconcellos, M. B. A.; Catharino, M. G. M.; Paletti, G.; Saiki, M.; Bode, P.; Fávaro, D. I. T.; Baruzzi, R.; Rodrigues, D. A. Determination of Mercury and Selenium in Biological Samples by Neutron Activation Analysis. J. Trace Microprobe Tech. 2002, 20, 527–538. DOI: 10.1081/TMA-120015614.
  • Zhu, Z.; Chan, G. C. Y.; Ray, S. J.; Zhang, X.; Hieftje, G. M. Microplasma Source Based on a Dielectric Barrier Discharge for the Determination of Mercury by Atomic Emission Spectrometry. Anal. Chem. 2008, 80, 8622–8627. DOI: 10.1021/AC801531J.
  • Hight, S. C.; Cheng, J. Determination of Methylmercury and Estimation of Total Mercury in Seafood Using High Performance Liquid Chromatography (HPLC) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS): Method Development and Validation. Anal. Chim. Acta 2006, 567, 160–172. DOI: 10.1016/j.aca.2006.03.048.
  • Vogl, J.; Heumann, K. G. Determination of Heavy Metal Complexes with Humic Substances by HPLC/ICP-MS Coupling Using on-Line Isotope Dilution Technique. Fresenius’ J. Anal. Chem. 1997, 359, 438–441. DOI: 10.1007/s002160050606.
  • Bos, M.; Boukamp, B. A.; Vrielink, J. A. M. Determination of Diffusion Profiles of Silver Ions in Soda-Lime–Silica Glass by X-Ray Fluorescence Spectrometry. Anal. Chim. Acta 2002, 459, 305–311. DOI: 10.1016/S0003-2670(02)00136-8.
  • Yang, X.; Jia, Z.; Yang, X.; Li, G.; Liao, X. Cloud Point Extraction-Flame Atomic Absorption Spectrometry for Pre-Concentration and Determination of Trace Amounts of Silver Ions in Water Samples. Saudi J. Biol. Sci. 2017, 24, 589–594. DOI: 10.1016/J.SJBS.2017.01.030.
  • Cao, F.; Jiao, F.; Ma, S.; Dong, D. Laser-Induced Breakdown Spectroscopy Mediated Amplification Sensor for Copper (II) Ions Detection Using Click Chemistry. Sens. Actuators B Chem. 2022, 371, 132594. DOI: 10.1016/j.snb.2022.132594.
  • Ma, S.; Cao, F.; Wen, X.; Xu, F.; Tian, H.; Fu, X.; Dong, D. Detection of Heavy Metal Ions Using Laser-Induced Breakdown Spectroscopy Combined with Filter Paper Modified with PtAg Bimetallic Nanoparticles. J. Hazard. Mater. 2023, 443, 130188. DOI: 10.1016/J.JHAZMAT.2022.130188.
  • Alhamami, M. A. M.; Algethami, J. S.; Khan, S. A Review on Thiazole Based Colorimetric and Fluorimetric Chemosensors for the Detection of Heavy Metal Ions. Crit. Rev. Anal. Chem. 2023, 53, 1–25. DOI: 10.1080/10408347.2023.2197073.
  • Al-Saidi, H. M.; Khan, S. Recent Advances in Thiourea Based Colorimetric and Fluorescent Chemosensors for Detection of Anions and Neutral Analytes: A Review. Crit. Rev. Anal. Chem. 2022, 52, 1–17. DOI: 10.1080/10408347.2022.2063017.
  • Khan, S.; Muhammad, M.; Kamran, A. W.; Al-Saidi, H. M.; Alharthi, S. S.; Algethami, J. S. An Ultrasensitive Colorimetric and Fluorescent “Turn-on” Chemosensor Based on Schiff Base for the Detection of Cu2+ in the Aqueous Medium. Environ. Monit. Assess. 2023, 53, 195. DOI: 10.1007/s10661-023-11260-3.
  • Khan, S.; Chen, X.; Almahri, A.; Allehyani, E. S.; Alhumaydhi, F. A.; Ibrahim, M. M.; Ali, S. Recent Developments in Fluorescent and Colorimetric Chemosensors Based on Schiff Bases for Metallic Cations Detection: A Review. J. Environ. Chem. Eng. 2021, 9, 106381. DOI: 10.1016/j.jece.2021.106381.
  • Mohammad Abu-Taweel, G.; Ibrahim, M. M.; Khan, S.; Al-Saidi, H. M.; Alshamrani, M.; Alhumaydhi, F. A.; Alharthi, S. S. Medicinal Importance and Chemosensing Applications of Pyridine Derivatives: A Review. Crit. Rev. Anal. Chem. 2022, 52, 1–18. DOI: 10.1080/10408347.2022.2089839.
  • Mohammad Abu-Taweel, G.; Alharthi, S. S.; Al-Saidi, H. M.; Babalghith, A. O.; Ibrahim, M. M.; Khan, S. Heterocyclic Organic Compounds as a Fluorescent Chemosensor for Cell Imaging Applications: A Review. Crit. Rev. Anal. Chem. 2023, 53, 1–16. DOI: 10.1080/10408347.2023.2186695.
  • Khan, S.; Muhammad, M.; Al-Saidi, H. M.; Hassanian, A. A.; Alharbi, W.; Alharbi, K. H. Synthesis, Characterization and Applications of Schiff Base Chemosensor for Determination of Cu2+ Ions. J. Saudi Chem. Soc. 2022, 26, 101503. DOI: 10.1016/j.jscs.2022.101503.
  • McNaughton, D. A.; Fares, M.; Picci, G.; Gale, P. A.; Caltagirone, C. Advances in Fluorescent and Colorimetric Sensors for Anionic Species. Coord. Chem. Rev. 2021, 427, 213573. DOI: 10.1016/j.ccr.2020.213573.
  • Kaur, B.; Kaur, N.; Kumar, S. Colorimetric Metal Ion Sensors – A Comprehensive Review of the Years 2011–2016. Coord. Chem. Rev. 2018, 358, 13–69. DOI: 10.1016/j.ccr.2017.12.002.
  • Duke, R. M.; Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T. Colorimetric and Fluorescent Anion Sensors: An Overview of Recent Developments in the Use of 1,8-Naphthalimide-Based Chemosensors. Chem. Soc. Rev. 2010, 39, 3936–3953. DOI: 10.1039/B910560N.
  • Algethami, J. S. A Review on Recent Progress in Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Cr3+/6+ Ions. Crit. Rev. Anal. Chem. 2022, 52, 1–21. DOI: 10.1080/10408347.2022.2082242.
  • Iftikhar, R.; Parveen, I.; Ayesha; Mazhar, A.; Iqbal, M. S.; Kamal, G. M.; Hafeez, F.; Pang, A. L.; Ahmadipour, M. Small Organic Molecules as Fluorescent Sensors for the Detection of Highly Toxic Heavy Metal Cations in Portable Water, J. Environ. Chem. Eng. 2023, 11, 109030. DOI: 10.1016/j.jece.2022.109030.
  • Borisov, S. M. Chapter 1: Fundamentals of Quenched Phosphorescence O2 Sensing and Rational Design of Sensor Materials. RSC Detect. Sci. 2018, 2018, 1–18. DOI: 10.1039/9781788013451-00001.
  • Wang, B.; Yang, Q.; Guo, C.; Sun, Y.; Xie, L. H.; Li, J. R. Stable Zr(IV)-Based Metal-Organic Frameworks with Predesigned Functionalized Ligands for Highly Selective Detection of Fe(III) Ions in Water. ACS Appl. Mater. Interfaces 2017, 9, 10286–10295. DOI: 10.1021/ACSAMI.7B00918/SUPPL_FILE/AM7B00918_SI_002.CIF.
  • Chen, Z.; Zhang, Z.; Qi, J.; You, J.; Ma, J.; Chen, L. Colorimetric Detection of Heavy Metal Ions with Various Chromogenic Materials: Strategies and Applications. J. Hazard. Mater. 2023, 441, 129889. DOI: 10.1016/J.JHAZMAT.2022.129889.
  • Jeong, Y.; Yoon, J. Recent Progress on Fluorescent Chemosensors for Metal Ions. Inorg. Chim. Acta 2012, 381, 2–14. DOI: 10.1016/j.ica.2011.09.011.
  • Mao, J.; Wang, L.; Dou, W.; Tang, X.; Yan, Y.; Liu, W. Tuning the Selectivity of Two Chemosensors to Fe(III) and Cr(III). Org. Lett. 2007, 9, 4567–4570. DOI: 10.1021/OL7020687/SUPPL_FILE/OL7020687-FILE002.PDF.
  • Yan, Z.; Cai, Y.; Zhang, J.; Zhao, Y. Fluorescent Sensor Arrays for Metal Ions Detection: A Review. Measurement 2022, 187, 110355. DOI: 10.1016/j.measurement.2021.110355.
  • Kim, H. N.; Xiu Ren, W.; Kim, J. S.; Yoon, J. Fluorescent and Colorimetric Sensors for Detection of Lead, Cadmium, and Mercury Ions. Chem. Soc. Rev. 2012, 41, 3210–3244. DOI: 10.1039/c1cs15245a.
  • Liu, B.; Zhuang, J.; Wei, G. Recent Advances in the Design of Colorimetric Sensors for Environmental Monitoring. Environ. Sci. Nano 2020, 7, 2195–2213. DOI: 10.1039/D0EN00449A.
  • Udhayakumari, D.; Naha, S.; Velmathi, S. Colorimetric and Fluorescent Chemosensors for Cu2+. A Comprehensive Review from the Years 2013–15. Anal. Methods 2017, 9, 552–578. DOI: 10.1039/C6AY02416E.
  • Goshisht, M. K.; Patra, G. K.; Tripathi, N. Fluorescent Schiff Base Sensors as a Versatile Tool for Metal Ion Detection: Strategies, Mechanistic Insights, and Applications. Mater. Adv. 2022, 3, 2612–2669. DOI: 10.1039/D1MA01175H.
  • Wu, G.; Dou, X.; Li, D.; Xu, S.; Zhang, J.; Ding, Z.; Xie, J. Recent Progress of Fluorescence Sensors for Histamine in Foods. Biosensors 2022, 12, 161. DOI: 10.3390/bios12030161.
  • Yin, P.; Niu, Q.; Liu, J.; Wei, T.; Hu, T.; Li, T.; Qin, X.; Chen, J. A New AIEE-Active Carbazole Based Colorimetric/Fluorimetric Chemosensor for Ultra-Rapid and Nano-Level Determination of Hg2+ and Al3+ in Food/Environmental Samples and Living Cells. Sens. Actuators B Chem. 2021, 331, 129418. DOI: 10.1016/j.snb.2020.129418.
  • Ko, Y. G.; Na, W. S.; Mayank; Singh, N.; Jang, D. O. Triazole-Coupled Benzimidazole-Based Fluorescent Sensor for Silver, Bromide, and Chloride Ions in Aqueous Media. J. Fluoresc. 29 (2019) 945–952. DOI: 10.1007/S10895-019-02407-Y.
  • Ye, F.; Liang, X. M.; Xu, K. X.; Pang, X. X.; Chai, Q.; Fu, Y. A Novel Dithiourea-Appended Naphthalimide “on-off” Fluorescent Probe for Detecting Hg2+ and Ag+ and Its Application in Cell Imaging. Talanta 2019, 200, 494–502. DOI: 10.1016/J.TALANTA.2019.03.076.
  • Liu, Y.; Yu, B.; Zhu, Q.; Yan, K. Pyrazole-Triazine Conjugate as Highly Selective and Sensitive Fluorescence Probe for Silver (I) Detection and Its Imaging in Living Cells. Wuhan Univ. J. Natl. Sci. 2019, 24, 409–416. DOI: 10.1007/s11859-019-1414-6.
  • Qian, J.; Wu, D.; Cai, P.; Xia, J. Nitrogen Atom Free Polythiophene Derivative as an Efficient Chemosensor for Highly Selective and Sensitive Cu2+ and Ag+ Detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 218, 76–84. DOI: 10.1016/J.SAA.2019.03.093.
  • Chen, Z. E.; Zhang, H.; Iqbal, Z. A New Thiosemicarbazone Fluorescent Probe Based on 9,9′-Bianthracene for Hg2+ and Ag+. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 215, 34–40. DOI: 10.1016/J.SAA.2019.02.036.
  • Chen, Z.; Zhou, H.; Gu, W.; Liu, T.; Xie, Z.; Yang, L.; Ma, L. J. A Medium-Controlled Fluorescent Enhancement Probe for Ag+ and Cu2+ Derived from Pyrene-Containing Schiff Base. J. Photochem. Photobiol. A Chem. 2019, 379, 5–10. DOI: 10.1016/j.jphotochem.2019.05.007.
  • Zhao, C.; Kong, X.; Shuang, S.; Wang, Y.; Dong, C. An Anthraquinone-Imidazole-Based Colorimetric and Fluorescent Sensor for the Sequential Detection of Ag+ and Biothiols in Living Cells. Analyst 2020, 145, 3029–3037. DOI: 10.1039/D0AN00164C.
  • Velmurugan, K.; Vickram, R.; Karthick, R.; Jipsa, C. V.; Suresh, S.; Prabakaran, G.; Prabhu, J.; Velraj, G.; Nandhakumar, R. Binol Diuryl Dipyrene Fluorescent Probe: Dual Detection of Silver and Carbonate Ions and Its Bioimaging Applications. J. Photochem. Photobiol. A Chem. 2020, 401, 112737. DOI: 10.1016/j.jphotochem.2020.112737.
  • Pundi, A.; Chang, C. J.; Chen, Y. S.; Chen, J. K.; Yeh, J. M.; Zhuang, C. S.; Lee, M. C. An Aniline Trimer-Based Multifunctional Sensor for Colorimetric Fe3+, Cu2+ and Ag+ Detection, and Its Complex for Fluorescent Sensing of L-Tryptophan. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 247, 119075. DOI: 10.1016/J.SAA.2020.119075.
  • Zhang, X.; Fan, Y.; Zhan, T. G.; Qi, Q. Y.; Zhao, X. A Thiophene-Derived Hexaazatriphenylene (HAT) Fluorescent Sensor for the Selective Detection of Ag+ Ion. Tetrahedron Lett. 2021, 68, 152911. DOI: 10.1016/j.tetlet.2021.152911.
  • Qu, W. J.; Fang, H.; An, J. N.; Yang, H. H.; He, J. X.; Yao, H.; Wei, T. B.; Lin, Q.; Zhang, Y. M. Highly Sensitive Detection of Mercury(II) and Silver(I) ions in Aqueous Solution via a Chromene-Functionalized Imidazophenazine Derivative. J. Photochem. Photobiol. A Chem. 2020, 402, 112814. DOI: 10.1016/j.jphotochem.2020.112814.
  • Bardasov, I. N.; Alekseeva, A. U.; Dianov, N. P.; Ershov, O. V. Novel Fluorescent Sensor for Silver (I) based on the Cinnamylidene Derivatives of Malononitrile Trimer. J. Mol. Struct. 2020, 1222, 128935. DOI: 10.1016/j.molstruc.2020.128935.
  • Sahu, M.; Kumar Manna, A.; Rout, K.; Mondal, J.; Patra, G. K. A Highly Selective Thiosemicarbazone Based Schiff Base Chemosensor for Colorimetric Detection of Cu2+ and Ag+ Ions and Turn-on Fluorometric Detection of Ag+ Ions. Inorg. Chim. Acta 2020, 508, 119633. DOI: 10.1016/j.ica.2020.119633.
  • Wang, H.; Wu, Y.; Zhang, Y.; Zhou, M.; Xu, S.; Li, Z. A Highly Sensitive and Selective Colorimetric/Fluorescent Probe for the Detection of Ag+ Based on a Croconium Dye. Optik 2021, 242, 167325. DOI: 10.1016/j.ijleo.2021.167325.
  • Jiang, X.; Yang, Y.; Li, H.; Qi, X.; Zhou, X.; Deng, M.; Lü, M.; Wu, J.; Liang, S. A Water-Soluble Fluorescent Probe for the Selective Sensing of Ag+ and Its Application in Imaging of Living Cells and Nematodes. J. Fluoresc. 2020, 30, 121–129. DOI: 10.1007/S10895-019-02477-Y.
  • Chunikhin, S. S.; Bardasov, IN.; Akasov, R. A.; Ershov, O. V. New “Turn-on” Chemosensor for Fluorescence Detection of Silver (I) based on Tetracyanopyridine (TCPy). Dyes Pigments 2022, 205, 110516. DOI: 10.1016/j.dyepig.2022.110516.
  • Wang, P.; Zhou, D.; Xue, S.; Chen, B.; Wen, S.; Yang, X.; Wu, J. Rational Design of Dual-Functional Peptide-Based Chemosensor for Sequential Detection of Ag+ (AgNPs) and S2− Ions by Fluorescent and Colorimetric Changes and Its Application in Live Cells, Real Water Samples and Test Strips. Microchem. J. 2022, 177, 107326. DOI: 10.1016/j.microc.2022.107326.
  • Mahata, S.; Kumar, S.; Dey, S.; Mandal, B. B.; Manivannan, V. A Probe with Hydrazinecarbothioamide and 1,8-Naphthalimide Groups for “Turn-on” Fluorescence Detection of Hg2+ and Ag+ Ions and Live-Cell Imaging Studies. Inorg. Chim. Acta 2022, 535, 120876. DOI: 10.1016/j.ica.2022.120876.
  • Jagadhane, K. S.; Bhosale, S. R.; Gunjal, D. B.; Nille, O. S.; Kolekar, G. B.; Kolekar, S. S.; Dongale, T. D.; Anbhule, P. V. Tetraphenylethene-Based Fluorescent Chemosensor with Mechanochromic and Aggregation-Induced Emission (AIE) Properties for the Selective and Sensitive Detection of Hg2+ and Ag+ Ions in Aqueous Media: Application to Environmental Analysis. ACS Omega 2022, 7, 34888–34900. DOI: 10.1021/ACSOMEGA.2C03437/ASSET/IMAGES/LARGE/AO2C03437_0018.JPEG.
  • Karuppannan, S.; Karmegam, M. V.; Leslee, D. B. C. A Phenothiazine-Thiophene-Linked Chalcone as a Highly Sensitive Fluorescent Chemosensor for Ag+ Ions. ChemistrySelect 2022, 7, e202200555. DOI: 10.1002/slct.202200555.
  • Li, N. N.; Bi, C. F.; Zhang, X.; Xu, C. G.; Bin Fan, C.; Gao, W. S.; Zong, Z. A.; Zuo, S. S.; Niu, C. F.; Fan, Y. H. A Bifunctional Probe Based on Naphthalene Derivative for Absorbance-Ratiometic Detection of Ag+ and Fluorescence “Turn-on” Sensing of Zn2+ and Its Practical Application in Water Samples, Walnut and Living Cells. J. Photochem. Photobiol. A Chem. 2020, 390, 112299. DOI: 10.1016/j.jphotochem.2019.112299.
  • David, C. I.; Prabakaran, G.; Sundaram, K.; Ravi, S.; Devi, D. P.; Abiram, A.; Nandhakumar, R. Rhodanine-Based Fluorometric Sequential Monitoring of Silver (I) and Iodide Ions: Experiment, DFT Calculation and Multifarious Applications. J. Hazard. Mater. 2021, 419, 126449. DOI: 10.1016/J.JHAZMAT.2021.126449.
  • Kumar, A.; Virender; Mohan, B.; Parikh, J.; Modi, K. The Spectroscopic and Computational Study of Anthracene Based Chemosensor – Ag+ Interactions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 285, 121889. DOI: 10.1016/J.SAA.2022.121889.
  • Mohanty, P.; Dash, P. P.; Naik, S.; Behura, R.; Mishra, M.; Sahoo, H.; Sahoo, S. K.; Barick, A. K.; Jali, B. R. A Thiourea-Based Fluorescent Turn-on Chemosensor for Detecting Hg2+, Ag+ and Au3+ in Aqueous Medium. J. Photochem. Photobiol. A Chem. 2023, 437, 114491. DOI: 10.1016/j.jphotochem.2022.114491.
  • Gunasekaran, P.; Immanuel David, C.; Shanmugam, S.; Ramanagul, K.; Rajendran, R.; Gothandapani, V.; Kannan, V. R.; Prabhu, J.; Nandhakumar, R. Positional Isomeric Symmetric Dipodal Receptors Dangled with Rotatable Binding Scaffolds: Fluorescent Sensing of Silver Ions and Sequential Detection of L-Histidine and Their Multifarious Applications. J. Agric. Food Chem. 2022, 71, 802–814. DOI: 10.1021/ACS.JAFC.2C05823/SUPPL_FILE/JF2C05823_SI_001.PDF.
  • Gil, D.; Lee, J. J.; Kim, C. Detection of Silver Ions by a Novel NBD-Based Colorimetric Chemosensor with the Intramolecular Charge Transfer Character. Polyhedron 2023, 240, 116453. DOI: 10.1016/j.poly.2023.116453.
  • Suguna, S.; Nandhakumar, R.; Prabhu, J. Anthracene Benzene Conjugate (ABC): An Asymmetric Schiff Base for the Selective Detection of Ag+ Ion Using Fluorimetry and Its Applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 288, 122196. DOI: 10.1016/J.SAA.2022.122196.
  • Zhao, J.; Li, C.; Wei, S.; Lü, C.; Zou, L. W. A Multifunctional Fluorescent Probe Based on Schiff Base with AIE and ESIPT Characteristics for Effective Detections of Pb2+, Ag+ and Fe3+. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 300, 122904. DOI: 10.1016/J.SAA.2023.122904.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.