172
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Approaches for Analytical Characterization of Phospholipids in Food Matrices. Is the Phospholipid Fraction Exploited in the Authentication of Food Lipids?

, &

References

  • Chen, H.; Wei, F.; Dong, X. Y.; Xiang, J. Q.; Quek, S. Y.; Wang, X. Lipidomics in Food Science. Curr. Opin. Food Sci. 2017, 16, 80–87. DOI: 10.1016/j.cofs.2017.08.003.
  • Yeo, J. D.; Parrish, C. C. Mass Spectrometry-Based Lipidomics in the Characterization of Individual Triacylglycerol (TAG) and Phospholipid (PL) Species from Marine Sources and Their Beneficial Health Effects. Rev. Fish. Sci. Aquaculture. 2022, 30, 81–100. DOI: 10.1080/23308249.2021.1897968.
  • Carrasco-Pancorbo, A.; Navas-Iglesias, N.; Cuadros-Rodríguez, L. From Lipid Analysis towards Lipidomics, a New Challenge for the Analytical Chemistry of the 21st Century. Part I: Modern Lipid Analysis. TrAC – Trends Anal. Chem. 2009, 28, 263–278. DOI: 10.1016/j.trac.2008.12.005.
  • Navas-Iglesias, N.; Carrasco-Pancorbo, A.; Cuadros-Rodríguez, L. From Lipids Analysis towards Lipidomics, a New Challenge for the Analytical Chemistry of the 21st Century. Part II: Analytical Lipidomics. TrAC – Trends Anal. Chem. 2009, 28, 393–403. DOI: 10.1016/j.trac.2008.12.004.
  • Contarini, G.; Povolo, M. Phospholipids in Milk Fat: Composition, Biological and Technological Significance, and Analytical Strategies. Int. J. Mol. Sci. 2013, 14, 2808–2831. DOI: 10.3390/ijms14022808.
  • Alves, E.; Domingues, M. R. M.; Domingues, P. Polar Lipids from Olives and Olive Oil: A Review on Their Identification, Significance and Potential Biotechnological Applications. Foods. 2018, 7, 109. DOI: 10.3390/foods7070109.
  • Ali, A. H.; Zou, X.; Abed, S. M.; Korma, S. A.; Jin, Q.; Wang, X. Natural Phospholipids: Occurrence, Biosynthesis, Separation, Identification, and Beneficial Health Aspects. Crit. Rev. Food Sci. Nutr. 2019, 59, 253–275. DOI: 10.1080/10408398.2017.1363714.
  • Sun, N.; Chen, J.; Wang, D.; Lin, S. Advance in Food-Derived Phospholipids: Sources, Molecular Species and Structure as Well as Their Biological Activities. Trends Food Sci. Technol. 2018, 80, 199–211. DOI: 10.1016/j.tifs.2018.08.010.
  • Han, X. Lipidomics for Studying Metabolism. Nat. Rev. Endocrinol. 2016, 12, 668–679. DOI: 10.1038/nrendo.2016.98.
  • Starek, M.; Homa, K.; Stępińska, J.; Dąbrowska, M. Development of Thin-Layer Chromatography-Densitometry for the Quantification of Lecithin in Dietary Supplements. J. Planar Chromatogr. – Mod. TLC. 2023, 36, 99–110. DOI: 10.1007/s00764-023-00234-3.
  • Cui, L.; Decker, E. A. Phospholipids in Foods: Prooxidants or Antioxidants? J. Sci. Food Agric. 2016, 96, 18–31. DOI: 10.1002/jsfa.7320.
  • Harvey, F.; Collao, V.; Bhattacharya, S. High-Resolution Liquid Chromatography–Mass Spectrometry for Lipidomics. In Lipidomics Methods and Protocols; Bhattacharya, S., Ed.; Springer: Hertfordshire, UK, 2023.
  • Chen, D. W.; Wan, P.; Yao, J.; Yang, X.; Liu, J. Egg Yolk Phospholipids as an Ideal Precursor of Fatty Note Odorants for Chicken Meat and Fried Foods: A Review. Food Chem. 2023, 407, 135177. DOI: 10.1016/j.foodchem.2022.135177.
  • Verardo, V.; Gómez-Caravaca, A. M.; Arráez-Román, D.; Hettinga, K. Recent Advances in Phospholipids from Colostrum, Milk and Dairy by-Products. Int. J. Mol. Sci. 2017, 18, 173. DOI: 10.3390/ijms18010173.
  • Pimentel, L.; Gomes, A.; Pintado, M.; Rodríguez-Alcalá, L. M. Isolation and Analysis of Phospholipids in Dairy Foods. J. Anal. Methods Chem. 2016, 2016, 9827369–9827312. DOI: 10.1155/2016/9827369.
  • Meng, X.; Pan, Q.; Ding, Y.; Jiang, L. Rapid Determination of Phospholipid Content of Vegetable Oils by FTIR Spectroscopy Combined with Partial Least-Square Regression. Food Chem. 2014, 147, 272–278. DOI: 10.1016/j.foodchem.2013.09.143.
  • Gharby, S. Refining Vegetable Oils: Chemical and Physical Refining. Sci. World J. 2022, 2022, 6627013–6627010. DOI: 10.1155/2022/6627013.
  • Hatzakis, E.; Koidis, A.; Boskou, D.; Dais, P. Determination of Phospholipids in Olive Oil by 31P NMR Spectroscopy. J. Agric. Food Chem. 2008, 56, 6232–6240. DOI: 10.1021/jf800690t.
  • Aparicio, R.; Harwood, J. Handbook of Olive Oil: Analysis and Properties; Springer: US, 2013. DOI: 10.1007/978-1-4614-7777-8.
  • Criado-Navarro, I.; Mena-Bravo, A.; Calderón-Santiago, M.; Priego-Capote, F. Determination of Glycerophospholipids in Vegetable Edible Oils: Proof of Concept to Discriminate Olive Oil Categories. Food Chem. 2019, 299, 125136. DOI: 10.1016/j.foodchem.2019.125136.
  • Züge, L. C. B.; Maieves, H. A.; Silveira, J. L. M.; Silva, V. R. D.; Scheer, A. D. P. Use of Avocado Phospholipids as Emulsifier. LWT-Food Sci. Technol. 2017, 79, 42–51. DOI: 10.1016/j.lwt.2017.01.013.
  • Comas, D. I.; Wagner, J. R.; Tomás, M. C. Creaming Stability of Oil in Water (O/W) Emulsions: Influence of PH on Soybean Protein-Lecithin Interaction. Food Hydrocol. 2006, 20, 990–996. DOI: 10.1016/j.foodhyd.2005.11.006.
  • American Oil Chemists’ Society. AOCS Official Method Ca 12-55; AOCS, 2009.
  • Boukhchina, S.; Sebai, K.; Cherif, A.; Kallel, H.; Mayer, P. M. Identification of Glycerophospholipids in Rapeseed, Olive, Almond, Sunflower Oil by LC-MS and LC-MS-MS. Can. J. Chem. 2004, 82, 1210–1215. DOI: 10.1139/v04-094.
  • Liu, Z.; Li, C.; Pryce, J.; Rochfort, S. Comprehensive Characterization of Bovine Milk Lipids: Phospholipids, Sphingolipids, Glycolipids, and Ceramides. J. Agric. Food Chem. 2020, 68, 6726–6738. DOI: 10.1021/acs.jafc.0c01604.
  • Zhang, Y. D.; Li, P.; Zheng, N.; Jia, Z. W.; Meruva, N.; Ladak, A.; Cleland, G.; Wen, F.; Li, S. L.; Zhao, S. G.; et al. A Metabolomics Approach to Characterize Raw, Pasteurized, and Ultra-High Temperature Milk Using Ultra-Performance Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry and Multivariate Data Analysis. J. Dairy Sci. 2018, 101, 9630–9636. DOI: 10.3168/jds.2018-14441.
  • Touchstone, J. C. Thin-Layer Chromatographic Procedures for Lipid. J. Chromatogr. B Biomed. Appl. 1995, 671, 169–195. DOI: 10.1016/0378-4347(95)00232-8.
  • Fornstedt, T.; Forssén, P.; Samuelsson, J. Modeling of Preparative Liquid Chromatography. In Liquid Chromatography: Fundamentals and Instrumentation: Second Edition; Fanali, S., Chankvetadze, B., Haddad, P., Poole, C., Riekkola, M., Eds.; Elsevier: Oxford, UK, 2017; Vol. 1, pp 573–592. DOI: 10.1016/B978-0-12-805393-5.00024-5.
  • Zhou, L.; Le Grandois, J.; Marchioni, E.; Zhao, M.; Ennahar, S.; Bindler, F. Improvement of Total Lipid and Glycerophospholipid Recoveries from Various Food Matrices Using Pressurized Liquid Extraction. J. Agric. Food Chem. 2010, 58, 9912–9917. DOI: 10.1021/jf101992j.
  • Mayar, M.; De Roo, N.; Hoos, P.; Van Duynhoven, J. 31P NMR Quantification of Phospholipids and Lysophospholipids in Food Emulsions. J. Agric. Food Chem. 2020, 68, 5009–5017. DOI: 10.1021/acs.jafc.0c00404.
  • Zhou, L.; Yang, F.; Zhao, M.; Zhang, M.; Liu, J.; Marchioni, E. Determination and Comparison of Phospholipid Profiles in Eggs from Seven Different Species Using UHPLC-ESI-Triple TOF-MS. Food Chem. 2021, 339, 127856. DOI: 10.1016/j.foodchem.2020.127856.
  • Chang, W. C. W.; Wu, H. Y.; Kan, H. L.; Lin, Y. C.; Tsai, P. J.; Chen, Y. C.; Pan, Y. Y.; Liao, P. C. Discovery of Spoilage Markers for Chicken Eggs Using Liquid Chromatography-High Resolution Mass Spectrometry-Based Untargeted and Targeted Foodomics. J. Agric. Food Chem. 2021, 69, 4331–4341. DOI: 10.1021/acs.jafc.1c01009.
  • Liu, Y.; Guo, X.; Wang, N.; Lu, S.; Dong, J.; Qi, Z.; Zhou, J.; Wang, Q. Evaluation of Changes in Egg Yolk Lipids during Storage Based on Lipidomics through UPLC-MS/MS. Food Chem. 2023, 398, 133931. DOI: 10.1016/j.foodchem.2022.133931.
  • Wei, J.; Zhao, X.; Wang, S.; Zhang, M.; Yao, W.; Yuan, Y. Determination of Related Substances in Egg Yolk Lecithin by HPLC-CAD and Characterization of Its Profiling by HPLC-Q-TOF-MS. J. Pharm. Biomed. Anal. 2022, 221, 115079. DOI: 10.1016/j.jpba.2022.115079.
  • Tavazzi, I.; Fontannaz, P.; Lee, L. Y.; Giuffrida, F. Quantification of Glycerophospholipids and Sphingomyelin in Human Milk and Infant Formula by High Performance Liquid Chromatography Coupled with Mass Spectrometer Detector. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2018, 1072, 235–243. DOI: 10.1016/j.jchromb.2017.10.067.
  • Ma, L.; MacGibbon, A. K. H.; Jan Mohamed, H. J. B.; Loy, S. L.; Rowan, A.; McJarrow, P.; Fong, B. Y. Determination of Phospholipid Concentrations in Breast Milk and Serum Using a High Performance Liquid Chromatography–Mass Spectrometry–Multiple Reaction Monitoring Method. Int. Dairy J. 2017, 71, 50–59. DOI: 10.1016/j.idairyj.2017.03.005.
  • Takumi, H.; Kato, K.; Nakanishi, H.; Tamura, M.; Ohto-N, T.; Nagao, S.; Hirose, J. Comprehensive Analysis of Lipid Composition in Human Foremilk and Hindmilk. J. Oleo Sci. 2022, 71, 947–957. DOI: 10.5650/jos.ess21449.
  • Zhu, D.; Hayman, A.; Kebede, B.; Stewart, I.; Chen, G.; Frew, R. 31P NMR-Based Phospholipid Fingerprinting of Powdered Infant Formula. J. Agric. Food Chem. 2019, 67, 10265–10272. DOI: 10.1021/acs.jafc.9b03902.
  • Hewelt-Belka, W.; Garwolińska, D.; Belka, M.; Bączek, T.; Namieśnik, J.; Kot-Wasik, A. A New Dilution-Enrichment Sample Preparation Strategy for Expanded Metabolome Monitoring of Human Breast Milk That Overcomes the Simultaneous Presence of Low- and High-Abundance Lipid Species. Food Chem. 2019, 288, 154–161. DOI: 10.1016/j.foodchem.2019.03.001.
  • Lagutin, K.; Mackenzie, A.; Bloor, S.; Scott, D.; Vyssotski, M. HPLC-MS, GC and NMR Profiling of Bioactive Lipids of Human Milk and Milk of Dairy Animals (Cow, Sheep, Goat, Buffalo, Camel, Red Deer). Separations. 2022, 9, 145. DOI: 10.3390/separations9060145.
  • Gao, Y.; Wu, S. Comprehensive Analysis of the Phospholipids and Phytosterols in Schisandra Chinensis Oil by UPLC-Q/TOF-MS. Chem. Phys. Lipids. 2019, 221, 15–23. DOI: 10.1016/j.chemphyslip.2019.03.003.
  • Antonelli, M.; Benedetti, B.; Cavaliere, C.; Cerrato, A.; Montone, C. M.; Piovesana, S.; Lagana, A.; Capriotti, A. L. Phospholipidome of Extra Virgin Olive Oil: Development of a Solid Phase Extraction Protocol Followed by Liquid Chromatography–High Resolution Mass Spectrometry for Its Software-Assisted Identification. Food Chem. 2020, 310, 125860. DOI: 10.1016/j.foodchem.2019.125860.
  • Capriotti, A. L.; Cerrato, A.; Aita, S. E.; Montone, C. M.; Piovesana, S.; Laganà, A.; Cavaliere, C. Degradation of the Polar Lipid and Fatty Acid Molecular Species in Extra Virgin Olive Oil during Storage Based on Shotgun Lipidomics. J. Chromatogr. A. 2021, 1639, 461881. DOI: 10.1016/j.chroma.2021.461881.
  • Oteri, M.; Bartolomeo, G.; Rigano, F.; Aspromonte, J.; Trovato, E.; Purcaro, G.; Dugo, P.; Mondello, L.; Beccaria, M. Comprehensive Chemical Characterization of Chia (Salvia Hispanica L.) Seed Oil with a Focus on Minor Lipid Components. Foods. 2022, 12, 23. DOI: 10.3390/foods12010023.
  • Folch, J.; Lees, M.; Sloane, G. H. A Simpe Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. DOI: 10.1016/S0021-9258(18)64849-5.
  • Wang, T.; Zhou, D. Advances in Phospholipid Quantification Methods. Curr. Opin. Food Sci. 2017, 16, 15–20. DOI: 10.1016/j.cofs.2017.06.007.
  • Buszewski, B.; Walczak, J.; Žuvela, P.; Liu, J. J. Non-Target Analysis of Phospholipid and Sphingolipid Species in Egg Yolk Using Liquid Chromatography/Triple Quadrupole Tandem Mass Spectrometry. J. Chromatogr. A. 2017, 1487, 179–186. DOI: 10.1016/j.chroma.2017.01.055.
  • Fabritius, M.; Yang, B. Direct Infusion and Ultra-High-Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry Analysis of Phospholipid Regioisomers. Rapid Commun. Mass Spectrom. 2021, 35, e9151. DOI: 10.1002/rcm.9151.
  • Gamache, P. H. Charged Aerosol Detection for Liquid Chromatography and Related Separation Techniques; Wiley: Chelmsford, MA, 2017.
  • Damnjanović, J.; Nakano, H.; Iwasaki, Y. Simple and Efficient Profiling of Phospholipids in Phospholipase D-Modified Soy Lecithin by HPLC with Charged Aerosol Detection. J. Am. Oil Chem. Soc. 2013, 90, 951–957. DOI: 10.1007/s11746-013-2236-x.
  • Kiełbowicz, G.; Micek, P.; Wawrzeńczyk, C. A New Liquid Chromatography Method with Charge Aerosol Detector (CAD) for the Determination of Phospholipid Classes. Application to Milk Phospholipids. Talanta. 2013, 105, 28–33. DOI: 10.1016/j.talanta.2012.11.051.
  • Koivusalo, M.; Haimi, P.; Heikinheimo, L.; Kostiainen, R.; Somerharju, P. Quantitative Determination of Phospholipid Compositions by ESI-MS: Effects of Acyl Chain Length, Unsaturation, and Lipid Concentration on Instrument Response. J. Lipid Res. 2001, 42, 663–672.
  • Yeo, J. D.; Kang, J. Y.; Kim, H. J.; Moon, C. A Critical Overview of HPLC-MS-Based Lipidomics in Determining Triacylglycerol and Phospholipid in Foods. Foods. 2023, 12, 3177. DOI: 10.3390/foods12173177.
  • El Sheikha, A. F. Food Authentication: Introduction, Techniques, and Prospects. In Food Authentication and Traceability; Galanakis, C., Ed.; Elsevier: Oxford, UK, 2020; pp 1–34 DOI: 10.1016/B978-0-12-821104-5.00006-4.
  • Lu, Y.; Li, P.; Xu, H. A Food Anti-Counterfeiting Traceability System Based on Blockchain and Internet of Things. Procedia Comput. Sci. 2022, 199, 629–636. DOI: 10.1016/j.procs.2022.01.077.
  • de Araújo Gomes, A.; Azcarate, S. M.; Špánik, I.; Khvalbota, L.; Goicoechea, H. C. Pattern Recognition Techniques in Food Quality and Authenticity: A Guide on How to Process Multivariate Data in Food Analysis. TrAC, Trends Anal. Chem. 2023, 164, 117105. DOI: 10.1016/j.trac.2023.117105.
  • Cuadros-Rodríguez, L.; Ruiz-Samblás, C.; Valverde-Som, L.; Pérez-Castaño, E.; González-Casado, A. Chromatographic Fingerprinting: An Innovative Approach for Food “Identitation” and Food Authentication – A Tutorial. Anal. Chim. Acta. 2016, 909, 9–23. DOI: 10.1016/j.aca.2015.12.042.
  • Jiménez-Carvelo, A. M.; Cuadros-Rodríguez, L. Data Mining/Machine Learning Methods in Foodomics. Curr. Opin. Food Sci. 2021, 37, 76–82. DOI: 10.1016/j.cofs.2020.09.008.
  • Belugina, R.; Senchikhina, A.; Volkov, S.; Fedorov, A.; Legin, A.; Kirsanov, D. Quantification of Phosphatides in Sunflower Oils Using a Potentiometric E-Tongue. Anal. Methods. 2022, 14, 3064–3070. DOI: 10.1039/d2ay00736c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.