347
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Review of Electrochemical Techniques for Corrosion Monitoring – Fundamentals and Research Updates

, , , , , & show all

References

  • Claisse, P. A. Corrosion. Civ. Eng. Mater. 2016, 339–359. DOI: 10.1016/B978-0-08-100275-9.00031-0.
  • Kania, H. Corrosion and Anticorrosion of Alloys/Metals: The Important Global Issue. Coatings 2023, 13, 216. DOI: 10.3390/coatings13020216.
  • Menga, A.; Kanstad, T.; Cantero, D.; Bathen, L.; Hornbostel, K.; Klausen, A. Corrosion-Induced Damages and Failures of Posttensioned Bridges: A Literature Review. Struct. Concr. 2023, 24, 84–99. DOI: 10.1002/suco.202200297.
  • Solovyeva, V. A.; Almuhammadi, K. H.; Badeghaish, W. O. Current Downhole Corrosion Control Solutions and Trends in the Oil and Gas Industry: A Review. Materials (Basel) 2023, 16, 1795. DOI: 10.3390/MA16051795.
  • Komary, M.; Komarizadehasl, S.; Tošić, N.; Segura, I.; Lozano-Galant, J. A.; Turmo, J. Low-Cost Technologies Used in Corrosion Monitoring. Sensors 2023, 23, 1309. DOI: 10.3390/s23031309.
  • Prosek, T.; Kouril, M.; Dubus, M.; Taube, M.; Hubert, V.; Scheffel, B.; Degres, Y.; Jouannic, M.; Thierry, D. Real-Time Monitoring of Indoor Air Corrosivity in Cultural Heritage Institutions with Metallic Electrical Resistance Sensors. Stud. Conserv. 2013, 58, 117–128. DOI: 10.1179/2047058412Y.0000000080.
  • Koch, G. H.; Brongers, M.; Thompson, N. G.; Virmani, Y. P.; Payer, J. H. Corrosion Cost and Preventive Strategies in the United States. 2002.
  • Yang, L. Techniques for Corrosion Monitoring (Second edition). 2020. DOI: 10.1016/B978-0-08-103003-5.09991-4.
  • Mattsson, E. Basic Corrosion Technology: For Scientists and Engineers, Second Edition. Basic Corros. Technol. Sci. Eng. Second Ed. 2023, 1–204. DOI: 10.1201/9781003421443.
  • Davis. J. R. Corrosion Control by Protective Coatings and Inhibitors. Corrosion: Understanding the Basics. 2000, 363–406. DOI: 10.31399/ASM.TB.CUB.T66910363.
  • Revie, R. W.; Uhlig, H. H. Corrosion and Corrosion Control an Introduction to Corrosion Science and Engineering Fourth Edition. 1985.
  • Tezdogan, T. and Demirel, Y. K. An Overview of Marine Corrosion Protection with a Focus on Cathodic Protection and Coatings. 2014, 65 (2), 49–59.
  • Eliaz, N. Corrosion of Metallic Biomaterials: A Review. Materials (Basel) 2019, 12, 407. DOI: 10.3390/MA12030407.
  • (PDF) Evaluation Techniques for the Corrosion Resistance of Self-Healing Coatings. https://www.researchgate.net/publication/285534008_Evaluation_Techniques_for_the_Corrosion_Resistance_of_Self-Healing_Coatings. (accessed Jun 25, 2023).
  • Wu, J. W.; Bai, D.; Baker, A. P.; Li, Z. H.; Liu, X. B. Electrochemical Techniques Correlation Study of on-Line Corrosion Monitoring Probes. Mater. Corros. 2015, 66, 143–151. DOI: 10.1002/maco.201307175.
  • Faritov, A. T.; Rozhdestvenskii, Y. G.; Yamshchikova, S. A.; Minnikhanova, E. R.; Tyusenkov, A. S. Improvement of the Linear Polarization Resistance Method for Testing Steel Corrosion Inhibitors. Russ. Metall. 2016, 2016, 1035–1041. DOI: 10.1134/S0036029516110070.
  • Bonhoeffer, K. F.; Jena, W. Über Das Elektromotorische Verhalten Von Eisen. Zeitschrift Für Elektrochemie Und Angew. Phys. Chemie 1951, 55, 151–154. DOI: 10.1002/BBPC.19510550215.
  • Stern, M.; Geaby, A. L. Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves. J. Electrochem. Soc. 1957, 104, 56. DOI: 10.1149/1.2428496.
  • Wu, Z.; Yu, H.; Ma, H.; Zhang, J.; Da, B.; Zhu, H. Rebar Corrosion in Coral Aggregate Concrete: Determination of Chloride Threshold by LPR. Corros. Sci. 2020, 163, 108238. DOI: 10.1016/j.corsci.2019.108238.
  • Yang, M.; Liu, J. In Situ Monitoring of Corrosion under Insulation Using Electrochemical and Mass Loss Measurements. Int. J. Corros. 2022, 2022, 1–12. DOI: 10.1155/2022/6681008.
  • Mansfeld, F. Fundamental Aspects of the Polarization Resistance Technique-the Early Days. J. Solid State Electrochem. 2009, 13, 515–520. DOI: 10.1007/S10008-008-0652-X/METRICS.
  • Roberge, P. R. Corrosion Engineering: Principles and Practice. 2008, 754.
  • Faritov, A. T.; Rozhdestvenskii, Y. G.; Yamshchikova, S. A.; Minnikhanova, E. R.; Tyusenkov, A. S. Improvement of the Linear Polarization Resistance Method for Testing Steel Corrosion Inhibitors. Russ. Metall. 2016, 2016, 2016, 1035–1041. DOI: 10.1134/S0036029516110070/METRICS.
  • ElBatanouny, M. K.; Mangual, J.; Ziehl, P. H.; Matta, F. Early Corrosion Detection in Prestressed Concrete Girders Using Acoustic Emission. J. Mater. Civ. Eng. 2014, 26, 504–511. DOI: 10.1061/(asce)mt.1943-5533.0000845.
  • Rajendran, D.; Sasilatha, T.; Rajendran, S. S.; Al-Hashem, A.; Lacnjevac, C.; Singh, G. Inhibition of Corrosion of Mild Steel Hull Plates Immersed in Natural Sea Water by Sandalwood Oil Extract of Some Natural Products. Zaštita. Materijala 2022, 63, 23–36. DOI: 10.5937/zasmat2201023R.
  • Singh, R. Corrosion and Corrosion Protection. Pipeline Integr. Handb. 2017, 241–270. DOI: 10.1016/B978-0-12-813045-2.00017-X.
  • Majeed, M. N.; Yousif, Q. A.; Bedair, M. A. Study of the Corrosion of Nickel-Chromium Alloy in an Acidic Solution Protected by Nickel Nanoparticles. ACS Omega 2022, 7, 29850–29857. DOI: 10.1021/ACSOMEGA.2C02679/ASSET/IMAGES/LARGE/AO2C02679_0008.JPEG.
  • Akpan, I. A.; Offiong, N. O, Corrosion and Materials Science Unit, Department of Chemistry, University of Uyo. Amodiaquine Drug as a Corrosion Inhibitor for Mild Steel in 0.1M HCl Solution. Chem. Met. Alloys 2014, 7, 149–153. DOI: 10.30970/cma7.0274.
  • Akpan, I. A.; Offiong, N. O. Amodiaquine Drug as a Corrosion Inhibitor for Mild Steel in 0.1M. HCl Solut. 2014, 7, 149–153.
  • Obot, I. B.; Umoren, S. A.; Ankah, N. K. Pyrazine Derivatives as Green Oil Field Corrosion Inhibitors for Steel. J. Mol. Liq. 2019, 277, 749–761. DOI: 10.1016/j.molliq.2018.12.108.
  • Obot, I. B.; Umoren, S. A.; Ankah, N. K. Pyrazine Derivatives as Green Oil Field Corrosion Inhibitors for Steel. J. Mol. Liq. 2019, 277, 749–761. DOI: 10.1016/j.molliq.2018.12.108.
  • Ramesh, T.; Suji, D.; Quraishi, M. A. Evaluation of Greener Corrosion-Inhibiting Admixtures for Steel Reinforcements in Concrete. Arab. J. Sci. Eng. 2022, 47, 13451–13466. DOI: 10.1007/s13369-022-06873-8.
  • Atan, F.; Rosliza, R.; Wan Syahidah, W. M. The Efficiency of Moringa Leaf (Moringa Oleifera) as Green Material Carbon Steel Corrosion Inhibitor for Different Concentration of Sea Water. J. Phys: Conf. Ser. 2022, 2266, 012009. In IOP Publishing, p DOI: 10.1088/1742-6596/2266/1/012009.
  • Eškinja, M.; Moshtaghi, M.; Hönig, S.; Zehethofer, G.; Mori, G. Investigation of the Effects of Temperature and Exposure Time on the Corrosion Behavior of a Ferritic Steel in CO2 Environment Using the Optimized Linear Polarization Resistance Method. Results Mater 2022, 14, 100282. DOI: 10.1016/j.rinma.2022.100282.
  • Rengaraju, S.; Neelakantan, L.; Pillai, R. G. Investigation on the Polarization Resistance of Steel Embedded in Highly Resistive Cementitious Systems – an Attempt and Challenges. Electrochim. Acta 2019, 308, 131–141. DOI: 10.1016/j.electacta.2019.03.200.
  • Altunbaş Şahin, E. Experimental and Theoretical Studies of Acridine Orange as Corrosion Inhibitor for Copper Protection in Acidic Media. J. Indian Chem. Soc. 2022, 99, 100358. DOI: 10.1016/j.jics.2022.100358.
  • Gao, X. X.; Deby, F.; Gourbeyre, Y.; Samson, G.; Garcia, S.; Arliguie, G. Influence of Catholytes on the Generation of Steel Corrosion in Concrete with Accelerated Chloride Migration Method. Case Stud. Constr. Mater. 2022, 16, e01123. DOI: 10.1016/j.cscm.2022.e01123.
  • Jamali, S. S.; Mills, D. J. A Critical Review of Electrochemical Noise Measurement as a Tool for Evaluation of Organic Coatings. Prog. Org. Coat. 2016, 95, 26–37. DOI: 10.1016/j.porgcoat.2016.02.016.
  • Ma, C.; Wang, Z.; Behnamian, Y.; Gao, Z.; Wu, Z.; Qin, Z.; Xia, D. H. Measuring Atmospheric Corrosion with Electrochemical Noise: A Review of Contemporary Methods. Measurement 2019, 138, 54–79. DOI: 10.1016/j.measurement.2019.02.027.
  • Mills, D.; Picton, P.; Mularczyk, L. Developments in the Electrochemical Noise Method (ENM) to Make It More Practical for Assessment of anti-Corrosive Coatings. Electrochim. Acta 2014, 124, 199–205. DOI: 10.1016/j.electacta.2013.09.067.
  • Roberge, P. R. Handbook of Corrosion Engineering. McGraw-Hill: Singapore. 2000.
  • Kearns, J. R. ASTM Committee G-1 on Corrosion of Metals. Presented at the International Symposium on Electrochemical Noise Measurement for Corrosion Applications (1st : 1994 : Montréal, Q. Electrochemical Noise Measurement for Corrosion Applications. 1996, 476.
  • Jeyaprabha, C.; Muralidharan, S.; Venkatachari, G.; Raghavan, M. Applications of Electrochemical Noise Measurements in Corrosion Studies: A Review. Corros. Rev. 2001, 19, 301–314. DOI: 10.1515/CORRREV.2001.19.3-4.301.
  • Montoya-Rangel, M.; de Oca, N. G. M.; Gaona-Tiburcio, C.; Colás, R.; Cabral-Miramontes, J.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Chacón-Nava, J.; Almeraya-Calderón, F. Electrochemical Noise Measurements of Advanced High-Strength Steels in Different Solutions. Metals 2020, 10, 1232. DOI: 10.3390/met10091232.
  • Obot, I. B.; Onyeachu, I. B.; Zeino, A.; Umoren, S. A. Electrochemical Noise (EN) Technique: Review of Recent Practical Applications to Corrosion Electrochemistry Research. J. Adhes. Sci. Technol. 2019, 33, 1453–1496. DOI: 10.1080/01694243.2019.1587224.
  • Cottis, R. A. Electrochemical Noise for Corrosion Monitoring. Tech. Corros. Monit. 2008, 86–110. DOI: 10.1533/9781845694050.1.86.
  • Britton, C. F. Corrosion Monitoring and Inspection. Shreir’s Corros. 2010, 4, 3117–3166. DOI: 10.1016/B978-044452787-5.00130-X.
  • Telegdi, J.; Shaban, A.; Trif, L. Review on the Microbiologically Influenced Corrosion and the Function of Biofilms. Int. J. Corros. Scale Inhib. 2020, 9, 1–33. DOI: 10.17675/2305-6894-2020-9-1-1.
  • Li, Z.; Homborg, A.; Gonzalez-Garcia, Y.; Kosari, A.; Visser, P.; Mol, A. Evaluation of the Formation and Protectiveness of a Lithium-Based Conversion Layer Using Electrochemical Noise. Electrochim. Acta 2022, 426, 140733. DOI: 10.1016/j.electacta.2022.140733.
  • Sajadi, G. S.; Saheb, V.; Shahidi-Zandi, M.; Hosseini, S. M. A. A Study on Synergistic Effect of Chloride and Sulfate Ions on Copper Corrosion by Using Electrochemical Noise in Asymmetric Cells. Sci. Rep. 2022, 12, 14384. DOI: 10.1038/s41598-022-18317-2.
  • Qiao, Y.; Wang, Z.; Popova, K.; Prošek, T. Corrosion Monitoring in Atmospheric Conditions: A Review. Metals 2022, 12, 171. DOI: 10.3390/met12020171.
  • Arellano-Pérez, J. H.; Escobar-Jiménez, R. F.; Ramos-Negrón, O. J.; Lucio-García, M. A.; Gómez-Aguilar, J. F.; Uruchurtu-Chavarín, J. The Use of a Time-Frequency Transform for the Analysis of Electrochemical Noise for Corrosion Estimation. Math. Probl. Eng. 2022, 2022, 1–11. DOI: 10.1155/2022/4333607.
  • Zhang, Z.; Wang, B.; Zhao, Z.; Li, X.; Liu, B.; Bai, P. Effect of Chloride Ion Concentration on Corrosion Process of Selective Laser Melted AlSi10Mg with Different Heat Treatments Studied by Electrochemical Noise. J. Mater. Res. Technol. 2022, 16, 1597–1609. DOI: 10.1016/j.jmrt.2021.12.102.
  • Moradi, M.; Rezaei, M. Electrochemical Noise Analysis to Evaluate the Localized anti-Corrosion Properties of PP/Graphene Oxide Nanocomposite Coatings. J. Electroanal. Chem. 2022, 921, 116665. DOI: 10.1016/j.jelechem.2022.116665.
  • Comas, C.; Huet, F.; Ngo, K.; Fregonese, M.; Idrissi, H.; Normand, B. Corrosion Propagation Monitoring Using Electrochemical Noise Measurements on Carbon Steel in Hydrogenocarbonated Solution Containing Chloride Ions. Corros. Sci. 2021, 193, 109885. DOI: 10.1016/j.corsci.2021.109885.
  • Denissen, P. J.; Homborg, A. M.; Garcia, S. J. Interpreting Electrochemical Noise and monitoring local Corrosion by Means of Highly Resolved Spatiotemporal Real-Time Optics. J. Electrochem. Soc. 2019, 166, C3275–C3283. DOI: 10.1149/2.0341911JES/XML.
  • Danaee, I.; Nikparsa, P. Electrochemical Frequency Modulation, Electrochemical Noise, and Atomic Force Microscopy Studies on Corrosion Inhibition Behavior of Benzothiazolone for Steel API X100 in 10% HCl Solution. J. of Materi. Eng. And Perform. 2019, 28, 5088–5103. DOI: 10.1007/S11665-019-04272-Z/METRICS.
  • Xia, D. H.; Ma, C.; Behnamian, Y.; Ao, S.; Song, S.; Xu, L. Reliability of the Estimation of Uniform Corrosion Rate of Q235B Steel under Simulated Marine Atmospheric Conditions by Electrochemical Noise (EN) Analyses. Measurement 2019, 148, 106946. DOI: 10.1016/j.measurement.2019.106946.
  • Ma, C.; Song, S.; Gao, Z.; Wang, J.; Hu, W.; Behnamian, Y.; Xia, D. H. Electrochemical Noise Monitoring of the Atmospheric Corrosion of Steels: Identifying Corrosion Form Using Wavelet Analysis. Corros. Eng. Sci. Technol. 2017, 52, 1–9. DOI: 10.1080/1478422X.2017.1320117.
  • Xia, D. H.; Song, S. Z.; Behnamian, Y. Detection of Corrosion Degradation Using Electrochemical Noise (EN): Review of Signal Processing Methods for Identifying Corrosion Forms. Corros. Eng. Sci. Technol. 2016, 51, 1–18. DOI: 10.1179/1743278215Y.0000000057.
  • Trentin, A.; Pakseresht, A.; Duran, A.; Castro, Y.; Galusek, D. Electrochemical Characterization of Polymeric Coatings for Corrosion Protection: A Review of Advances and Perspectives. Polymers (Basel) 2022, 14, 2306. DOI: 10.3390/POLYM14122306.
  • Jadhav, N.; Gelling, V. J. Review—the Use of Localized Electrochemical Techniques for Corrosion Studies. J. Electrochem. Soc. 2019, 166, C3461–C3476. DOI: 10.1149/2.0541911JES/XML.
  • Trentin, A.; Pakseresht, A.; Duran, A.; Castro, Y.; Galusek, D. Electrochemical Characterization of Polymeric Coatings for Corrosion Protection: A Review of Advances and Perspectives. Polymers (Basel) 2022, 14, 2306. DOI: 10.3390/POLYM14122306.
  • Shozib, I. A.; Ahmad, A.; Abdul-Rani, A. M.; Beheshti, M.; Aliyu, A. A. A Review on the Corrosion Resistance of Electroless Ni-P Based Composite Coatings and Electrochemical Corrosion Testing Methods. Corros. Rev. 2022, 40, 1–37. DOI: 10.1515/CORRREV-2020-0091/ASSET/GRAPHIC/J_CORRREV-2020-0091_FIG_006.JPG.
  • Bexiga, N. M.; Alves, M. M.; Taryba, M. G.; Pinto, S. N.; Montemor, M. F. Early Biomimetic Degradation of Mg-2Ca Alloy Reveals the Impact of β-Phases at the Interface of This Biomaterial on a Micro-Scale Level. Corros. Sci. 2022, 207, 110526. DOI: 10.1016/j.corsci.2022.110526.
  • Gnedenkov, A. S.; Sinebryukhov, S. L.; Filonina, V. S.; Plekhova, N. G.; Gnedenkov, S. V. Smart Composite Antibacterial Coatings with Active Corrosion Protection of Magnesium Alloys. J. Magnes. Alloy 2022, 10, 3589–3611. DOI: 10.1016/j.jma.2022.05.002.
  • Gnedenkov, A. S.; Sinebryukhov, S. L.; Filonina, V. S.; Egorkin, V. S.; Ustinov, A. Y.; Sergienko, V. I.; Gnedenkov, S. V. The Detailed Corrosion Performance of Bioresorbable Mg-0.8Ca Alloy in Physiological Solutions. J. Magnes. Alloy 2022, 10, 1326–1350. DOI: 10.1016/j.jma.2021.11.027.
  • Calado, L. M.; Taryba, M. G.; Morozov, Y.; Carmezim, M. J.; Montemor, M. F. Novel Smart and Self-Healing Cerium Phosphate-Based Corrosion Inhibitor for AZ31 Magnesium Alloy. Corros. Sci. 2020, 170, 108648. DOI: 10.1016/j.corsci.2020.108648.
  • Nardeli, J. V.; Fugivara, C. S.; Taryba, M.; Montemor, M. F.; Benedetti, A. V. Biobased Self-Healing Polyurethane Coating with Zn Micro-Flakes for Corrosion Protection of AA7475. Chem. Eng. J. 2021, 404, 126478. DOI: 10.1016/j.cej.2020.126478.
  • Nardeli, J. V.; Fugivara, C. S.; Taryba, M.; Montemor, M. F.; Ribeiro, S. J. L.; Benedetti, A. V. Novel Healing Coatings Based on Natural-Derived Polyurethane Modified with Tannins for Corrosion Protection of AA2024-T3. Corros. Sci. 2020, 162, 108213. DOI: 10.1016/j.corsci.2019.108213.
  • Gnedenkov, S. V.; Sinebryukhov, S. L.; Egorkin, V. S.; Mashtalyar, D. V.; Vyaliy, I. E.; Nadaraia, K. V.; Imshinetskiy, I. M.; Nikitin, A. I.; Subbotin, E. P.; Gnedenkov, A. S. Magnesium Fabricated Using Additive Technology: Specificity of Corrosion and Protection. J. Alloys Compd. 2019, 808, 151629. DOI: 10.1016/j.jallcom.2019.07.341.
  • Coelho, L. B.; Taryba, M.; Alves, M.; Noirfalise, X.; Montemor, M. F.; Olivier, M. G. The Corrosion Inhibition Mechanisms of Ce(III) Ions and Triethanolamine on Graphite—AA2024-T3 Galvanic Couples Revealed by Localised Electrochemical Techniques. Corros. Sci. 2019, 150, 207–217. DOI: 10.1016/j.corsci.2019.02.007.
  • Ikeuba, A. I.; Zhang, B.; Wang, J.; Han, E. H.; Ke, W. Understanding the Galvanic Corrosion of the Q-Phase/Al Couple Using SVET and SIET. J. Mater. Sci. Technol. 2019, 35, 1444–1454. DOI: 10.1016/j.jmst.2019.03.001.
  • Shi, H.; Tian, Z.; Hu, T.; Liu, F.; Han, E. H.; Taryba, M.; Lamaka, S. V. Simulating Corrosion of Al2CuMg Phase by Measuring Ionic Currents, Chloride Concentration and PH. Corros. Sci. 2014, 88, 178–186. DOI: 10.1016/j.corsci.2014.07.021.
  • Baek, Y.; Frankel, G. S. Electrochemical Quartz Crystal Microbalance Study of Corrosion of Phases in AA2024. J. Electrochem. Soc. 2003, 150, B1. DOI: 10.1149/1.1524172.
  • Petrunin, M. A.; Gladkikh, N. A.; Maleeva, M. A.; Yurasova, T. A.; Terekhova, E.; V; Maksaeva, L. B. Application of the Quartz Crystal Microbalance Technique in Corrosion Studies. A Review 1. Int. J. Corros. Scale Inhib. 2020, 9, 92–117. DOI: 10.17675/2305-6894-2020-9-1-6.
  • Qiao, Y.; Wang, Z.; Popova, K.; Prošek, T. Corrosion Monitoring in Atmospheric Conditions: A Review. Metals 2022, 12, 171. DOI: 10.3390/MET12020171.
  • Marcus, P.; Mansfeld, F. Analytical Methods in Corrosion Science and Engineering. Anal. Methods Corros. Sci. Eng. 2005, 1–776. DOI: 10.1201/9781420028331/ANALYTICAL-METHODS-CORROSION-SCIENCE-ENGINEERING-FLORIAN-MANSFELD-PHILIPPE-MARCUS.
  • Li, Z.; Fu, D.; Li, Y.; Wang, G.; Meng, J.; Zhang, D.; Yang, Z.; Ding, G.; Zhao, J. Application of an Electrical Resistance Sensor-Based Automated Corrosion Monitor in the Study of Atmospheric Corrosion. Materilas 2019, 12, 1065. DOI: 10.3390/ma12071065.
  • Forslund, M.; Leygraf, C. A Quartz Crystal Microbalance Probe Developed for Outdoor in Situ Atmospheric Corrosivity Monitoring. J. Electrochem. Soc. 1996, 143, 839–844. DOI: 10.1149/1.1836546/XML.
  • Yang, L. Techniques for Corrosion Monitoring; Elsevier Inc.: Cambridge, 2008. DOI: 10.1533/9781845694050.
  • Ahmad, Z. Atmospheric Corrosion. Princ. Corros. Eng. Corros. Control 2006, 550–575. DOI: 10.1016/B978-075065924-6/50011-8.
  • Singla, K.; Perrot, H.; Sel, O.; Brown, B.; Nesic, S. Use of Quartz Crystal Microbalance in Study of Inhibitor Adsorption. 2021.
  • Kim, G. Y.; Kim, S. W.; Jang, J.; Yoon, S.; Kim, J. S. Investigation of Early Corrosion Behavior of Canister Candidate Materials in Oxic Groundwater by the EQCM Method. Sci. Technol. Nucl. Install. 2022, 2022, 2022, 1–6. DOI: 10.1155/2022/4582625.
  • Huang, S.; Chen, L.; Jiang, B.; Qiao, L.; Yan, Y. Early Electrochemical Characteristics and Corrosion Behaviors of Pure Zinc in Simulated Body Fluid. J. Electroanal. Chem. 2021, 886, 115145. DOI: 10.1016/j.jelechem.2021.115145.
  • Wan, S.; Ma, X. Z.; Miao, C. H.; Zhang, X. X.; Dong, Z. H. Inhibition of 2-Phenyl Imidazoline on Chloride-Induced Initial Atmospheric Corrosion of Copper by Quartz Crystal Microbalance and Electrochemical Impedance. Corros. Sci. 2020, 170, 108692. DOI: 10.1016/j.corsci.2020.108692.
  • Patrick, B. N.; Chakravarti, R.; Devine, T. M. Dynamic Measurements of Corrosion Rates at High Temperatures in High Electrical Resistivity Media. Corros. Sci. 2015, 94, 99–103. DOI: 10.1016/j.corsci.2015.01.045.
  • Tian, H.; Cheng, Y. F.; Li, W.; Hou, B. Triazolyl-Acylhydrazone Derivatives as Novel Inhibitors for Copper Corrosion in Chloride Solutions. Corros. Sci. 2015, 100, 341–352. DOI: 10.1016/j.corsci.2015.08.022.
  • Wu, B.; Raghavan, S. Removal of BTA Adsorbed on Cu: A Feasibility Study Using the Quartz Crystal Microbalance with Dissipation (QCMD) Technique. ECS J. Solid State Sci. Technol. 2019, 8, P3114–P3117. DOI: 10.1149/2.0191905JJSS/XML.
  • Chavez, A.; Pattyn, C.; Vreeland, E.; Appelhans, L.; Sammon, J.; Moorman, M.; Griego, J.; Westlake, K.; Briscoe, J.; Huber, D. Dimethyl methylphosphonate Detection Using Zirconium Metal-Organic Framework Functionalized Quartz Crystal Microbalance. 2018.
  • Kang, Q.; Zhu, X.; Ma, X.; Kong, L.; Xu, W.; Shen, D. Response of an Electrodeless Quartz Crystal Microbalance in Gaseous Phase and Monitoring Adsorption of Iodine Vapor on Zeolitic-Imidazolate Framework-8 Film. Sensors Actuators B Chem. 2015, 220, 472–480. DOI: 10.1016/j.snb.2015.06.001.
  • Bastos, A. C.; Quevedo, M. C.; Karavai, O. V.; Ferreira, M. G. S. Review—on the Application of the Scanning Vibrating Electrode Technique (SVET) to Corrosion Research. J. Electrochem. Soc. 2017, 164, C973–C990. DOI: 10.1149/2.0431714JES/XML.
  • Reid, B.; Nuccitelli, R.; Zhao, M. Non-Invasive Measurement of Bioelectric Currents with a Vibrating Probe. Nat. Protoc. 2007, 2, 661–669. DOI: 10.1038/nprot.2007.91.
  • Nuccitelli, R. Ionic Currents in Morphogenesis. Experientia 1988, 44, 657–666. DOI: 10.1007/BF01941026/METRICS.
  • Takashima, S. Passive Electrical Properties and Voltage Dependent Membrane Capacitance of Single Skeletal Muscle Fibers. Pflugers Arch. 1985, 403, 197–204. DOI: 10.1007/BF00584100/METRICS.
  • Abdurrahim, A.; Akid, R. Scanning Vibrating Electrode Technique as an Application for Measuring Corrosion Activity of Carbon Steel Welded Pipelines. WIT Trans. Eng. Sci. 2007, 54, 203–209. DOI: 10.2495/ECOR070201.
  • Saeedikhani, M.; Xiang Kuah, K.; Wijesinghe, S.; al; Bolton, R.; Dunlop, T.; Sullivan, J. Review-On the Application of the Scanning Vibrating Electrode Technique (SVET) to Corrosion Research You May Also like Electrochemical Modeling of Scanning Vibrating Electrode Technique on Scratched and Inclined Surfaces Studying the Influence of Mg Content on the Microstructure and Associated Localized Corrosion Behavior of Zn-Mg PVD Coatings Using SVET-TLI. 2017. DOI: 10.1149/2.0431714jes.
  • Thornhill, R. S.; Evans, U. R. The Electrochemistry of the Rusting Process along a Scratch-Line on Iron. J. Chem. Soc. 1938, 614–621. DOI: 10.1039/jr9380000614.
  • Isaacs, H. S.; Vyas, B. BNL-26094 Scanning Reference Electrode Techniques in Localised Corrosion*. 1981.
  • Wang, Y.; Yang, Q.; Su, B. Spatially Resolved Electrochemistry Enabled by Thin-Film Optical Interference. Chem. Commun. (Camb.) 2020, 56, 12359–12362. DOI: 10.1039/D0CC05265E.
  • Rossi, S.; Fedel, M.; Deflorian, F.; del Carmen Vadillo, M. Localized Electrochemical Techniques: Theory and Practical Examples in Corrosion Studies. Comptes Rendus Chim. 2008, 11, 984–994. DOI: 10.1016/j.crci.2008.06.011.
  • Isaacs, H.; Vyas, B. Scanning Reference Electrode Techniques in Localized Corrosion. Electrochem. Corros. Test. 2009, 3–31. 3- DOI: 10.1520/STP28024S.
  • Moreto, J. A.; Marino, C. E. B.; Bose Filho, W. W.; Rocha, L. A.; Fernandes, J. C. S. SVET, SKP and EIS Study of the Corrosion Behaviour of High Strength Al and Al–Li Alloys Used in Aircraft Fabrication. Corros. Sci. 2014, 84, 30–41. DOI: 10.1016/j.corsci.2014.03.001.
  • Grilli, R.; Baker, M. A.; Castle, J. E.; Dunn, B.; Watts, J. F. Localized Corrosion of a 2219 Aluminium Alloy Exposed to a 3.5% NaCl Solution. Corros. Sci. 2010, 52, 2855–2866. DOI: 10.1016/j.corsci.2010.04.035.
  • Jones, K.; Hoeppner, D. W. The Interaction between Pitting Corrosion, Grain Boundaries, and Constituent Particles during Corrosion Fatigue of 7075-T6 Aluminum Alloy. Int. J. Fatigue 2009, 31, 686–692. DOI: 10.1016/j.ijfatigue.2008.03.016.
  • Andreatta, F.; Lohrengel, M. M.; Terryn, H.; De Wit, J. H. W. Electrochemical Characterisation of Aluminium AA7075-T6 and Solution Heat Treated AA7075 Using a Micro-Capillary Cell. Electrochim. Acta 2003, 48, 3239–3247. DOI: 10.1016/S0013-4686(03)00379-7.
  • Lee, J. W.; Park, B. R.; Oh, S. Y.; Yun, D. W.; Hwang, J. K.; Oh, M. S.; Kim, S. J. Mechanistic Study on the Cut-Edge Corrosion Behaviors of Zn-Al-Mg Alloy Coated Steel Sheets in Chloride Containing Environments. Corros. Sci. 2019, 160, 108170. DOI: 10.1016/j.corsci.2019.108170.
  • Ramli, M. I. M.; Romzi, M. A. F.; Alias, J. Effect of Surface Condition on the Corrosion Behaviour of AZ31 Magnesium Alloy. Mater. Today Proc. 2022, 48, 747–752. DOI: 10.1016/j.matpr.2021.02.213.
  • Cain, T. W.; Glover, C. F.; Scully, J. R. The Corrosion of Solid Solution Mg-Sn Binary Alloys in NaCl Solutions. Electrochim. Acta 2019, 297, 564–575. DOI: 10.1016/j.electacta.2018.11.118.
  • Williams, G.; Dafydd, H. A. L.; McMurray, H. N.; Birbilis, N. The Influence of Arsenic Alloying on the Localised Corrosion Behaviour of Magnesium. Electrochim. Acta 2016, 219, 401–411. DOI: 10.1016/j.electacta.2016.10.006.
  • Williams, G.; Gusieva, K.; Birbilis, N. Localized Corrosion of Binary Mg-Nd Alloys in Chloride-Containing Electrolyte Using a Scanning Vibrating Electrode Technique. Corrosion 2012, 68, 489–498. DOI: 10.5006/i0010-9312-68-6-489.
  • Williams, G.; Birbilis, N.; McMurray, H. N. Controlling Factors in Localised Corrosion Morphologies Observed for Magnesium Immersed in Chloride Containing Electrolyte. Faraday Discuss. 2015, 180, 313–330. DOI: 10.1039/C4FD00268G.
  • Clark, R. N.; Humpage, J.; Burrows, R.; Godfrey, H.; Sagir, M.; Williams, G. A Study into the Localized Corrosion of Magnesium Alloy Magnox Al-80. Corrosion 2021, 77, 168–182. DOI: 10.5006/3574.
  • Williams, G.; Grace, R.; Woods, R. M. Inhibition of the Localized Corrosion of Mg Alloy AZ31 in Chloride Containing Electrolyte. Corrosion 2015, 71, 184–198. DOI: 10.5006/1376.
  • Williams, G.; McMurray, H. N.; Grace, R. Inhibition of Magnesium Localised Corrosion in Chloride Containing Electrolyte. Electrochim. Acta 2010, 55, 7824–7833. DOI: 10.1016/j.electacta.2010.03.023.
  • Epelboin, I.; Gabrielli, C.; Keddam, M.; Takenouti, H. Alternating-Current Impedance Measurements Applied to Corrosion Studies and Corrosion-Rate Determination. Electrochem. Corros. Test. 2009, 150–17. DOI: 10.1520/STP28031S.
  • Lvovich, V. F. Electrochemical Impedance Spectroscopy (EIS) Applications to Sensors and Diagnostics. Encycl. Appl. Electrochem. 2014, 485–507. DOI: 10.1007/978-1-4419-6996-5_67.
  • Berdimurodov, E.; Akbarov, K.; Kholikov, A. Electrochemical Frequency Modulation and Reactivation Investigation of Thioglycolurils in Strong Acid Medium. Amr 2019, 1154, 122–128. DOI: 10.4028/www.scientific.net/AMR.1154.122.
  • Bogaerts, W. F.; Leuven, K. U. Electrochemical Frequency Modulation: A New Electrochemical Technique for Online Corrosion Monitoring. AMPP: Louisiana, 2001. DOI: 10.5006/1.3290331.
  • Bosch, R. W.; Hubrecht, J.; Bogaerts, W. F.; Syrett, B. C. Electrochemical Frequency Modulation: A New Electrochemical Technique for Online Corrosion Monitoring. Corrosion 2001, 57, 60–70. DOI: 10.5006/1.3290331.
  • Obot, I. B.; Onyeachu, I. B. Electrochemical Frequency Modulation (EFM) Technique: Theory and Recent Practical Applications in Corrosion Research. J. Mol. Liq. 2018, 249, 83–96. DOI: 10.1016/j.molliq.2017.11.006.
  • Rauf, A.; Mahdi, E. Comparison between Electrochemical Noise and Electrochemical Frequency Modulation Measurements during Pitting Corrosion. J. New Mater. Electrochem. Syst. 2012, 15, 107–112. DOI: 10.14447/jnmes.v15i2.79.
  • Singh, A.; Ansari, K. R.; Ituen, E.; Guo, L.; Abdul Wahab, M.; Quraishi, M. A.; Kong, X.; Lin, Y. A New Series of Synthesized Compounds as Corrosion Mitigator for Storage Tanks: Detailed Electrochemical and Theoretical Investigations. Constr. Build. Mater. 2020, 259, 120421. DOI: 10.1016/j.conbuildmat.2020.120421.
  • Lalvani, S.; Ullah, S.; Kerr, L. Electrochemical Frequency Modulation: Solution Resistance and Double Layer Capacitance Considerations. Corros. Sci. Technol. 2021, 20, 231–241. DOI: 10.14773/CST.2021.20.5.231.
  • Al-Amiery, A. A.; Mohamad, A. B.; Kadhum, A. A. H.; Shaker, L. M.; Isahak, W. N. R. W.; Takriff, M. S. Experimental and Theoretical Study on the Corrosion Inhibition of Mild Steel by Nonanedioic Acid Derivative in Hydrochloric Acid Solution. Sci. Rep. 2022 121, 2022, 12, 1–21. DOI: 10.1038/s41598-022-08146-8.
  • Abdelshafi, N. S.; Sadik, M. A.; Shoeib, M. A.; Halim, S. A. Corrosion Inhibition of Aluminum in 1 M HCl by Novel Pyrimidine Derivatives, EFM Measurements, DFT Calculations and MD Simulation. Arabian Journal of Chemistry. Elsevier. 2022, 15(1), 103459. DOI: 10.1016/j.arabjc.2021.103459.
  • Fouda, A. S.; El-Desoky, H. S.; Abdel-Galeil, M. M.; Mansour, D. Amide Compounds as Corrosion Inhibitors for Carbon Steel in Acidic Environment. Prot. Met. Phys. Chem. Surf. 2022, 58, 151–167. DOI: 10.1134/S2070205122010105/TABLES/11.
  • Berdimurodov, E.; Akbarov, K.; Kholikov, A. Electrochemical Frequency Modulation and Reactivation Investigation of Thioglycolurils in Strong Acid Medium. Amr 2019, 1154, 122–128. DOI: 10.4028/www.scientific.net/AMR.1154.122.
  • Danaee, I.; Nikparsa, P. Electrochemical Frequency Modulation, Electrochemical Noise, and Atomic Force Microscopy Studies on Corrosion Inhibition Behavior of Benzothiazolone for Steel API X100 in 10% HCl Solution. J. of Materi. Eng. And Perform. 2019, 28, 5088–5103. DOI: 10.1007/S11665-019-04272-Z/FIGURES/18.
  • Khalefa, M. M.; Khalil, H. F.; Keera, S. T.; Ashmawy, A. M. Preparation and Evaluation of Azo Phenol as Corrosion Inhibitor for Carbon Steel in Acid Solution. Egypt. J. Chem. 2022, 65, 791–802. DOI: 10.21608/EJCHEM.2022.104441.4933.
  • Habeeb, H. J.; Luaibi, H. M.; Dakhil, R. M.; Kadhum, A. A. H.; Al-Amiery, A. A.; Gaaz, T. S. Development of New Corrosion Inhibitor Tested on Mild Steel Supported by Electrochemical Study. Results Phys. 2018, 8, 1260–1267. DOI: 10.1016/j.rinp.2018.02.015.
  • Ahmed, M. H. O.; Al-Amiery, A. A.; Al-Majedy, Y. K.; Kadhum, A. A. H.; Mohamad, A. B.; Gaaz, T. S. Synthesis and Characterization of a Novel Organic Corrosion Inhibitor for Mild Steel in 1 M Hydrochloric Acid. Results Phys. 2018, 8, 728–733. DOI: 10.1016/j.rinp.2017.12.039.
  • Bedair, M. A.; El-Sabbah, M. M. B.; Fouda, A. S.; Elaryian, H. M. Electrochemical and Quantum Chemical Studies of Some Prepared Surfactants Based on Azodye and Schiff Base as Corrosion Inhibitors for Steel in Acid Medium. Corros. Sci. 2017, 128, 54–72. DOI: 10.1016/j.corsci.2017.09.016.
  • Al-Amiery, A. A.; Binti Kassim, F. A.; Kadhum, A. A. H.; Mohamad, A. B. Synthesis and Characterization of a Novel Eco-Friendly Corrosion Inhibition for Mild Steel in 1 M Hydrochloric Acid. Sci. Rep. 2016, 6, 1–13. DOI: 10.1038/srep19890.
  • El-Haddad, M. N.; Fouda, A. S. Electroanalytical, Quantum and Surface Characterization Studies on Imidazole Derivatives as Corrosion Inhibitors for Aluminum in Acidic Media. J. Mol. Liq. 2015, 209, 480–486. DOI: 10.1016/j.molliq.2015.06.005.
  • Hegazy, M. A.; Nazeer, A. A.; Shalabi, K. Electrochemical Studies on the Inhibition Behavior of Copper Corrosion in Pickling Acid Using Quaternary Ammonium Salts. J. Mol. Liq. 2015, 209, 419–427. DOI: 10.1016/j.molliq.2015.05.043.
  • Tougaard, S. SURFACE ANALYSIS | X-Ray Photoelectron Spectroscopy. Encycl. Anal. Sci. Second Ed. 2005, 446–456. DOI: 10.1016/B0-12-369397-7/00589-6.
  • Groysman, A. Corrosion Monitoring. Corros. Rev. 2009, 27, 205–343. DOI: 10.1515/CORRREV.2009.27.4-5.205/MACHINEREADABLECITATION/RIS.
  • Xia, D.-H.; Song, S.; Qin, Z.; Hu, W.; Behnamian, Y. Review—Electrochemical Probes and Sensors Designed for Time-Dependent Atmospheric Corrosion Monitoring: Fundamentals, Progress, and Challenges. J. Electrochem. Soc. 2020, 167, 037513. DOI: 10.1149/2.0132003JES/XML.
  • Matthiesen, H.; Gregory, D.; Sørensen, B.; Hilbert, L. R. 16 Long Term Corrosion of Iron at the Waterlogged Site Nydam in Denmark: Studies of Environment, Archaeological Artefacts and Modern Analogues - Corrosion of Metallic Heritage Artefacts - European Federation of Corrosion Publications - Woodhead Publishing Limited. 1997, 272–292.
  • Pan, C.; Lv, W.; Wang, Z.; Su, W.; Wang, C.; Liu, S. Atmospheric Corrosion of Copper Exposed in a Simulated Coastal-Industrial Atmosphere. J. Mater. Sci. Technol. 2017, 33, 587–595. DOI: 10.1016/j.jmst.2016.03.024.
  • Liao, X. N.; Cao, F. H.; Chen, A. N.; Liu, W. J.; Zhang, J. Q.; Cao, C. N. In-Situ Investigation of Atmospheric Corrosion Behavior of Bronze under Thin Electrolyte Layers Using Electrochemical Technique. Trans. Nonferrous Met. Soc. China 2012, 22, 1239–1249. DOI: 10.1016/S1003-6326(11)61311-3.
  • Lazanas, A. C.; Prodromidis, M. I. Electrochemical Impedance Spectroscopy A Tutorial. ACS Meas. Sci. Au 2022, 2023, 162–193. DOI: 10.1021/ACSMEASURESCIAU.2C00070/ASSET/IMAGES/LARGE/TG2C00070_0032.JPEG.
  • Nishikata, A.; Ichihara, Y.; Tsuru, T. An Application of Electrochemical Impedance Spectroscopy to Atmospheric Corrosion Study. Corros. Sci. 1995, 37, 897–911. DOI: 10.1016/0010-938X(95)00002-2.
  • Nishikata, A.; Yamashita, Y.; Katayama, H.; Tsuru, T.; Usami, a.; Tanabe, K.; Mabuchi, H. An Electrochemical Impedance Study on Atmospheric Corrosion of Steels in a Cyclic Wet-Dry Condition. Corros. Sci. 1995, 37, 2059–2069. DOI: 10.1016/0010-938X(95)00104-R.
  • Shi, Y.; Tada, E.; Nishikata, A. A Method for Determining the Corrosion Rate of a Metal under a Thin Electrolyte Film. J. Electrochem. Soc. 2015, 162, C135–C139. DOI: 10.1149/2.0101504JES/XML.
  • Nishikata, A.; Ichihara, Y.; Tsuru, T. Electrochemical Impedance Spectroscopy of Metals Covered with a Thin Electrolyte Layer. Electrochim. Acta 1996, 41, 1057–1062. DOI: 10.1016/0013-4686(95)00438-6.
  • Zhang, W.; Zhang, Y.; Li, B.; Guo, H.; Dou, X.; Lu, K.; Feng, Y. High-Performance Corrosion Resistance of Chemically-Reinforced Chitosan as Ecofriendly Inhibitor for Mild Steel. Bioelectrochemistry 2023, 150, 108330. DOI: 10.1016/J.BIOELECHEM.2022.108330.
  • Al-Amiery, A. A.; Betti, N.; Isahak, W. N. R. W.; Al-Azzawi, W. K.; Wan Nik, W. M. N. Exploring the Effectiveness of Isatin–Schiff Base as an Environmentally Friendly Corrosion Inhibitor for Mild Steel in Hydrochloric Acid. Lubricants 2023, 11, 211. DOI: 10.3390/lubricants11050211.
  • El-Azabawy, O. E.; Higazy, S. A.; Al-Sabagh, A. M.; Abdel-Rahman, A. A. H.; Nasser, N. M.; Khamis, E. A. Studying the Temperature Influence on Carbon Steel in Sour Petroleum Media Using Facilely-Designed Schiff Base Polymers as Corrosion Inhibitors. J. Mol. Struct. 2023, 1275, 134518. DOI: 10.1016/j.molstruc.2022.134518.
  • Singh, A. K.; Singh, M.; Thakur, S.; Pani, B.; Kaya, S.; Ibrahimi, B.; EL; Marzouki, R. Adsorption Study of N (-Benzo[d]Thiazol-2-Yl)-1-(Thiophene-2-Yl) Methanimine at Mild Steel/Aqueous H2SO4 Interface. Surf. Interfaces 2022, 33, 102169. DOI: 10.1016/j.surfin.2022.102169.
  • Rbaa, M.; Fardioui, M.; Verma, C.; Abousalem, A. S.; Galai, M.; Ebenso, E. E.; Guedira, T.; Lakhrissi, B.; Warad, I.; Zarrouk, A. Zarrouk, A. 8-Hydroxyquinoline Based Chitosan Derived Carbohydrate Polymer as Biodegradable and Sustainable Acid Corrosion Inhibitor for Mild Steel: Experimental and Computational Analyses. Int. J. Biol. Macromol. 2020, 155, 645–655. DOI: 10.1016/j.ijbiomac.2020.03.200.
  • Singh, A. K.; Chugh, B.; Singh, M.; Thakur, S.; Pani, B.; Guo, L.; Kaya, S.; Serdaroglu, G. Hydroxy Phenyl Hydrazides and Their Role as Corrosion Impeding Agent: A Detail Experimental and Theoretical Study. J. Mol. Liq. 2021, 330, 115605. DOI: 10.1016/j.molliq.2021.115605.
  • Sengupta, S.; Singh, M.; Thakur, S.; Pani, B.; Banerjee, P.; Kaya, S.; Singh, A. K.; Sheetal, An Insight about the Interaction of Aryl Benzothiazoles with Mild Steel Surface in Aqueous HCl Solution. J. Mol. Liq. 2022, 354, 118890. DOI: 10.1016/j.molliq.2022.118890.
  • Chugh, B.; Singh, A. K.; Thakur, S.; Pani, B.; Lgaz, H.; Chung, I. M.; Jha, R.; Ebenso, E. E. Comparative Investigation of Corrosion-Mitigating Behavior of Thiadiazole-Derived Bis-Schiff Bases for Mild Steel in Acid Medium: Experimental, Theoretical, and Surface Study. ACS Omega 2020, 5, 13503–13520. DOI: 10.1021/acsomega.9b04274.
  • Singh, A. K.; Chugh, B.; Thakur, S.; Pani, B.; Lgaz, H.; Chung, I. M.; Pal, S.; Prakash, R. Green Approach of Synthesis of Thiazolyl Imines and Their Impeding Behavior against Corrosion of Mild Steel in Acid Medium. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 599, 124824. DOI: 10.1016/j.colsurfa.2020.124824.
  • Aouniti, A.; Elmsellem, H.; Tighadouini, S.; Elazzouzi, M.; Radi, S.; Chetouani, A.; Hammouti, B.; Zarrouk, A. Schiff’s Base Derived from 2-Acetyl Thiophene as Corrosion Inhibitor of Steel in Acidic Medium. J. Taibah Univ. Sci. 2016, 10, 774–785. DOI: 10.1016/j.jtusci.2015.11.008.
  • Ozoemena, C. P.; Boekom, E. J.; Akpan.; Inemesit, I. Synthesis, Characterization and Electrochemical Studies on the Corrosion Inhibition Properties of Schiff Bases for Mild Steel in 1 M HCl Solution. Csij 2023, 32, 30–50. DOI: 10.9734/CSJI/2023/v32i2843.
  • Sayed, A. G.; Ashmawy, A. M.; Elgammal, W. E.; Hassan, S. M.; Deyab, M. A. Synthesis, Description, and Application of Novel Corrosion Inhibitors for CS AISI1095 in 1.0 M HCl Based on Benzoquinoline Derivatives. Sci. Rep. 2023 131, 2023, 13, 1–23. DOI: 10.1038/s41598-023-39714-1.
  • BinSabt, M. H.; Azeez, F. A.; Suleiman, N. Eco-Friendly Silane-Based Coating for Mitigation of Carbon Steel Corrosion in Marine Environments. ACS Omega 2023, 8, 12886–12898. DOI: 10.1021/ACSOMEGA.3C00013/ASSET/IMAGES/LARGE/AO3C00013_0012.JPEG.
  • Daniel, N.; Leonardo, M.; Nursatya, S. M.; Barlian, A.; Prajatelistia, E.; Judawisastra, H. Improving Magnesium’s Corrosion Resistance through Tannic Acid–Polyethyleneimine Coatings for Bioresorbable Implant Applications. Mater. Adv. 2023, 4, 1590–1603. DOI: 10.1039/D2MA00890D.
  • Ikeuba, A. I. AFM and EIS Investigation of the Influence of PH on the Corrosion Film Stability of Al4Cu2Mg8Si7 Intermetallic Particle in Aqueous Solutions. Appl. Surf. Sci. Adv. 2022, 11, 100291. DOI: 10.1016/j.apsadv.2022.100291.
  • Forslund, M.; Leygraf, C. A Quartz Crystal Microbalance Probe Developed for Outdoor in Situ Atmospheric Corrosivity Monitoring. J. Electrochem. Soc. 1996, 143, 839–844. DOI: 10.1149/1.1836546/XML.
  • Gu, Y.; Ma, H.; Gao, H.; Frances Glover, C.; Barnes, A.; Mabbett, I.; al; Thebault, F.; Vuillemin, B. Electrochemical Modeling of Scanning Vibrating Electrode Technique on Scratched and Inclined Surfaces. J. Electrochem. Soc. 2021, 168, 081505. DOI: 10.1149/1945-7111/AC1B50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.