1,933
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Factors Affecting the Extraction of (Poly)Phenols from Natural Resources Using Deep Eutectic Solvents Combined with Ultrasound-Assisted Extraction

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Croft, K. D. Dietary Polyphenols: Antioxidants or Not? Arch. Biochem. Biophys. 2016, 595, 120–124. DOI: 10.1016/j.abb.2015.11.014.
  • Fernando, S.; Kim, I. P.; Son, M.; Jeong, K. T.; Jeon, Y. Antioxidant Activity of Marine Algal Polyphenolic Compounds: A Mechanistic Approach. J. Med. Food 2016, 19, 615–628. DOI: 10.1089/jmf.2016.3706.
  • Nowacka, N.; Nowak, R.; Drozd, M.; Olech, M.; Los, R.; Malm, A. Antibacterial, Antiradical Potential and Phenolic Compounds of Thirty-One Polish Mushrooms. PLoS One 2015, 10, e0140355. DOI: 10.1371/JOURNAL.PONE.0140355.
  • Deng, Y.; Yang, G.; Yue, J.; Qian, B.; Liu, Z.; Wang, D.; Zhong, Y.; Zhao, Y. Influences of Ripening Stages and Extracting Solvents on the Polyphenolic Compounds, Antimicrobial and Antioxidant Activities of Blueberry Leaf Extracts. Food Control 2014, 38, 184–191. DOI: 10.1016/j.foodcont.2013.10.023.
  • Joseph, S. V.; Edirisinghe, I.; Burton-Freeman, B. M. Fruit Polyphenols: A Review of anti-Inflammatory Effects in Humans. Crit. Rev. Food Sci. Nutr. 2016, 56, 419–444. DOI: 10.1080/10408398.2013.767221.
  • Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. DOI: 10.1016/j.cofs.2016.02.002.
  • Luyen, B. T. T.; Tai, B. H.; Thao, N. P.; Lee, S. H.; Jang, H. D.; Lee, Y. M.; Kim, Y. H. Evaluation of the anti-Osteoporosis and Antioxidant Activities of Phenolic Compounds from Euphorbia Maculata. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 573–579. DOI: 10.1007/s13765-014-4157-2.
  • Harahap, I. A.; Suliburska, J. Probiotics and Isoflavones as a Promising Therapeutic for Calcium Status and Bone Health: A Narrative Review. Foods 2021, 10 (11), 2685. DOI: 10.3390/FOODS10112685.
  • Afsar, T.; Trembley, J. H.; Salomon, C. E.; Razak, S.; Khan, M. R.; Ahmed, K. Growth Inhibition and Apoptosis in Cancer Cells Induced by Polyphenolic Compounds of Acacia Hydaspica: Involvement of Multiple Signal Transduction Pathways. Sci. Rep. 2016, 6, 23077. DOI: 10.1038/srep23077.
  • Hasima, N.; Ozpolat, B. Regulation of Autophagy by Polyphenolic Compounds as a Potential Therapeutic Strategy for Cancer. Cell Death Dis. 2014, 5, e1509–e1509. DOI: 10.1038/cddis.2014.467.
  • Alara, O. R.; Abdurahman, N. H.; Ukaegbu, C. I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. DOI: 10.1016/j.crfs.2021.03.011.
  • Jha, A. K.; Sit, N. Extraction of Bioactive Compounds from Plant Materials Using Combination of Various Novel Methods: A Review. Trends Food Sci. Technol. 2022, 119, 579–591. DOI: 10.1016/j.tifs.2021.11.019.
  • Ali Redha, A. Review on Extraction of Phenolic Compounds from Natural Sources Using Green Deep Eutectic Solvents. J. Agric. Food Chem. 2021, 69, 878–912. DOI: 10.1021/acs.jafc.0c06641.
  • Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep Eutectic Solvents: Syntheses, Properties and Applications. Chem. Soc. Rev. 2012, 41, 7108–7146. DOI: 10.1039/C2CS35178A.
  • Wang, P.; Tian, B.; Ge, Z.; Feng, J.; Wang, J.; Yang, K.; Sun, P.; Cai, M. Ultrasound and Deep Eutectic Solvent as Green Extraction Technology for Recovery of Phenolic Compounds from Dendrobium officinale Leaves. Process Biochem. 2023, 128, 1–11. DOI: 10.1016/j.procbio.2023.02.018.
  • Zheng, B.; Yuan, Y.; Xiang, J.; Jin, W.; Johnson, J. B.; Li, Z.; Wang, C.; Luo, D. Green Extraction of Phenolic Compounds from Foxtail Millet Bran by Ultrasonic-Assisted Deep Eutectic Solvent Extraction: Optimization, Comparison and Bioactivities. LWT 2022, 154, 112740. DOI: 10.1016/j.lwt.2021.112740.
  • Wu, L.; Li, L.; Chen, S.; Wang, L.; Lin, X. Deep Eutectic Solvent-Based Ultrasonic-Assisted Extraction of Phenolic Compounds from Moringa oleifera L. Leaves: Optimization, Comparison and Antioxidant Activity. Sep. Purif. Technol. 2020, 247, 117014. DOI: 10.1016/j.seppur.2020.117014.
  • Rashid, R.; Mohd Wani, S.; Manzoor, S.; Masoodi, F. A.; Masarat Dar, M. Green Extraction of Bioactive Compounds from Apple Pomace by Ultrasound Assisted Natural Deep Eutectic Solvent Extraction: Optimisation, Comparison and Bioactivity. Food Chem. 2023, 398, 133871. DOI: 10.1016/j.foodchem.2022.133871.
  • Lanjekar, K.; Gokhale, S.; Rathod, V. Utilization of Waste Mango Peels for Extraction of Polyphenolic Antioxidants by Ultrasound-Assisted Natural Deep Eutectic Solvent (Ua-Nades). Bioresour. Technol. Rep. 2022, 18, 101074. DOI: 10.1016/j.biteb.2022.101074.
  • Patil, S. S.; Pathak, A.; Rathod, V. K. Optimization and Kinetic Study of Ultrasound Assisted Deep Eutectic Solvent Based Extraction: A Greener Route for Extraction of Curcuminoids from Curcuma longa. Ultrason. Sonochem. 2021, 70, 105267. DOI: 10.1016/j.ultsonch.2020.105267.
  • Lanjekar, K. J.; Rathod, V. K. Application of Ultrasound and Natural Deep Eutectic Solvent for the Extraction of Glycyrrhizic Acid from Glycyrrhiza glabra: Optimization and Kinetic Evaluation. Ind. Eng. Chem. Res. 2021, 60, 9532–9538. DOI: 10.1021/acs.iecr.1c00862.
  • Cherif, M. M.; Grigorakis, S.; Halahlah, A.; Loupassaki, S.; Makris, D. P. High-Efficiency Extraction of Phenolics from Wheat Waste Biomass (Bran) by Combining Deep Eutectic Solvent, Ultrasound-Assisted Pretreatment and Thermal Treatment. Environ. Process 2020, 7, 845–859. DOI: 10.1007/s40710-020-00449-0.
  • Fanali, C.; Posta, S.; Della; Dugo, L.; Russo, M.; Gentili, A.; Mondello, L.; De Gara, L. Application of Deep Eutectic Solvents for the Extraction of Phenolic Compounds from Extra-Virgin Olive Oil. Electrophoresis 2020, 41, 1752–1759. DOI: 10.1002/elps.201900423.
  • Vorobyova, V.; Skiba, M.; Vasyliev, G. Extraction of Phenolic Compounds from Tomato Pomace Using Choline Chloride–Based Deep Eutectic Solvents. Food Measure 2022, 16, 1087–1104. DOI: 10.1007/s11694-021-01238-5.
  • Alam, M. A.; Muhammad, G.; Khan, M. N.; Mofijur, M.; Lv, Y.; Xiong, W.; Xu, J. Choline Chloride-Based Deep Eutectic Solvents as Green Extractants for the Isolation of Phenolic Compounds from Biomass. J. Clean. Prod. 2021, 309, 127445. DOI: 10.1016/j.jclepro.2021.127445.
  • Kumar, K.; Srivastav, S.; Sharanagat, V. S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. DOI: 10.1016/j.ultsonch.2020.105325.
  • Kentish, S.; Ashokkumar, M. The Physical and Chemical Effects of Ultrasound. Ann. Rev. Phys. Chem. 2011, 71, 1–12. DOI: 10.1007/978-1-4419-7472-3_1.
  • Ali Redha, A.; Siddiqui, S. A.; Ibrahim, S. A. Advanced Extraction Techniques for Berberis Species Phytochemicals: A Review. Int. J. Food Sci. Tech. 2021, 56, 5485–5496. DOI: 10.1111/ijfs.15315.
  • Yusoff, I. M.; Mat Taher, Z.; Rahmat, Z.; Chua, L. S. A Review of Ultrasound-Assisted Extraction for Plant Bioactive Compounds: Phenolics, Flavonoids, Thymols, Saponins and Proteins. Food Res. Int. 2022, 157, 111268. DOI: 10.1016/j.foodres.2022.111268.
  • Chemat, F.; Rombaut, N.; Sicaire, A. G.; Meullemiestre, A.; Fabiano-Tixier, A. S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. DOI: 10.1016/j.ultsonch.2016.06.035.
  • Lavilla, I.; Bendicho, C. Fundamentals of Ultrasound-Assisted Extraction. In Water Extraction of Bioactive Compounds; Elsevier, 2017; pp 291–316. DOI: 10.1016/B978-0-12-809380-1.00011-5.
  • Wen, C.; Zhang, J.; Zhang, H.; Dzah, C. S.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in Ultrasound Assisted Extraction of Bioactive Compounds from Cash Crops – A Review. Ultrason. Sonochem. 2018, 48, 538–549. DOI: 10.1016/J.ULTSONCH.2018.07.018.
  • Tabaraki, R.; Nateghi, A. Optimization of Ultrasonic-Assisted Extraction of Natural Antioxidants from Rice Bran Using Response Surface Methodology. Ultrason. Sonochem. 2011, 18, 1279–1286. DOI: 10.1016/j.ultsonch.2011.05.004.
  • Liao, J.; Zheng, N.; Qu, B. An Improved Ultrasonic-Assisted Extraction Method by Optimizing the Ultrasonic Frequency for Enhancing the Extraction Efficiency of Lycopene from Tomatoes. Food Anal. Methods 2016, 9, 2288–2298. DOI: 10.1007/s12161-016-0419-4.
  • Al-Khazrajy, O. S. A.; Boxall, A. B. A. Determination of Pharmaceuticals in Freshwater Sediments Using Ultrasonic-Assisted Extraction with SPE Clean-up and HPLC-DAD or LC-ESI-MS/MS Detection. Anal. Methods 2017, 9, 4190–4200. DOI: 10.1039/C7AY00650K.
  • Tian, Y.; Sun, D. W.; Xu, L.; Fan, T. H.; Zhu, Z. Bio-Inspired Eutectogels Enabled by Binary Natural Deep Eutectic Solvents (NADESs): Interfacial anti-Frosting, Freezing-Tolerance, and Mechanisms. Food Hydrocoll. 2022, 128, 107568. DOI: 10.1016/j.foodhyd.2022.107568.
  • Li, T.; Song, Y.; Li, J.; Zhang, M.; Shi, Y.; Fan, J. New Low Viscous Hydrophobic Deep Eutectic Solvents in Vortex-Assisted Liquid-Liquid Microextraction for the Determination of Phthalate Esters from Food-Contacted Plastics. Food Chem. 2020, 309, 125752. DOI: 10.1016/j.foodchem.2019.125752.
  • Florindo, C.; Branco, L. C.; Marrucho, I. M. Quest for Green‐Solvent Design: From Hydrophilic to Hydrophobic (Deep) Eutectic Solvents. ChemSusChem 2019, 12, 1549–1559. DOI: 10.1002/cssc.201900147.
  • Shahbaz, K.; Mjalli, F. S.; Hashim, M. A.; AlNashef, I. M. Prediction of the Surface Tension of Deep Eutectic Solvents. Fluid Phase Equilib. 2012, 319, 48–54. DOI: 10.1016/j.fluid.2012.01.025.
  • Ali, M. C.; Chen, J.; Zhang, H.; Li, Z.; Zhao, L.; Qiu, H. Effective Extraction of Flavonoids from Lycium Barbarum L. Fruits by Deep Eutectic Solvents-Based Ultrasound-Assisted Extraction. Talanta 2019, 203, 16–22. DOI: 10.1016/J.TALANTA.2019.05.012.
  • Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. DOI: 10.1021/acs.chemrev.0c00385.
  • Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M. Computational Engineering Study of Hydrogen Production via Ultrasonic Cavitation in Water. Int. J. Hydrogen Energy 2016, 41, 832–844. DOI: 10.1016/j.ijhydene.2015.11.058.
  • Chanioti, S.; Tzia, C. Extraction of Phenolic Compounds from Olive Pomace by Using Natural Deep Eutectic Solvents and Innovative Extraction Techniques. Innov. Food Sci. Emerg. Technol. 2018, 48, 228–239. DOI: 10.1016/j.ifset.2018.07.001.
  • Juneja, S.; Pandey, S.; Deepika  . Water Miscibility, Surface Tension, Density, and Dynamic Viscosity of Hydrophobic Deep Eutectic Solvents Composed of Capric Acid, Menthol, and Thymol. J. Chem. Eng. Data 2022, 67 (11), 3400–3413. DOI: 10.1021/acs.jced.2c00495.
  • Bosiljkov, T.; Dujmić, F.; Cvjetko Bubalo, M.; Hribar, J.; Vidrih, R.; Brnčić, M.; Zlatic, E.; Radojčić Redovniković, I.; Jokić, S. Natural Deep Eutectic Solvents and Ultrasound-Assisted Extraction: Green Approaches for Extraction of Wine Lees Anthocyanins. Food Bioprod. Process 2017, 102, 195–203. DOI: 10.1016/j.fbp.2016.12.005.
  • Krishnan, A.; Gopinath, K. P.; Vo, D. V. N.; Malolan, R.; Nagarajan, V. M.; Arun, J. Ionic Liquids, Deep Eutectic Solvents and Liquid Polymers as Green Solvents in Carbon Capture Technologies: A Review. Environ. Chem. Lett. 2020, 18, 2031–2054. DOI: 10.1007/s10311-020-01057-y.
  • Oke, E. A.; Ijardar, S. P. Advances in the Application of Deep Eutectic Solvents Based Aqueous Biphasic Systems: An up-to-Date Review. Biochem. Eng. J. 2021, 176, 108211. DOI: 10.1016/j.bej.2021.108211.
  • Panja, P. Green Extraction Methods of Food Polyphenols from Vegetable Materials. Curr. Opin. Food Sci. 2018, 23, 173–182. DOI: 10.1016/j.cofs.2017.11.012.
  • Chemat, F.; Khan, M. K.; Zill-e-Huma  . Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction.Ultrason. Sonochem., 2011, 18 (4), 813–835. DOI: 10.1016/j.ultsonch.2010.11.023.
  • Qin, G.; Lei, J.; Li, S.; Jiang, Y.; Qiao, L.; Ren, M.; Gao, Q.; Song, C.; Fu, S.; Zhou, J.; et al. Efficient, Green Extraction of Two Biflavonoids from Selaginella uncinata with Deep Eutectic Solvents. Microchem. J. 2022, 183, 108085. DOI: 10.1016/j.microc.2022.108085.
  • Wang, X. H.; Wang, J. P. Effective Extraction with Deep Eutectic Solvents and Enrichment by Macroporous Adsorption Resin of Flavonoids from Carthamus tinctorius L. J. Pharm. Biomed. Anal. 2019, 176, 112804. DOI: 10.1016/j.jpba.2019.112804.
  • Mehariya, S.; Fratini, F.; Lavecchia, R.; Zuorro, A. Green Extraction of Value-Added Compounds Form Microalgae: A Short Review on Natural Deep Eutectic Solvents (NaDES) and Related Pre-Treatments. J. Environ. Chem. Eng. 2021, 9, 105989. DOI: 10.1016/j.jece.2021.105989.
  • Bajkacz, S.; Adamek, J. Evaluation of New Natural Deep Eutectic Solvents for the Extraction of Isoflavones from Soy Products. Talanta 2017, 168, 329–335. DOI: 10.1016/j.talanta.2017.02.065.
  • Roselló-Soto, E.; Galanakis, C. M.; Brnčić, M.; Orlien, V.; Trujillo, F. J.; Mawson, R.; Knoerzer, K.; Tiwari, B. K.; Barba, F. J. Clean Recovery of Antioxidant Compounds from Plant Foods, by-Products and Algae Assisted by Ultrasounds Processing. Modeling Approaches to Optimize Processing Conditions. Trends Food Sci. Technol. 2015, 42, 134–149. DOI: 10.1016/j.tifs.2015.01.002.
  • Kazemi, M.; Khodaiyan, F.; Labbafi, M.; Hosseini, S. S. Ultrasonic and Heating Extraction of Pistachio by-Product Pectin: Physicochemical, Structural Characterization and Functional Measurement. Food Measure 2020, 14, 679–693. DOI: 10.1007/s11694-019-00315-0.
  • Adetunji, L. R.; Adekunle, A.; Orsat, V.; Raghavan, V. Advances in the Pectin Production Process Using Novel Extraction Techniques: A Review. Food Hydrocoll. 2017, 62, 239–250. DOI: 10.1016/j.foodhyd.2016.08.015.
  • Zhao, S.; Yao, C.; Liu, L.; Chen, G. Parametrical Investigation of Acoustic Cavitation and Extraction Enhancement in Ultrasonic Microreactors. Chem. Eng. J. 2022, 450, 138185. DOI: 10.1016/j.cej.2022.138185.
  • Zinoviadou, K. G.; Galanakis, C. M.; Brnčić, M.; Grimi, N.; Boussetta, N.; Mota, M. J.; Saraiva, J. A.; Patras, A.; Tiwari, B.; Barba, F. J. Fruit Juice Sonication: Implications on Food Safety and Physicochemical and Nutritional Properties. Food Res. Int. 2015, 77, 743–752. DOI: 10.1016/j.foodres.2015.05.032.
  • González-Centeno, M. R.; Knoerzer, K.; Sabarez, H.; Simal, S.; Rosselló, C.; Femenia, A. Effect of Acoustic Frequency and Power Density on the Aqueous Ultrasonic-Assisted Extraction of Grape Pomace (Vitis vinifera L.) – A Response Surface Approach. Ultrason. Sonochem. 2014, 21, 2176–2184. DOI: 10.1016/j.ultsonch.2014.01.021.
  • Leong, T.; Ashokkumar, M.; Kentish, S. The Fundamentals of Power Ultrasound – A Review. Acoust. Aust. 2002, 30, 88.
  • Mason, T. J.; Cobley, A. J.; Graves, J. E.; Morgan, D. New Evidence for the Inverse Dependence of Mechanical and Chemical Effects on the Frequency of Ultrasound. Ultrason. Sonochem. 2011, 18, 226–230. DOI: 10.1016/j.ultsonch.2010.05.008.
  • Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A. S.; Abert-Vian, M. Review of Green Food Processing Techniques. Preservation, Transformation, and Extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. DOI: 10.1016/j.ifset.2017.04.016.
  • Palma, M.; Barroso, C. G. Ultrasound-Assisted Extraction and Determination of Tartaric and Malic Acids from Grapes and Winemaking by-Products. Anal. Chim. Acta 2002, 458, 119–130. DOI: 10.1016/S0003-2670(01)01527-6.
  • Xu, Y.; Zhang, L.; Bailina, Y.; Ge, Z.; Ding, T.; Ye, X.; Liu, D. Effects of Ultrasound and/or Heating on the Extraction of Pectin from Grapefruit Peel. J. Food Eng. 2014, 126, 72–81. DOI: 10.1016/j.jfoodeng.2013.11.004.
  • Samaram, S.; Mirhosseini, H.; Tan, C. P.; Ghazali, H. M.; Bordbar, S.; Serjouie, A. Optimisation of Ultrasound-Assisted Extraction of Oil from Papaya Seed by Response Surface Methodology: Oil Recovery, Radical Scavenging Antioxidant Activity, and Oxidation Stability. Food Chem. 2015, 172, 7–17. DOI: 10.1016/j.foodchem.2014.08.068.
  • Maran, J. P.; Priya, B. Ultrasound-Assisted Extraction of Polysaccharide from Nephelium lappaceum L. Fruit Peel. Int. J. Biol. Macromol. 2014, 70, 530–536. DOI: 10.1016/j.ijbiomac.2014.07.032.
  • Tiwari, B. K. Ultrasound: A Clean, Green Extraction Technology. TrAC Trends Anal. Chem. 2015, 71, 100–109. DOI: 10.1016/j.trac.2015.04.013.
  • Pan, Z.; Qu, W.; Ma, H.; Atungulu, G. G.; McHugh, T. H. Continuous and Pulsed Ultrasound-Assisted Extractions of Antioxidants from Pomegranate Peel. Ultrason. Sonochem. 2012, 19, 365–372. DOI: 10.1016/j.ultsonch.2011.05.015.
  • Xu, Y. X.; Zhang, M.; Fang, Z. X.; Sun, J. C.; Wang, Y. Q. How to Improve Bayberry (Myrica rubra Sieb. et Zucc.) Juice Flavour Quality: Effect of Juice Processing and Storage on Volatile Compounds. Food Chem. 2014, 151, 40–46. DOI: 10.1016/j.foodchem.2013.10.118.
  • More, P. R.; Arya, S. S. Intensification of Bio-Actives Extraction from Pomegranate Peel Using Pulsed Ultrasound: Effect of Factors, Correlation, Optimization and Antioxidant Bioactivities. Ultrason. Sonochem. 2021, 72, 105423. DOI: 10.1016/j.ultsonch.2020.105423.
  • Kobus, Z.; Krzywicka, M.; Starek-Wójcicka, A.; Sagan, A. Effect of the Duty Cycle of the Ultrasonic Processor on the Efficiency of Extraction of Phenolic Compounds from Sorbus Intermedia. Sci. Rep. 2022, 12, 8311. DOI: 10.1038/s41598-022-12244-y.
  • Mouratoglou, E.; Malliou, V.; Makris, D. P. Novel Glycerol-Based Natural Eutectic Mixtures and Their Efficiency in the Ultrasound-Assisted Extraction of Antioxidant Polyphenols from Agri-Food Waste Biomass. Waste Biomass Valor 2016, 7, 1377–1387. DOI: 10.1007/s12649-016-9539-8.
  • Zannou, O.; Pashazadeh, H.; Ibrahim, S. A.; Koca, I.; Galanakis, C. M. Green and Highly Extraction of Phenolic Compounds and Antioxidant Capacity from Kinkeliba (Combretum micranthum G. Don) by Natural Deep Eutectic Solvents (NADESs) Using Maceration, Ultrasound-Assisted Extraction and Homogenate-Assisted Extraction. Arab. J. Chem. 2022, 15, 103752. DOI: 10.1016/j.arabjc.2022.103752.
  • Alasalvar, H.; Yildirim, Z. Ultrasound-Assisted Extraction of Antioxidant Phenolic Compounds from Lavandula angustifolia Flowers Using Natural Deep Eutectic Solvents: An Experimental Design Approach. Sustain. Chem. Pharm. 2021, 22, 100492. DOI: 10.1016/j.scp.2021.100492.
  • Cui, Q.; Liu, J. Z.; Wang, L. T.; Kang, Y. F.; Meng, Y.; Jiao, J.; Fu, Y. J. Sustainable Deep Eutectic Solvents Preparation and Their Efficiency in Extraction and Enrichment of Main Bioactive Flavonoids from Sea Buckthorn Leaves. J. Clean. Prod. 2018, 184, 826–835. DOI: 10.1016/j.jclepro.2018.02.295.
  • Ozbek Yazici, S.; Ozmen, İ. Ultrasound Assisted Extraction of Phenolic Compounds from Capparis ovata Var Canescens Fruit Using Deep Eutectic Solvents. Food Process. Preserv. 2022, 46, e16286. DOI: 10.1111/jfpp.16286.
  • Liu, Y.; Zhe, W.; Zhang, R.; Peng, Z.; Wang, Y.; Gao, H.; Guo, Z.; Xiao, J. Ultrasonic-Assisted Extraction of Polyphenolic Compounds from Paederia scandens (Lour.) Merr. Using Deep Eutectic Solvent: Optimization, Identification, and Comparison with Traditional Methods. Ultrason Sonochem 2022, 86, 106005. DOI: 10.1016/j.ultsonch.2022.106005.
  • Lanjekar, K. J.; Gokhale, S.; Rathod, V. K. Utilization of Waste Mango Peels for Extraction of Polyphenolic Antioxidants by Ultrasound-Assisted Natural Deep Eutectic Solvent. Bioresour. Technol. Rep. 2022, 18, 101074. DOI: 10.1016/j.biteb.2022.101074.
  • Osamede Airouyuwa, J.; Mostafa, H.; Riaz, A.; Maqsood, S. Utilization of Natural Deep Eutectic Solvents and Ultrasound-Assisted Extraction as Green Extraction Technique for the Recovery of Bioactive Compounds from Date Palm (Phoenix dactylifera L.) Seeds: An Investigation into Optimization of Process Parameters. Ultrason. Sonochem. 2022, 91, 106233. DOI: 10.1016/j.ultsonch.2022.106233.
  • Shi, F.; Hai, X.; Zhu, Y.; Ma, L.; Wang, L.; Yin, J.; Li, X.; Yang, Z.; Yuan, M.; Xiong, H.; Gao, Y. Ultrasonic Assisted Extraction of Polyphenols from Bayberry by Deep Eutectic Supramolecular Polymer and Its Application in Bio-Active Film. Ultrason. Sonochem. 2023, 92, 106283. DOI: 10.1016/j.ultsonch.2022.106283.
  • Zannou, O.; Pashazadeh, H.; Galanakis, C. M.; Alamri, A. S.; Koca, I. Carboxylic Acid-Based Deep Eutectic Solvents Combined with Innovative Extraction Techniques for Greener Extraction of Phenolic Compounds from Sumac (Rhus coriaria L.). J. Appl. Res. Med. Aromat. Plants 2022, 30, 100380. DOI: 10.1016/j.jarmap.2022.100380.
  • Liu, X. Y.; Ou, H.; Gregersen, H.; Zuo, J. Deep Eutectic Solvent-Based Ultrasound-Assisted Extraction of Polyphenols from Cosmos Sulphureus. J. Appl. Res. Med. Aromat. Plants 2023, 32, 100444. DOI: 10.1016/j.jarmap.2022.100444.
  • Tebbi, S. O.; Debbache-Benaida, N.; Kadri, N.; Kadi, R.; Zaidi, S. A Novel Strategy to Improve the Recovery of Phenolic Compounds from Pistacia lentiscus L. Fruits Using Design-Based Statistical Modeling for Ultrasound-Deep Eutectic Solvents Extraction and the Evaluation of Their Antioxidant Potential. Sustain. Chem. Pharm 2023, 31, 100933. DOI: 10.1016/j.scp.2022.100933.
  • Duarte, H.; Gomes, V.; Aliaño-González, M. J.; Faleiro, L.; Romano, A.; Medronho, B. Ultrasound-Assisted Extraction of Polyphenols from Maritime Pine Residues with Deep Eutectic Solvents. Foods 2022, 11, 3754. DOI: 10.3390/foods11233754.
  • Ivanović, M.; Razboršek, M. I.; Kolar, M. Innovative Extraction Techniques Using Deep Eutectic Solvents and Analytical Methods for the Isolation and Characterization of Natural Bioactive Compounds from Plant Material. Plants (Basel) 2020, 9, 1428. DOI: 10.3390/PLANTS9111428.
  • Dheyab, A. S.; Bakar, M. F. A.; Alomar, M.; Sabran, S. F.; Hanafi, A. F. M.; Mohamad, A. Deep Eutectic Solvents (DESs) as Green Extraction Media of Beneficial Bioactive Phytochemicals. Separations 2021, 8, 176. DOI: 10.3390/separations8100176.
  • Mišan, A.; Nađpal, J.; Stupar, A.; Pojić, M.; Mandić, A.; Verpoorte, R.; Choi, Y. H. The Perspectives of Natural Deep Eutectic Solvents in Agri-Food Sector. Crit. Rev. Food Sci. Nutr. 2020, 60, 2564–2592. DOI: 10.1080/10408398.2019.1650717.
  • Yuniarti, E.; C. Saputri, F.; Mun’im, A. Natural Deep Eutectic Solvent Extraction and Evaluation of Caffeine and Chlorogenic Acid from Green Coffee Beans of Coffea Canephora. ijps 2019, 81, 1062–1069. DOI: 10.36468/pharmaceutical-sciences.604.
  • Zhou, P.; Wang, X.; Liu, P.; Huang, J.; Wang, C.; Pan, M.; Kuang, Z. Enhanced Phenolic Compounds Extraction from Morus alba L. Leaves by Deep Eutectic Solvents Combined with Ultrasonic-Assisted Extraction. Ind. Crops Prod 2018, 120, 147–154. DOI: 10.1016/j.indcrop.2018.04.071.
  • Wu, L.; Chen, Z.; Li, S.; Wang, L.; Zhang, J. Eco-Friendly and High-Efficient Extraction of Natural Antioxidants from Polygonum aviculare Leaves Using Tailor-Made Deep Eutectic Solvents as Extractants. Sep. Purif. Technol. 2021, 262, 118339. DOI: 10.1016/j.seppur.2021.118339.
  • Mansur, A. R.; Song, N. E.; Jang, H. W.; Lim, T. G.; Yoo, M.; Nam, T. G. Optimizing the Ultrasound-Assisted Deep Eutectic Solvent Extraction of Flavonoids in Common Buckwheat Sprouts. Food Chem. 2019, 293, 438–445. DOI: 10.1016/J.FOODCHEM.2019.05.003.
  • Plaza, M.; Domínguez-Rodríguez, G.; Sahelices, C.; Marina, M. L. A Sustainable Approach for Extracting Non-Extractable Phenolic Compounds from Mangosteen Peel Using Ultrasound-Assisted Extraction and Natural Deep Eutectic Solvents. Appl. Sci. 2021, 11, 5625. DOI: 10.3390/app11125625.
  • Gupta, S.; Pradheep, K. Diversity, Conservation and Use of Underutilized and Minor Fruits in India: An Overview. Acta Hortic. 2020, 1297, 51–60. DOI: 10.17660/ActaHortic.2020.1297.8.
  • Altemimi, A.; Watson, D. G.; Choudhary, R.; Dasari, M. R.; Lightfoot, D. A. Ultrasound Assisted Extraction of Phenolic Compounds from Peaches and Pumpkins. PLoS One 2016, 11, e0148758. DOI: 10.1371/JOURNAL.PONE.0148758.
  • Vieira, V.; Prieto, M. A.; Barros, L.; Coutinho, J. A. P.; Ferreira, I. C. F. R.; Ferreira, O. Enhanced Extraction of Phenolic Compounds Using Choline Chloride Based Deep Eutectic Solvents from Juglans regia L. Ind. Crops Prod. 2018, 115, 261–271. DOI: 10.1016/j.indcrop.2018.02.029.
  • Mansinhos, I.; Gonçalves, S.; Rodríguez-Solana, R.; Ordóñez-Díaz, J. L.; Moreno-Rojas, J. M.; Romano, A. Ultrasonic-Assisted Extraction and Natural Deep Eutectic Solvents Combination: A Green Strategy to Improve the Recovery of Phenolic Compounds from Lavandula pedunculata Subsp. Lusitanica (Chaytor) Franco. Antioxidants (Basel) 2021, 10, 582. DOI: 10.3390/ANTIOX10040582.
  • Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D. G.; Lightfoot, D. A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants (Basel) 2017, 6, 42. DOI: 10.3390/plants6040042.
  • Çelik, S.; Kutlu, N.; Gerçek, Y. C.; Bayram, S.; Pandiselvam, R.; Bayram, N. E. Optimization of Ultrasonic Extraction of Nutraceutical and Pharmaceutical Compounds from Bee Pollen with Deep Eutectic Solvents Using Response Surface Methodology. Foods 2022, 11, 3652. DOI: 10.3390/foods11223652.
  • Naseem, Z.; Zahid, M.; Hanif, M. A.; Shahid, M. Environmentally Friendly Extraction of Bioactive from Mentha arvensis Using Deep Solvent as Green Extraction Media. Pol. J. Environ. Stud. 2020, 29, 3749–3757. DOI: 10.15244/pjoes/114235.
  • Cvjetko Bubalo, M.; Ćurko, N.; Tomašević, M.; Kovačević Ganić, K.; Radojcic Redovnikovic, I. Green Extraction of Grape Skin Phenolics by Using Deep Eutectic Solvents. Food Chem. 2016, 200, 159–166. DOI: 10.1016/J.FOODCHEM.2016.01.040.
  • Jamshaid, S.; Ahmed, D.; Aydar, A. Y. Ultrasound-Assisted Extraction Optimization of Polyphenols, Flavonoids, and Antioxidant Compounds from Fruit of Melia azedarach Using a Glycerol-Based Green Deep Eutectic Solvent. J. Food Process. Preserv. 2022, 46 (8), e16657. DOI: 10.1111/jfpp.16657.
  • Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A. G.; Carpena, M.; Soria-Lopez, A.; Simal-Gandara, J.; Prieto, M. A. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. IJERPH 2021, 18, 9153. DOI: 10.3390/ijerph18179153.
  • Ebringerová, A.; Hromádková, Z. An Overview on the Application of Ultrasound in Extraction, Separation and Purification of Plant Polysaccharides. Cent. Eur. J. Chem. 2010, 8, 243–257. DOI: 10.2478/s11532-010-0006-2.
  • Um, M.; Han, T. H.; Lee, J. W. Ultrasound-Assisted Extraction and Antioxidant Activity of Phenolic and Flavonoid Compounds and Ascorbic Acid from Rugosa Rose (Rosa rugosa Thunb.) Fruit. Food Sci. Biotechnol. 2018, 27, 375. DOI: 10.1007/S10068-017-0247-3.
  • Naik, A. S.; Suryawanshi, D.; Kumar, M.; Waghmare, R. Ultrasonic Treatment: A Cohort Review on Bioactive Compounds, Allergens and Physico-Chemical Properties of Food. Curr. Res. Food Sci. 2021, 4, 470–477. DOI: 10.1016/J.CRFS.2021.07.003.
  • Kalhor, P.; Ghandi, K. Deep Eutectic Solvents for Pretreatment, Extraction, and Catalysis of Biomass and Food Waste. Molecules 2019, 24, 4012. DOI: 10.3390/MOLECULES24224012.
  • Lomba, L.; Ribate, M. P.; Sangüesa, E.; Concha, J.; Garralaga, M. P.; Errazquin, D.; García, C. B.; Giner, B. Deep Eutectic Solvents: Are They Safe? Appl. Sci. 2021, 11 (21), 10061. DOI: 10.3390/app112110061.
  • Florindo, C.; Lima, F.; Ribeiro, B. D.; Marrucho, I. M. Deep Eutectic Solvents: Overcoming 21st Century Challenges. Curr. Opin. Green Sustain. Chem. 2019, 18, 31–36. DOI: 10.1016/j.cogsc.2018.12.003.
  • Dzah, C. S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The Effects of Ultrasound Assisted Extraction on Yield, Antioxidant, Anticancer and Antimicrobial Activity of Polyphenol Extracts: A Review. Food Biosci. 2020, 35, 100547. DOI: 10.1016/j.fbio.2020.100547.
  • Ruesgas-Ramón, M.; Figueroa-Espinoza, M. C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. DOI: 10.1021/acs.jafc.7b01054.
  • Halder, A. K.; Cordeiro, M. N. D. S. Probing the Environmental Toxicity of Deep Eutectic Solvents and Their Components: An in Silico Modeling Approach. ACS Sustain. Chem. Eng. 2019, 7, 10649–10660. DOI: 10.1021/ACSSUSCHEMENG.9B01306/ASSET/IMAGES/LARGE/SC-2019-01306A_0004.JPEG.
  • Martínez, G. M.; Townley, G. G.; Martínez-Espinosa, R. M. Controversy on the Toxic Nature of Deep Eutectic Solvents and Their Potential Contribution to Environmental Pollution. Heliyon 2022, 8, e12567. DOI: 10.1016/J.HELIYON.2022.E12567.
  • Chen, Y.; Mu, T. Revisiting Greenness of Ionic Liquids and Deep Eutectic Solvents. Green Chem. Eng. 2021, 2, 174–186. DOI: 10.1016/j.gce.2021.01.004.
  • Hikmawanti, N. P. E.; Ramadon, D.; Jantan, I.; Mun’im, A. Natural Deep Eutectic Solvents (NADES): Phytochemical Extraction Performance Enhancer for Pharmaceutical and Nutraceutical Product Development. Plants (Basel) 2021, 10, 2091. DOI: 10.3390/PLANTS10102091.
  • Benvenutti, L.; Zielinski, A. A. F.; Ferreira, S. R. S. Which is the Best Food Emerging Solvent: IL, DES or NADES? Trends Food Sci. Technol. 2019, 90, 133–146. DOI: 10.1016/j.tifs.2019.06.003.
  • Suthar, P.; Kaushal, M.; Vaidya, D.; Thakur, M.; Chauhan, P.; Angmo, D.; Kashyap, S.; Negi, N. Deep Eutectic Solvents (DES): An Update on the Applications in Food Sectors. J. Agric. Food Res. 2023, 14, 100678. DOI: 10.1016/j.jafr.2023.100678.
  • Lin, Z.; Jiao, G.; Zhang, J.; Celli, G. B.; Brooks, M. S. L. Optimization of Protein Extraction from Bamboo Shoots and Processing Wastes Using Deep Eutectic Solvents in a Biorefinery Approach. Biomass Conv. Bioref. 2021, 11, 2763–2774. DOI: 10.1007/S13399-020-00614-3/METRICS.
  • Lin, J.; Xiang, H.; Sun-Waterhouse, D.; Cui, C.; Wang, W. Deep Eutectic Solvents and Alkaline Extraction of Protein from Seabuckthorn Seed Meal: A Comparison Study. Food Sci. Hum. Wellness 2022, 11, 1028–1035. DOI: 10.1016/j.fshw.2022.03.019.
  • Rodrigues, L. A.; Leonardo, I. C.; Gaspar, F. B.; Roseiro, L. C.; Duarte, A. R. C.; Matias, A. A.; Paiva, A. Unveiling the Potential of Betaine/Polyol-Based Deep Eutectic Systems for the Recovery of Bioactive Protein Derivative-Rich Extracts from Sardine Processing Residues. Sep. Purif. Technol. 2021, 276, 119267. DOI: 10.1016/j.seppur.2021.119267.
  • Cai, C.; Wang, Y.; Yu, W.; Wang, C.; Li, F.; Tan, Z. Temperature-Responsive Deep Eutectic Solvents as Green and Recyclable Media for the Efficient Extraction of Polysaccharides from Ganoderma Lucidum. J. Clean. Prod. 2020, 274, 123047. DOI: 10.1016/j.jclepro.2020.123047.
  • Shang, X. C.; Chu, D.; Zhang, J. X.; Zheng, Y. F.; Li, Y. Microwave-Assisted Extraction, Partial Purification and Biological Activity in Vitro of Polysaccharides from Bladder-Wrack (Fucus vesiculosus) by Using Deep Eutectic Solvents. Sep. Purif. Technol. 2021, 259, 118169. DOI: 10.1016/j.seppur.2020.118169.
  • Nie, J.; Chen, D.; Lu, Y. Deep Eutectic Solvents Based Ultrasonic Extraction of Polysaccharides from Edible Brown Seaweed Sargassum horneri. JMSE 2020, 8, 440. DOI: 10.3390/jmse8060440.
  • Zhu, P.; Gu, Z.; Hong, S.; Lian, H. One-Pot Production of Chitin with High Purity from Lobster Shells Using Choline Chloride–Malonic Acid Deep Eutectic Solvent. Carbohydr. Polym. 2017, 177, 217–223. DOI: 10.1016/J.CARBPOL.2017.09.001.
  • Li, H.; Liang, J.; Chen, L.; Ren, M.; Zhou, C. Utilization of Walnut Shell by Deep Eutectic Solvents: Enzymatic Digestion of Cellulose and Preparation of Lignin Nanoparticles. Ind. Crops Prod. 2023, 192, 116034. DOI: 10.1016/j.indcrop.2022.116034.
  • Pitacco, W.; Samorì, C.; Pezzolesi, L.; Gori, V.; Grillo, A.; Tiecco, M.; Vagnoni, M.; Galletti, P. Extraction of Astaxanthin from Haematococcus pluvialis with Hydrophobic Deep Eutectic Solvents Based on Oleic Acid. Food Chem. 2022, 379, 132156. DOI: 10.1016/J.FOODCHEM.2022.132156.
  • Wils, L.; Leman-Loubière, C.; Bellin, N.; Clément-Larosière, B.; Pinault, M.; Chevalier, S.; Enguehard-Gueiffier, C.; Bodet, C.; Boudesocque-Delaye, L. Natural Deep Eutectic Solvent Formulations for Spirulina: Preparation, Intensification, and Skin Impact. Algal Res. 2021, 56, 102317. DOI: 10.1016/j.algal.2021.102317.
  • Mohd Fuad, F.; Mohd Nadzir, M. Ultrasound-Assisted Extraction of Asiaticoside from Centella Asiatica Using Betaine-Based Natural Deep Eutectic Solvent. Ind. Crops Prod. 2023, 192, 116069. DOI: 10.1016/j.indcrop.2022.116069.
  • Viñas-Ospino, A.; Panić, M.; Bagović, M.; Radošević, K.; Esteve, M. J.; Radojčić Redovniković, I. Green Approach to Extract Bioactive Compounds from Orange Peel Employing Hydrophilic and Hydrophobic Deep Eutectic Solvents. Sustain. Chem. Pharm. 2023, 31, 100942. DOI: 10.1016/j.scp.2022.100942.
  • Jiang, Z. M.; Wang, L. J.; Gao, Z.; Zhuang, B.; Yin, Q.; Liu, E. H. Green and Efficient Extraction of Different Types of Bioactive Alkaloids Using Deep Eutectic Solvents. Microchem. J. 2019, 145, 345–353. DOI: 10.1016/j.microc.2018.10.057.