404
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Analytical Methods for the Determination of Quercetin and Quercetin Glycosides in Pharmaceuticals and Biological Samples

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Lee, Y. K.; Yuk, D. Y.; Lee, J. W.; Lee, S. Y.; Ha, T. Y.; Oh, K. W.; Yun, Y. P.; Hong, J. T.; (-)-Epigallocatechin-3-Gallate Prevents Lipopolysaccharide-Induced Elevation of Beta-Amyloid Generation and Memory Deficiency. Brain Res. 2009, 1250, 164–174. DOI: 10.1016/j.brainres.2008.10.012.
  • Castañeda-Ovando, A.; Pacheco-Hernández, M. d L.; Páez-Hernández, M. E.; Rodríguez, J. A.; Galán-Vidal, C. A.; De, M.; et al. Chemical Studies of Anthocyanins: A Review. Food Chem. 2009, 113, 859–871. DOI: 10.1016/j.foodchem.2008.09.001.
  • Burak, M.; Imen, Y. Flavonoids and Their Antioxidant Properties. Turk. Klin Tip Bil. Derg. 1999, 19, 296–304.
  • Iwashina, T. Flavonoid Properties of Five Families Newly Incorporated into the Order Caryophyllales (Review). Bull. Natl. Mus. Nat. Sci., Ser. B 2013, 39, 25–51.
  • Aherne, S. A.; O'Brien, N. M. Dietary Flavonols: Chemistry, Food Content, and Metabolism Chemistry and Structure of the Flavonoids. Nutrition 2002, 18, 75–81. DOI: 10.1016/s0899-9007(01)00695-5.
  • Ranjbari, E.; Biparva, P.; Hadjmohammadi, M. R. Utilization of Inverted Dispersive Liquid–Liquid Microextraction Followed by HPLC-UV as a Sensitive and Efficient Method for the Extraction and Determination of Quercetin in Honey and Biological Samples. Talanta Elsevier B.V 2012, 89, 117–123. DOI: 10.1016/j.talanta.2011.11.079.
  • Abdelkawy, K. S.; Balyshev, M. E.; Elbarbry, F. A New Validated HPLC Method for the Determination of Quercetin: Application to Study Pharmacokinetics in Rats. Biomed. Chromatogr. 2017, 31, 1–8. DOI: 10.1002/bmc.3819.
  • Biesaga, M.; Pyrzynska, K. Analytical Procedures for Determination of Quercetin and Its Glycosides in Plant Material. Crit. Rev. Anal. Chem. 2009, 39, 95–107. DOI: 10.1080/10408340902820718.
  • Schieber, A.; Hilt, P.; Conrad, J.; Beifuss, U.; Carle, R. Elution Order of Quercetin Glycosides from Apple Pomace Extracts on a New HPLC Stationary Phase with Hydrophilic Endcapping. J. Sep. Sci. 2002, 25, 361–364. DOI: 10.1002/1615-9314(20020401)25:5/6 < 361::AID-JSSC361 > 3.0.CO;2-D.
  • Hollman, P. C. H.; Arts, I. C. W. Flavonols, Flavones and flavanols - Nature, Occurrence and Dietary Burden. J. Sci. Food Agric. 2000, 80, 1081–1093. DOI: 10.1002/(SICI)1097-0010(20000515)80:7 < 1081::AID-JSFA566 > 3.0.CO;2-G.
  • Nemeth, K.; Piskula, M. K. Food Content, Processing, Absorption and Metabolism of Onion Flavonoids. Crit. Rev. Food Sci. Nutr. 2007, 47, 397–409. DOI: 10.1080/10408390600846291.
  • Wang, F. M.; Yao, T. W.; Zeng, S. Determination of Quercetin and Kaempferol in Human Urine after Orally Administrated Tablet of Ginkgo Biloba Extract by HPLC. J. Pharm. Biomed. Anal. 2003, 33, 317–321. DOI: 10.1016/S0731-7085(03)00255-3.
  • Liu, B.; Anderson, D.; Ferry, D. R.; Seymour, L. W.; de Takats, P. G.; Kerr, D. J. Determination of Quercetin in Human Plasma Using Reversed-Phase High-Performance Liquid Chromatography. J. Chromatogr. B Biomed. Appl. 1995, 666, 149–155. DOI: 10.1016/0378-4347(94)00549-K.
  • Pandey, J.; Bastola, T.; Tripathi, J.; Tripathi, M.; Rokaya, R. K.; Dhakal, B.; D. C, R.; Bhandari, R.; Poudel, A. Estimation of Total Quercetin and Rutin Content in Malus Domestica of Nepalese Origin by HPLC Method and Determination of Their Antioxidative Activity. J. Food Qual. A. Di Cerbo, Ed 2020, 2020, 1–13. DOI: 10.1155/2020/8853426.
  • Dong, X; Lan, W.; Yin, X.; Yang, C.; Wang, W.; Ni, W. Simultaneous Determination and Pharmacokinetic Study of Quercetin, Luteolin, and Apigenin in Rat Plasma after Oral Administration of Matricaria chamomilla L. Extract by HPLC-UV.Evidence-Based Complement.Altern. Med. 2017, 32, e4129. DOI:10.1002/bmc.4129.
  • Zahoor, M.; Shafiq, S.; Ullah, H.; Sadiq, A.; Ullah, F. Isolation of Quercetin and Mandelic Acid from Aesculus indica Fruit and Their Biological Activities. BMC Biochem. 2018, 19, 5. DOI: 10.1186/s12858-018-0095-7.
  • Wang, Y.; Cao, J.; Weng, J.-H.; Zeng, S. Simultaneous Determination of Quercetin, Kaempferol and Isorhamnetin Accumulated Human Beast Cancer Cells, by High-Performance Liquid Chromatography. J. Pharm. Biomed. Anal. 2005, 39, 328–333. DOI: 10.1016/j.jpba.2005.03.016.
  • Zhu, X.; Ping, W. Optimization of β-Cyclodextrin Cross-Linked Polymer for Monitoring of Quercetin. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2014, 132, 38–43. DOI: 10.1016/j.saa.2014.04.082.
  • Ranjbar Banforuzi, S.; Hadjmohammadi, M. R. Two-Phase Hollow Fiber-Liquid Microextraction Based on Reverse Micelle for the Determination of Quercetin in Human Plasma and Vegetables Samples. Talanta Elsevier B.V 2017, 173, 14–21. DOI: 10.1016/j.talanta.2017.05.058.
  • Sohrabi, M. R.; Darabi, G. The Application of Continuous Wavelet Transform and Least Squares Support Vector Machine for the Simultaneous Quantitative Spectrophotometric Determination of Myricetin, Kaempferol and Quercetin as Flavonoids in Pharmaceutical Plants. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2016, 152, 443–452. DOI: 10.1016/j.saa.2015.07.073.
  • Du, F.-Y.; Xiao, X.-H.; Li, G.-K. Ionic Liquid Aqueous Solvent-Based Microwave-Assisted Hydrolysis for the Extraction and HPLC Determination of Myricetin and Quercetin from Myrica Rubra Leaves. Biomed. Chromatogr. 2011, 25, 472–478. DOI: 10.1002/bmc.1470.
  • Olszewska, M. Separation of Quercetin, Sexangularetin, Kaempferol and Isorhamnetin for Simultaneous HPLC Determination of Flavonoid Aglycones in Inflorescences, Leaves and Fruits of Three Sorbus Species. J. Pharm. Biomed. Anal. 2008, 48, 629–635. DOI: 10.1016/j.jpba.2008.06.004.
  • de Souza Dias, F.; Silva, M. F.; David, J. M. Determination of Quercetin, Gallic Acid, Resveratrol, Catechin and Malvidin in Brazilian Wines Elaborated in the Vale Do São Francisco Using Liquid-Liquid Extraction Assisted by Ultrasound and GC-MS. Food Anal. Methods 2013, 6, 963–968. DOI: 10.1007/s12161-012-9507-2.
  • Ishii, K.; Furuta, T.; Kasuya, Y. High-Performance Liquid Chromatographic Determination of Quercetin in Human Plasma and Urine Utilizing Solid-Phase Extraction and Ultraviolet Detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003, 794, 49–56. DOI: 10.1016/S1570-0232(03)00398-2.
  • Wianowska, D. Application of Sea Sand Disruption Method for HPLC Determination of Quercetin in Plants. J. Liq. Chromatogr. Relat. Technol 2015: 2015, 38, 1037–1043. DOI: 10.1080/10826076.2015.1012520.
  • Schieber, A.; Keller, P.; Carle, R. Determination of Phenolic Acids and Flavonoids of Apple and Pear by High-Performance Liquid Chromatography. J. Chromatogr. A 2001, 910, 265–273. DOI: 10.1016/S0021-9673(00)01217-6.
  • Inbaraj, B. S.; Lu, H.; Kao, T. H.; Chen, B. H. Simultaneous Determination of Phenolic Acids and Flavonoids in Lycium Barbarum Linnaeus by HPLC-DAD-ESI-MS. J. Pharm. Biomed. Anal. 2010, 51, 549–556. DOI: 10.1016/j.jpba.2009.09.006.
  • Emilia, S.; Yetti, R. D.; Asra, R. Development and Analysis of Analytical Methods for Determination of Catechins and Quercetin in Natural Products. A Review. J. Heal. Sci. Res 2020, 5, 38–46.
  • Graefe, E. U.; Wittig, J.; Mueller, S.; Riethling, A. K.; Uehleke, B.; Drewelow, B.; Pforte, H.; Jacobasch, G.; Derendorf, H.; Veit, M. Pharmacokinetics and Bioavailability of Quercetin Glycosides in Humans. J. Clin. Pharmacol. 2001, 41, 492–499. DOI: 10.1177/00912700122010366.
  • Arabi, M.; Ostovan, A.; Asfaram, A.; Ghaedi, M. Development of an Eco-Friendly Approach Based on Dispersive Liquid-Liquid Microextraction for the Quantitative Determination of Quercetin in: Nasturtium officinale, Apium graveolens, Spinacia oleracea, Brassica oleracea Var. sabellica, and Food Samples. New J. Chem. 2018, 42, 14340–14348. DOI: 10.1039/c8nj02485e.
  • Desmiaty, Y.; Alatas, F. Determination of Quercetin in Hibiscus sabdariffa L. calyces by Hgh-Performance Liquid Chromatography (HPLC). Proc. Int. Semin. Chem. 2008, 1, 385–388.
  • Mattila, P.; Astola, J.; Kumpulainen, J. Determination of Flavonoids in Plant Material by HPLC with Diode-Array and Electro-Array Detections. J. Agric. Food Chem. 2000, 48, 5834–5841. DOI: 10.1021/jf000661f.
  • Dmitrienko, S. G.; Kudrinskaya, V. A.; Apyari, V. V. Methods of Extraction, Preconcentration, and Determination of Quercetin. J. Anal. Chem. 2012, 67, 299–311. DOI: 10.1134/S106193481204003X.
  • Jin, D.; Hakamata, H.; Takahashi, K.; Kotani, A.; Kusu, F. Determination of Quercetin in Human Plasma after Ingestion of Commercial Canned Green Tea by Semi-Micro HPLC with Electrochemical Detection. Biomed. Chromatogr. 2004, 18, 662–666. DOI: 10.1002/bmc.370.
  • Wang, X.; Zhao, X.; Gu, L.; Lv, C.; He, B.; Liu, Z.; Hou, P.; Bi, K.; Chen, X. Simultaneous Determination of Five Free and Total Flavonoids in Rat Plasma by Ultra HPLC – MS/MS and Its Application to a Comparative Pharmacokinetic Study in Normal and Hyperlipidemic Rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 953-954, 1–10. DOI: 10.1016/j.jchromb.2014.01.042.
  • Dias, F.; de, S.; David, J. M.; David, J. P. Determination of Phenolic Acids and Quercetin in Brazilian Red Wines from Vale Do São Francisco Region Using Liquid-Liquid Ultrasound-Assisted Extraction and HPLC-DAD-MS. J. Braz. Chem. Soc. 2015, 27, 1055–1059. DOI: 10.5935/0103-5053.20150363.
  • Zhu, Z.; Zhang, Y.; Wang, J.; Li, X.; Wang, W.; Huang, Z. Sugaring-out Assisted Liquid-Liquid Extraction Coupled with High Performance Liquid Chromatography-Electrochemical Detection for the Determination of 17 Phenolic Compounds in Honey. J. Chromatogr. A 2019, 1601, 104–114. DOI: 10.1016/j.chroma.2019.06.023.
  • Zhou, Y.; Liu, X.; Zheng, X.-H.; Zheng, J. Simultaneous Determination of Quercetin and Luteolin in Dried Flowers by Multivariate HPLC-ECD Calibration. Chroma. 2007, 66, 635–637. DOI: 10.1365/s10337-007-0363-y.
  • Wach, A.; Pyrzyńska, K.; Biesaga, M. Quercetin Content in Some Food and Herbal Samples. Food Chem 2007, 100, 699–704. DOI: 10.1016/j.foodchem.2005.10.028.
  • Williams, F. B.; Sander, L. C.; Wise, S. A.; Girard, J. Development and Evaluation of Methods for Determination of Naphthodianthrones and Flavonoids in St. John’s Wort. J. Chromatogr. A 2006, 1115, 93–102. DOI: 10.1016/j.chroma.2006.02.078.
  • Zhang, Q.; Cui, H. Simultaneous Determination of Quercetin, Kaempferol, and Isorhamnetin in Phytopharmaceuticals of Hippophae rhamnoides L. by High-Performance Liquid Chromatography with Chemiluminescence Detection. J. Sep. Sci. 2005, 28, 1171–1178. DOI: 10.1002/jssc.200500055.
  • Swaroop, A.; Gupta, A. P.; Sinha, A. K. Simultaneous Determination of Quercetin, Rutin and Coumaric Acid in Flowers of Rhododendron Arboreum by HPTLC. Chroma. 2005, 62, 649–652. DOI: 10.1365/s10337-005-0669-6.
  • Mocan, A.; Schafberg, M.; Crișan, G.; Rohn, S. Determination of Lignans and Phenolic Components of Schisandra chinensis (Turcz.) Baill. using HPLC-ESI-ToF-MS and HPLC-Online TEAC: Contribution of Individual Components to Overall Antioxidant Activity and Comparison with Traditional Antioxidant Assays. J. Funct. Foods 2016, 24, 579–594. DOI: 10.1016/j.jff.2016.05.007.
  • Jiang, H.; Engelhardt, U. H.; Thräne, C.; Maiwald, B.; Stark, J. Determination of Flavonol Glycosides in Green Tea, Oolong Tea and Black Tea by UHPLC Compared to HPLC. Food Chem. 2015, 183, 30–35. DOI: 10.1016/j.foodchem.2015.03.024.
  • Zhang, S.; Dong, S.; Chi, L.; He, P.; Wang, Q.; Fang, Y. Simultaneous Determination of Flavonoids in Chrysanthemum by Capillary Zone Electrophoresis with Running Buffer Modifiers. Talanta 2008, 76, 780–784. DOI: 10.1016/j.talanta.2008.04.025.
  • Kumar, S.; Lather, V.; Pandita, D. Stability Indicating Simplified HPLC Method for Simultaneous Analysis of Resveratrol and Quercetin in Nanoparticles and Human Plasma. Food Chem. 2016, 197, 959–964. DOI: 10.1016/j.foodchem.2015.11.078.
  • Chen, H.; Zuo, Y.; Deng, Y. Separation and Determination of Flavonoids and Other Phenolic Compounds in Cranberry Juice by High-Performance Liquid Chromatography. J. Chromatogr. A 2001, 913, 387–395. DOI: 10.1016/S0021-9673(00)01030-X.
  • Korta, E.; Bakkali, A.; Berrueta, L.; Gallo, B.; Vicente, F. Study of Semi-Automated Solid-Phase Extraction for the Determination of Acaricide Residues in Honey by Liquid Chromatography. J. Chromatogr. A 2001, 930, 21–29. DOI: 10.1016/S0021-9673(01)01184-0.
  • Nielsen, S. E.; Dragsted, L. O. Column-Switching High-Performance Liquid Chromatographic Assay for the Determination of Quercetin in Human Urine with Ultraviolet Absorbance Detection. J. Chromatogr. B Biomed. Sci. Appl. 1998, 707, 81–89. DOI: 10.1016/S0378-4347(97)00574-4.
  • Buiarelli, F.; Bernardini, F.; Di Filippo, P.; Riccardi, C.; Pomata, D.; Simonetti, G.; Risoluti, R. Extraction, Purification, and Determination by HPLC of Quercetin in Some Italian Wines. Food Anal. Methods 2018, 11, 3558–3562. DOI: 10.1007/s12161-018-1337-4.
  • Wang, S.-P.; Huang, K.-J. Determination of Flavonoids by High-Performance Liquid Chromatography and Capillary Electrophoresis. J. Chromatogr. A 2004, 1032, 273–279. DOI: 10.1016/j.chroma.2003.11.099.
  • Hammad, S. F.; Abdallah, I. A.; Bedair, A.; Mansour, F. R. Salting-out Induced Liquid–Liquid Microextraction for Alogliptin Benzoate Determination in Human Plasma by HPLC/UV. BMC Chem. 2021, 15, 2. DOI: 10.1186/s13065-020-00729-8.
  • Hammad, S. F.; Abdallah, I. A.; Bedair, A.; Mansour, F. R. Homogeneous Liquid–Liquid Extraction as an Alternative Sample Preparation Technique for Biomedical Analysis. J. Sep. Sci. 2022, 45, 185–209. DOI: 10.1002/jssc.202100452.
  • Mabrouk, M. M.; Soliman, S. M.; El-Agizy, H. M.; Mansour, F. R. Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction for Determination of Three Gliflozins in Human Plasma by HPLC/DAD. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1136, 121932. DOI: 10.1016/j.jchromb.2019.121932.
  • Mansour, F. R.; Danielson, N. D. Solidification of Floating Organic Droplet in Dispersive Liquid-Liquid Microextraction as a Green Analytical Tool. Talanta 2017, 170, 22–35. DOI: 10.1016/j.talanta.2017.03.084.
  • Mansour, F. R.; Khairy, M. A. Pharmaceutical and Biomedical Applications of Dispersive Liquid–Liquid Microextraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1061-1062, 382–391. DOI: 10.1016/J.JCHROMB.2017.07.055.
  • Mansour, F. R.; Danielson, N. D. Solvent-Terminated Dispersive Liquid-Liquid Microextraction: A Tutorial. Anal. Chim. Acta. 2018, 1016, 1–11. DOI: 10.1016/j.aca.2018.02.005.
  • Abdallah, I. A.; Hammad, S. F.; Bedair, A.; Abdelaziz, M. A.; Danielson, N. D.; Elshafeey, A. H.; Mansour, F. R. A Gadolinium‐Based Magnetic Ionic Liquid for Supramolecular Dispersive Liquid–Liquid Microextraction Followed by HPLC/UV for the Determination of Favipiravir in Human Plasma. Biomed. Chromatogr. 2022, 36, e5365. DOI: 10.1002/bmc.5365.
  • Abdallah, I. A.; Hammad, S. F.; Bedair, A.; Mansour, F. R. Menthol-Assisted Homogenous Liquid-Liquid Microextraction for HPLC/UV Determination of Favipiravir as an Antiviral for COVID-19 in Human Plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2022, 1189, 123087. DOI: 10.1016/j.jchromb.2021.123087.
  • Abdallah, I. A.; Hammad, S. F.; Bedair, A.; Elshafeey, A. H.; Mansour, F. R. Determination of Favipiravir in Human Plasma Using Homogeneous Liquid–Liquid Microextraction Followed by HPLC/UV. Bioanalysis 2022, 14, 205–216. DOI: 10.4155/bio-2021-0219.
  • Abdallah, I. A.; Hammad, S. F.; Bedair, A.; Mansour, F. R. Sugaring‐out Induced Homogeneous Liquid‐Liquid Microextraction as an Alternative Mode for Biological Sample Preparation: A Comparative Study. J. Sep. Sci. 2021, 44, 3117–3125. DOI: 10.1002/jssc.202100255.
  • Abdallah, I. A.; Hammad, S. F.; Bedair, A.; Mansour, F. R. A Green Homogeneous Liquid-Liquid Microextraction Method for Spectrophotometric Determination of Daclatasvir in Human Plasma. Sustain. Chem. Pharm. Elsevier B.V 2021, 22, 100498. DOI: 10.1016/j.scp.2021.100498.
  • Kabir, A.; Locatelli, M.; Ulusoy, H. I. Recent Trends in Microextraction Techniques Employed in Analytical and Bioanalytical Sample Preparation. Separations 2017, 4, 36. DOI: 10.3390/separations4040036.
  • Hamed, M.; Abdallah, I. A.; Bedair, A.; Mansour, F. R. Sample Preparation Methods for Determination of Quercetin and Quercetin Glycosides in Diverse Matrices. Microchem. J. 2023, 194, 109233–109210. 1016/j.microc.2023.109233. DOI: 10.1016/j.microc.2023.109233.
  • Pejic, N.; Kuntic, V.; Vujic, Z.; Micic, S. Direct Spectrophotometric Determination of Quercetin in the Presence of Ascorbic Acid. Farmaco 2004, 59, 21–24. DOI: 10.1016/j.farmac.2003.07.013.
  • Belščak-Cvitanović, A.; Valinger, D.; Benković, M.; Tušek, A. J.; Jurina, T.; Komes, D.; Gajdoš Kljusurić, J. Integrated Approach for Bioactive Quality Evaluation of Medicinal Plant Extracts Using HPLC-DAD, Spectrophotometric, near Infrared Spectroscopy and Chemometric Techniques. Int. J. Food Prop. 2017, 20, S2463–S2480. DOI: 10.1080/10942912.2017.1373122.
  • Kurzawa, M. Determination of Quercetin and Rutin in Selected Herbs and Pharmaceutical Preparations. Anal. Lett. 2010, 43, 993–1002. DOI: 10.1080/00032710903491070.
  • González, M.; Guzmán, B.; Rudyk, R.; Romano, E.; Molina, M. A. A. Spectrophotometric Determination of Phenolic Compounds in Propolis. Acta Farm. Bonaer. 2003, 22, 243–248.
  • Asfaram, A.; Ghaedi, M.; Javadian, H.; Goudarzi, A. Cu- and S- @SnO2 Nanoparticles Loaded on Activated Carbon for Efficient Ultrasound Assisted Dispersive µSPE-Spectrophotometric Detection of Quercetin in Nasturtium Officinale Extract and Fruit Juice Samples: CCD-RSM Design. Ultrason. Sonochem. 2018, 47, 1–9. DOI: 10.1016/j.ultsonch.2018.04.008.
  • Matić, P.; Sabljić, M.; Jakobek, L. Validation of Spectrophotometric Methods for the Determination of Total Polyphenol and Total Flavonoid Content. J. AOAC Int. 2017, 100, 1795–1803. DOI: 10.5740/jaoacint.17-0066.
  • Kanberoglu, G. S.; Yilmaz, E.; Soylak, M. Application of Deep Eutectic Solvent in Ultrasound-Assisted Emulsification Microextraction of Quercetin from Some Fruits and Vegetables. J. Mol. Liq. 2019, 279, 571–577. DOI: 10.1016/j.molliq.2019.01.130.
  • Soylak, M.; Ozdemir, B.; Yilmaz, E. An Environmentally Friendly and Novel Amine-Based Liquid Phase Microextraction of Quercetin in Food Samples Prior to Its Determination by UV–Vis Spectrophotometry. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 243, 118806. DOI: 10.1016/j.saa.2020.118806.
  • Baranowska, I.; Raróg, D. Application of Derivative Spectrophotometry to Determination of Flavonoid Mixtures. Talanta 2001, 55, 209–212. DOI: 10.1016/S0039-9140(01)00408-8.
  • Tankeviciute, A.; Kazlauskas, R.; Vickackaite, V. Headspace Extraction of Alcohols into a Single Drop. Analyst 2001, 126, 1674–1677. DOI: 10.1039/b103493f.
  • Jain, A.; Verma, K. K. Recent Advances in Applications of Single-Drop Microextraction: A Review. Anal. Chim. Acta. 2011, 706, 37–65. DOI: 10.1016/j.aca.2011.08.022.
  • Mingyuan, G.; Yangcheng, L.; Guangsheng, L. Directly Suspended Droplet Microextraction in a Rotating Vial. Anal. Chim. Acta. 2009, 648, 123–127. DOI: 10.1016/j.aca.2009.06.040.
  • Sharma, N.; Pillai, A. K. K. V.; Pathak, N.; Jain, A.; Verma, K. K. Liquid-Phase Microextraction and Fibre-Optics-Based Cuvetteless CCD-Array Micro-Spectrophotometry for Trace Analysis. Anal. Chim. Acta. 2009, 648, 183–193. DOI: 10.1016/j.aca.2009.07.006.
  • Pillai, A. K. K. V.; Jain, A.; Verma, K. K. Headspace Single-Drop Microextraction and Fibre Optics-Based Cuvetteless Micro-Spectrophotometry for the Determination of Chloride Involving Oxidation with Permanganate. Talanta 2010, 80, 1816–1822. DOI: 10.1016/j.talanta.2009.10.027.
  • Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Colorimetric Assay for Determination of Trimethylamine-Nitrogen (TMA-N) in Fish by Combining Headspace-Single-Drop Microextraction and Microvolume UV–Vis Spectrophotometry. Food Chem. 2010, 119, 402–407. DOI: 10.1016/j.foodchem.2009.07.038.
  • Wen, X.; Deng, Q.; Guo, J.; Yang, S. Ultra-Sensitive Determination of Cadmium in Rice and Water by UV–Vis Spectrophotometry after Single Drop Microextraction. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2011, 79, 508–512. DOI: 10.1016/j.saa.2011.03.021.
  • Pena-Pereira, F.; Cabaleiro, N.; de la Calle, I.; Costas, M.; Gil, S.; Lavilla, I.; Bendicho, C. Directly Suspended Droplet Microextraction in Combination with Microvolume UV–Vis Spectrophotometry for Determination of Phosphate. Talanta 2011, 85, 1100–1104. DOI: 10.1016/j.talanta.2011.05.032.
  • Yang, F.; Liu, R.; Tan, Z.; Wen, X.; Zheng, C.; Lv, Y. Sensitive Determination of Mercury by a Miniaturized Spectrophotometer after in Situ Single-Drop Microextraction. J. Hazard. Mater. 2010, 183, 549–553. DOI: 10.1016/j.jhazmat.2010.07.059.
  • Senra-Ferreiro, S.; Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Griess Micro-Assay for the Determination of Nitrite by Combining Fibre Optics-Based Cuvetteless UV–Vis Micro-Spectrophotometry with Liquid-Phase Microextraction. Anal. Chim. Acta. 2010, 668, 195–200. DOI: 10.1016/j.aca.2010.04.038.
  • Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Headspace Single-Drop Microextraction Coupled to Microvolume UV–Vis Spectrophotometry for Iodine Determination. Anal. Chim. Acta. 2009, 631, 223–228. DOI: 10.1016/j.aca.2008.10.048.
  • Shokoufi, N.; Shemirani, F.; Assadi, Y. Fiber Optic-Linear Array Detection Spectrophotometry in Combination with Dispersive Liquid–Liquid Microextraction for Simultaneous Preconcentration and Determination of Palladium and Cobalt. Anal. Chim. Acta. 2007, 597, 349–356. DOI: 10.1016/j.aca.2007.07.009.
  • Zgoła-Grześkowiak, A.; Grześkowiak, T. Dispersive Liquid-Liquid Microextraction. TrAC Trends Anal. Chem. Elsevier 2011, 30, 1382–1399. DOI: 10.1016/J.TRAC.2011.04.014.
  • Gharehbaghi, M.; Shemirani, F.; Farahani, M. D. Cold-Induced Aggregation Microextraction Based on Ionic Liquids and Fiber Optic-Linear Array Detection Spectrophotometry of Cobalt in Water Samples. J. Hazard. Mater. 2009, 165, 1049–1055. DOI: 10.1016/j.jhazmat.2008.10.128.
  • Baghdadi, M.; Shemirani, F. Cold-Induced Aggregation Microextraction: A Novel Sample Preparation Technique Based on Ionic Liquids. Anal. Chim. Acta. 2008, 613, 56–63. DOI: 10.1016/j.aca.2008.02.057.
  • Baghdadi, M.; Shemirani, F. In Situ Solvent Formation Microextraction Based on Ionic Liquids: A Novel Sample Preparation Technique for Determination of Inorganic Species in Saline Solutions. Anal. Chim. Acta. 2009, 634, 186–191. DOI: 10.1016/j.aca.2008.12.017.
  • Khalili Zanjani, M. R.; Yamini, Y.; Shariati, S.; Jönsson, J. Å. A New Liquid-Phase Microextraction Method Based on Solidification of Floating Organic Drop. Anal. Chim. Acta. 2007, 585, 286–293. DOI: 10.1016/j.aca.2006.12.049.
  • Cabaleiro, N.; Pena-Pereira, F.; de la Calle, I.; Bendicho, C.; Lavilla, I. Determination of Triclosan by Cuvetteless UV–Vis Micro-Spectrophotometry following Simultaneous Ultrasound Assisted Emulsification–Microextraction with Derivatization: Use of a Micellar-Ionic Liquid as Extractant. Microchem. J. 2011, 99, 246–251. DOI: 10.1016/j.microc.2011.05.010.
  • Lavilla, I.; Cabaleiro, N.; Pena, F.; de la Calle, I.; Bendicho, C. Ultrasound-Assisted Emulsification Microextraction with Simultaneous Derivatization Coupled to Fibre Optics-Based Cuvetteless UV–Vis Micro-Spectrophotometry for Formaldehyde Determination in Cosmetic Samples. Anal. Chim. Acta. 2010, 674, 59–63. DOI: 10.1016/j.aca.2010.06.021.
  • Anastas, P. T.; Warner, J. C. Green Chemistry. Frontiers (Boulder) 1998, 640, 850.
  • Ghambarian, M.; Yamini, Y.; Esrafili, A. Developments in Hollow Fiber Based Liquid-Phase Microextraction: Principles and Applications. Microchim. Acta 2012, 177, 271–294. DOI: 10.1007/s00604-012-0773-x.
  • Hassan, M.; Uzcan, F.; Nasrullah, S.; Alshana, U.; Soylak, M. Switchable-Hydrophilicity Solvent Liquid-Liquid Microextraction for Sample Cleanup Prior to Dispersive Magnetic Solid-Phase Microextraction for Spectrophotometric Determination of Quercetin in Food Samples. Sustain. Chem. Pharm. 2021, 22, 100480. DOI: 10.1016/j.scp.2021.100480.
  • Falkovskaia, E.; Sengupta, P.; Kasha, M. Photophysical Induction of Dual Fluorescence of Quercetin and Related Hydroxyflavones upon Intermolecular H-Bonding to Solvent Matrix. Chem. Phys. Lett 1998, 297, 109–114. DOI: 10.1016/S0009-2614(98)01112-9.
  • Sengupta, B.; Sengupta, P. K. The Interaction of Quercetin with Human Serum Albumin: A Fluorescence Spectroscopic Study. Biochem. Biophys. Res. Commun. 2002, 299, 400–403. DOI: 10.1016/S0006-291X(02)02667-0.
  • Nifli, A.-P.; Theodoropoulos, P. A.; Munier, S.; Castagnino, C.; Roussakis, E.; Katerinopoulos, H. E.; Vercauteren, J.; Castanas, E. Quercetin Exhibits a Specific Fluorescence in Cellular Milieu: A Valuable Tool for the Study of Its Intracellular Distribution. J. Agric. Food Chem. 2007, 55, 2873–2878. DOI: 10.1021/jf0632637.
  • Alva-Ensastegui, J. C.; Palomar-Pardavé, M.; Romero-Romo, M.; Ramírez-Silva, M. T. Quercetin Spectrofluorometric Quantification in Aqueous Media Using Different Surfactants as Fluorescence Promoters. RSC Adv. 2018, 8, 10980–10986. DOI: 10.1039/C8RA01213J.
  • Gupta, N. K.; Nahata, A.; Dixit, V. K. Development of a Spectrofluorimetric Method for the Determination of Quercetin.Asian J. Tradit. Med. 2010, 5, 12–18.
  • Pavun, L.; Đurđević, P.; Jelikić-Stankov, M.; Đikanović, D.; Ćirić, A.; Uskoković-Marković, S. Spectrofluorimetric Determination of Quercetin in Pharmaceutical Dosage Forms. Maced. J. Chem. Chem. Eng. 2014, 33, 209. DOI: 10.20450/mjcce.2014.496.
  • Jangde, R. K.; Singh, M.; Singh, D. Development and Determination of Rutin by Spectrofluorimetric Method. Biomed. Pharmacol. J. 2014, 7, 681–686. DOI: 10.13005/bpj/541.
  • Sinduja, B.; Abraham John, S. Sensitive Determination of Rutin by Spectrofluorimetry Using Carbon Dots Synthesized from a Non-Essential Amino Acid. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2018, 193, 486–491. DOI: 10.1016/j.saa.2017.12.067.
  • Asadollahi, T.; Dadfarnia, S.; Haji Shabani, A. M.; Amirkavei, M. Separation/Preconcentration and Determination of Quercetin in Food Samples by Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Drop -Flow Injection Spectrophotometry. J. Food Sci. Technol. 2015, 52, 1103–1109. DOI: 10.1007/s13197-013-1077-9.
  • Dinç, E.; Üçer, A.; Ünal, N. Three-Dimensional Strategies in the Quantitative Resolution of Kinetic UV Absorbance Measurements for Monitoring the Oxidation of Quercetin by Oxidant Agents and Analyzing Dietary Supplement Product. J. Food Drug Anal. 2023, 31, 326–337. DOI: 10.38212/2224-6614.3455.
  • Fang, F.; Li, J.; Pan, Q.; Huang, W. Determination of Red Wine Flavonoids by HPLC and Effect of Aging. Food Chem. 2007, 101, 428–433. DOI: 10.1016/j.foodchem.2005.12.036.
  • Lai, X.; Liang, H.; Zhao, Y.; Wang, B. Simultaneous Determination of Seven Active Flavonols in the Flowers of Abelmoschus manihot by HPLC. J. Chromatogr. Sci. 2009, 47, 206–210. DOI: 10.1093/chromsci/47.3.206.
  • Sladkovský, R.; Solich, P.; Opletal, L. Simultaneous Determination of Quercetin, Kaempferol and (E)-Cinnamic Acid in Vegetative Organs of Schisandra chinensis Baill. by HPLC. J. Pharm. Biomed. Anal. 2001, 24, 1049–1054. DOI: 10.1016/S0731-7085(00)00539-2.
  • Yang, Y.; Zhang, F. Ultrasound-Assisted Extraction of Rutin and Quercetin from Euonymus Alatus (Thunb.). Ultrason. Sonochem. 2008, 15, 308–313. DOI: 10.1016/j.ultsonch.2007.05.001.
  • Zu, Y.; Li, C.; Fu, Y.; Zhao, C. Simultaneous Determination of Catechin, Rutin, Quercetin Kaempferol and Isorhamnetin in the Extract of Sea Buckthorn (Hippophae rhamnoides L.) Leaves by RP-HPLC with DAD. J. Pharm. Biomed. Anal. 2006, 41, 714–719. DOI: 10.1016/j.jpba.2005.04.052.
  • Soleas, G. J.; Yan, J.; Goldberg, D. M. Ultrasensitive Assay for Three Polyphenols (Catechin, Quercetin and Resveratrol) and Their Conjugates in Biological Fluids Utilizing Gas Chromatography with Mass Selective Detection. J. Chromatogr. B Biomed. Sci. Appl. 2001, 757, 161–172. DOI: 10.1016/s0378-4347(01)00142-6.
  • Park, J.S.; Kim, I.S.; Rehman, S.U.; Na, C.S.; Yoo, H.H. HPLC Determination of Bioactive Flavonoids in Hovenia dulcis Fruit Extracts. J Chromatogr Sci. 2016, 54(2), 130–135 DOI: 10.1093/chromsci/bmv114.
  • Aguilar-Sánchez, R.; Áhuatl-García, F.; Dávila-Jiménez, M. M.; Elizalde-González, M. P.; Guevara-Villa, M. R. G. Chromatographic and Electrochemical Determination of Quercetin and Kaempferol in Phytopharmaceuticals. J. Pharm. Biomed. Anal. 2005, 38, 239–249. DOI: 10.1016/j.jpba.2004.12.022.
  • Rodríguez-Delgado, M. A.; Malovaná, S.; Pérez, J. P.; Borges, T.; García Montelongo, F. J. Separation of Phenolic Compounds by High-Performance Liquid Chromatography with Absorbance and Fluorimetric Detection. J. Chromatogr. A 2001, 912, 249–257. DOI: 10.1016/S0021-9673(01)00598-2.
  • Swatsitang, P.; Tucker, G.; Robards, K.; Jardine, D. Isolation and Identification of Phenolic Compounds in Citrus Sinensis. Anal. Chim. Acta 2000, 417, 231–240. DOI: 10.1016/S0003-2670(00)00937-5.
  • Geng, H.; Zhang, D.; Zha, J.; Qi, J. Simultaneous HPLC Determination of Five Flavonoids in Flos Inulae. Chroma. 2007, 66, 271–275. DOI: 10.1365/s10337-007-0285-8.
  • Stefova, M.; Kulevanova, S.; Stafilov, T. Assay of Flavonols and Quantification of Quercetin in Medicinal Plants by HPLC with UV-Diode Array Detection. J. Liq. Chromatogr. Relat. Technol 2001, 24, 2283–2292. DOI: 10.1081/JLC-100105140.
  • Adam, M.; Dobiáš, P.; Eisner, A.; Ventura, K. Extraction of Antioxidants Fom Plants Using Ultrasonic Methods and Their Antioxidant Capacity. J. Sep. Sci. 2009, 32, 288–294. DOI: 10.1002/jssc.200800543.
  • Nuutila, A. M.; Kammiovirta, K.; Oksman-Caldentey, K. M. Comparison of Methods for the Hydrolysis of Flavonoids and Phenolic Acids from Onion and Spinach for HPLC Analysis. Food Chem. 2002, 76, 519–525. DOI: 10.1016/S0308-8146(01)00305-3.
  • Molinelli, A.; Weiss, R.; Mizaikoff, B. Advanced Solid Phase Extraction Using Molecularly Imprinted Polymers for the Determination of Quercetin in Red Wine. J. Agric. Food Chem. 2002, 50, 1804–1808. DOI: 10.1021/jf011213q.
  • Sultana, B.; Anwar, F. Flavonols (Kaempeferol, Quercetin, Myricetin) Contents of Selected Fruits, Vegetables and Medicinal Plants. Food Chem. 2008, 108, 879–884. DOI: 10.1016/j.foodchem.2007.11.053.
  • Savic, I. M.; Nikolic, V. D.; Savic, I. M.; Nikolic, L. B.; Stankovic, M. Z. Development and Validation of a New RP-HPLC Method for Determination of Quercetin in Green Tea. J. Anal. Chem. 2013, 68, 906–911. DOI: 10.1134/S1061934813100080.
  • Ang, L. F.; Yam, M. F.; Fung, Y. T. T.; Kiang, P. K.; Darwin, Y. HPLC Method for Simultaneous Quantitative Detection of Quercetin and Curcuminoids in Traditional Chinese Medicines. J. Pharmacopuncture. 2014, 17, 36–49. DOI: 10.3831/KPI.2014.17.035.
  • Rasoolzadeh, F.; Hashemi, P.; Nazari Serenjeh, F. Ionic Liquid-Based Cloud-Point Extraction of Quercetin for Its Sensitive HPLC–UV Determination in Juice Samples. Acta Chromatogr 2017, 29, 493–496. DOI: 10.1556/1326.2016.28205.
  • Merken, H. M.; Beecher, G. R. Liquid Chromatographic Method for the Separation and Quantification of Prominent Flavonoid Aglycones. J. Chromatogr. A 2000, 897, 177–184. DOI: 10.1016/s0021-9673(00)00826-8.
  • D’Mello, P. M.; Joshi, U. J.; Shetgiri, P. P.; Dasgupta, T. K.; Darji, K. K. A Simple HPLC Method for Quantitation of Quercetin in Herbal Extracts. J. AOAC Int. 2011, 94, 100–105. DOI: 10.1093/jaoac/94.1.100.
  • Kumar, A.; Kumar, A.; Kumar, D. Analytica Chimica Acta a New Method for Determination of Myricetin and Quercetin Using Solid Phase Microextraction – High Performance Liquid Chromatography – Ultra Violet/Visible System in Grapes, Vegetables and Red Wine Samples. Anal. Chim. Acta. 2009, 631, 177–181. DOI: 10.1016/j.aca.2008.10.038.
  • Papp, I.; ApaTi, P.; Andrasek, V.; BlaZovics, A.; BalaZs, A.; Kursinszki, L.; Kite, G. C.; Houghton, P. J.; KeRy, A. LC-MS Analysis of Antioxidant Plant Phenoloids. Chromatographia 2004, 60, 93–100. DOI: 10.1365/s10337-004-0348-z.
  • Ćirić, A.; Prosen, H.; Jelikić-Stankov, M.; Đurđević, P. Evaluation of Matrix Effect in Determination of Some Bioflavonoids in Food Samples by LC–MS/MS Method. Talanta 2012, 99, 780–790. DOI: 10.1016/j.talanta.2012.07.025.
  • Yilmaz, M. A.; Ertas, A.; Yener, I.; Akdeniz, M.; Cakir, O.; Altun, M.; Demirtas, I.; Boga, M.; Temel, H. A Comprehensive LC–MS/MS Method Validation for the Quantitative Investigation of 37 Fingerprint Phytochemicals in Achillea Species: A Detailed Examination of A. coarctata and A. monocephala. J. Pharm. Biomed. Anal. 2018, 154, 413–424. DOI: 10.1016/j.jpba.2018.02.059.
  • Elhawary, S. S.; Younis, I. Y.; El Bishbishy, M. H.; Khattab, A. R. LC–MS/MS-Based Chemometric Analysis of Phytochemical Diversity in 13 Ficus Spp. (Moraceae): Correlation to Their in Vitro Antimicrobial and in Silico Quorum Sensing Inhibitory Activities. Ind. Crops Prod. Elsevier 2018, 126, 261–271. DOI: 10.1016/j.indcrop.2018.10.017.
  • Mighri, H.; Akrout, A.; Bennour, N.; Eljeni, H.; Zammouri, T.; Neffati, M. LC/MS Method Development for the Determination of the Phenolic Compounds of Tunisian Ephedra Alata Hydro-Methanolic Extract and Its Fractions and Evaluation of Their Antioxidant Activities. South African J. Bot. SAAB 2019, 124, 102–110 10. DOI: 10.1016/j.sajb.2019.04.029.
  • Eroglu, E.; Girgin, S. N. A Unique Phenolic Extraction Method from Olive Oil Macerate of Hypericum perforatum Using DMSO: Assessment of in Vitro Anticancer Activity, LC-MS/MS Profile, Total Phenolic Content and Antioxidant Capacity. South African J. Bot. 2021, 139, 6–11. DOI: 10.1016/j.sajb.2021.01.015.
  • Wang, Y.; Berhow, M. A.; Black, M.; Jeffery, E. H. A Comparison of the Absorption and Metabolism of the Major Quercetin in Brassica, Quercetin-3-O-Sophoroside, to That of Quercetin Aglycone, in Rats. Food Chem. 2020, 311, 125880. DOI: 10.1016/j.foodchem.2019.125880.
  • Ferracane, R.; Graziani, G.; Gallo, M.; Fogliano, V.; Ritieni, A. Metabolic Profile of the Bioactive Compounds of Burdock (Arctium lappa) Seeds, Roots and Leaves. J. Pharm. Biomed. Anal. 2010, 51, 399–404. DOI: 10.1016/j.jpba.2009.03.018.
  • Yilmaz, M. A. Simultaneous Quantitative Screening of 53 Phytochemicals in 33 Species of Medicinal and Aromatic Plants: A Detailed, Robust and Comprehensive LC–MS/MS Method Validation. Ind. Crops Prod. 2020, 149, 112347. DOI: 10.1016/j.indcrop.2020.112347.
  • Shevchuk, A.; Jayasinghe, L.; Kuhnert, N. Differentiation of Black Tea Infusions according to Origin, Processing and Botanical Varieties Using Multivariate Statistical Analysis of LC-MS Data. Food Res. Int. 2018, 109, 387–402. DOI: 10.1016/j.foodres.2018.03.059.
  • Rogerio, A. P.; Dora, C. L.; Andrade, E. L.; Chaves, J. S.; Silva, L. F. C.; Lemos-Senna, E.; Calixto, J. B. Anti-Inflammatory Effect of Quercetin-Loaded Microemulsion in the Airways Allergic Inflammatory Model in Mice. Pharmacol. Res. 2010, 61, 288–297. DOI: 10.1016/j.phrs.2009.10.005.
  • Zhang, X.; Laursen, R. Application of LC–MS to the Analysis of Dyes in Objects of Historical Interest. Int. J. Mass Spectrom. 2009, 284, 108–114. DOI: 10.1016/j.ijms.2008.07.014.
  • Theodoridis, G.; Gika, H.; Franceschi, P.; Caputi, L.; Arapitsas, P.; Scholz, M.; Masuero, D.; Wehrens, R.; Vrhovsek, U.; Mattivi, F. LC-MS Based Global Metabolite Profiling of Grapes: Solvent Extraction Protocol Optimisation. Metabolomics 2012, 8, 175–185. DOI: 10.1007/s11306-011-0298-z.
  • Lv, L.; Liu, C.; Li, Z.; Song, F.; Li, G.; Huang, X. Pharmacokinetics of Quercetin-Loaded Methoxy Poly(Ethylene Glycol)-b-Poly(L-Lactic Acid) Micelle after Oral Administration in Rats. Biomed Res. Int. 2017, 2017, 1750895. DOI: 10.1155/2017/1750895.
  • Abid, M.; Yaich, H.; Cheikhrouhou, S.; Khemakhem, I.; Bouaziz, M.; Attia, H.; Ayadi, M. A. Antioxidant Properties and Phenolic Profile Characterization by LC–MS/MS of Selected Tunisian Pomegranate Peels. J. Food Sci. Technol. 2017, 54, 2890–2901. DOI: 10.1007/s13197-017-2727-0.
  • Ishisaka, A.; Ichikawa, S.; Sakakibara, H.; Piskula, M. K.; Nakamura, T.; Kato, Y.; Ito, M.; Miyamoto, K-i.; Tsuji, A.; Kawai, Y.; Terao, J. Accumulation of Orally Administered Quercetin in Brain Tissue and Its Antioxidative Effects in Rats. Free Radic. Biol. Med. 2011, 51, 1329–1336. DOI: 10.1016/j.freeradbiomed.2011.06.017.
  • Pusporini, R.; Baabdullah, H.O.; Andyka, V. Quantification of Quercetin and Chlorogenic Acid in Papaya Seed Ethanol Extract.Asian J. Pharm. Clin. Res. 2019, 13, 151–153. DOI: 10.22159/ajpcr.2020.v13i1.36242.
  • Zhu, S.; Yan, H.; Niu, K.; Zhang, S. Simultaneous Determination of Seven Components from Hawthorn Leaves Flavonoids in Rat Plasma by LC-MS/MS. J. Chromatogr. Sci. 2015, 53, 909–914. DOI: 10.1093/chromsci/bmu143.
  • Liu, X.; Wang, Y.; Kong, J.; Nie, C.; Lin, X. Application of Ionic Liquids in the Microwave-Assisted Extraction of Quercetin from Chinese Herbal Medicine. Anal. Methods 2012, 4, 1012. DOI: 10.1039/c2ay05834k.
  • Ertas, A.; Yilmaz, M. A.; Firat, M. Chemical Profile by LC–MS/MS, GC/MS and Antioxidant Activities of the Essential Oils and Crude Extracts of Two Euphorbia Species. Nat. Prod. Res. 2015, 29, 529–534. DOI: 10.1080/14786419.2014.954113.
  • Wianowska, D.; Dawidowicz, A. L.; Bernacik, K.; Typek, R. Determining the True Content of Quercetin and Its Derivatives in Plants Employing SSDM and LC–MS Analysis. Eur. Food Res. Technol. 2017, 243, 27–40. DOI: 10.1007/s00217-016-2719-8.
  • Sánchez-Rabaneda, F.; Jáuregui, O.; Casals, I.; Andrés-Lacueva, C.; Izquierdo-Pulido, M.; Lamuela-Raventós, R. M. Liquid Chromatographic/Electrospray Ionization Tandem Mass Spectrometric Study of the Phenolic Composition of Cocoa (Theobroma cacao). J. Mass Spectrom. 2003, 38, 35–42. DOI: 10.1002/jms.395.
  • Rupasinghe, H. V.; Ronalds, C. M.; Rathgeber, B.; Robinson, R. A. Absorption and Tissue Distribution of Dietary Quercetin and Quercetin Glycosides of Apple Skin in Broiler Chickens. J. Sci. Food Agric. 2010, 90, 1172–1178. DOI: 10.1002/jsfa.3944.
  • Gómez, J. D.; Vital, C. E.; Oliveira, M. G. A.; Ramos, H. J. O. Broad Range Flavonoid Profiling by LC/MS of Soybean Genotypes Contrasting for Resistance to Anticarsia gemmatalis (Lepidoptera: Noctuidae). PLoS One. 2018, 13, e0205010. Ed DOI: 10.1371/journal.pone.0205010.
  • He, J.; Feng, Y.; Ouyang, H.-Z.; Yu, B.; Chang, Y.-X.; Pan, G.-X.; Dong, G.-Y.; Wang, T.; Gao, X.-M. A Sensitive LC–MS/MS Method for Simultaneous Determination of Six Flavonoids in Rat Plasma: Application to a Pharmacokinetic Study of Total Flavonoids from Mulberry Leaves. J. Pharm. Biomed. Anal. 2013, 84, 189–195. DOI: 10.1016/j.jpba.2013.06.019.
  • Kim, S. W.; Grant, J. E.; Yoon, G.; Williams, K. a.; Remmel, R. P. Safety of High-Dose Naltrexone Treatment: Hepatic Transaminase Profiles among Outpatients. Clin. Neuropharmacol. 2006, 29, 77–79. DOI: 10.1097/00002826-200603000-00004.
  • Sun, D.; Yan, Q.; Xu, X.; Shen, W.; Xu, C.; Tan, J.; Zhang, H.; Li, L.; Cheng, H. LC-MS/MS Analysis and Evaluation of the anti-Inflammatory Activity of Components from BushenHuoxue Decoction. Pharm. Biol. 2017, 55, 937–945. DOI: 10.1080/13880209.2017.1285327.
  • Wang, L.; Morris, M. Liquid Chromatography–Tandem Mass Spectroscopy Assay for Quercetin and Conjugated Quercetin Metabolites in Human Plasma and Urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 821, 194–201. DOI: 10.1016/j.jchromb.2005.05.009.
  • Lin, M.-C.; Lin, J.-H.; Chen, S.-K.; Cheng, Y.-W.; Cheng, H.-W. Simultaneous Determination of Podophyllotoxin, Quercetin and Kaempferol in Podophyllin by Liquid Chromatography Tandem Mass Spectrometry. J. Food Drug Anal. 2020, 16, 29–40. DOI: 10.38212/2224-6614.2320.
  • Pang, N.; Malike, D.; Liu, H. Simultaneous Determination of Main Bioactive Components in Rosa multiflora Thunb. and Their Fragmentation Study by LC–MS. Chromatography 2009, 70, 1253–1257. DOI: 10.1365/s10337-009-1281-y.
  • Li, N.; Liu, C.; Mi, S.; Wang, N.; Zheng, X.; Li, Y.; Huang, X.; He, S.; Chen, H.; Xu, X. Simultaneous Determination of Oleanolic Acid, p-Coumaric Acid, Ferulic Acid, Kaemperol and Quercetin in Rat Plasma by LC–MS-MS and Application to a Pharmacokinetic Study of Oldenlandia diffusa Extract in Rats. J. Chromatogr. Sci. 2012, 50, 885–892. DOI: 10.1093/chromsci/bms086.
  • Ramešová, Š.; Sokolová, R.; Degano, I.; Bulíčková, J.; Žabka, J.; Gál, M. On the Stability of the Bioactive Flavonoids Quercetin and Luteolin under Oxygen-Free Conditions. Anal. Bioanal. Chem. 2012, 402, 975–982. DOI: 10.1007/s00216-011-5504-3.
  • Devaraj, V. C.; Krishna, B. G.; Viswanatha, G. L. Simultaneous Determination of Quercetin, Rutin and Kaempferol in the Leaf Extracts of Moringa oleifera Lam. and Raphinus sativus Linn. by Liquid Chromatography-Tandem Mass Spectrometry. Zhong Xi Yi Jie He Xue Bao 2011, 9, 1022–1030. DOI: 10.3736/jcim20110914.
  • Singh, A. P.; Wilson, T.; Luthria, D.; Freeman, M. R.; Scott, R. M.; Bilenker, D.; Shah, S.; Somasundaram, S.; Vorsa, N. LC-MS–MS Characterisation of Curry Leaf Flavonols and Antioxidant Activity. Food Chem. Elsevier Ltd 2011, 127, 80–85. DOI: 10.1016/j.foodchem.2010.12.091.
  • Abd Ghafar, S.; Mediani, Z.; Ramli, A.; Abas, N. S.; Maulidiani, F.; Antioxidant, α-Glucosidase, and Nitric Oxide Inhibitory Activities of Phyllanthus Acidus and LC–MS/MS Profile of the Active Extract. Food Biosci. 2018, 25(February), 134–140. DOI: 10.1016/j.fbio.2018.08.009.
  • Turner, C.; Turner, P.; Jacobson, G.; Almgren, K.; Waldebäck, M.; Sjöberg, P.; Karlsson, E. N.; Markides, K. E. Subcritical Water Extraction and β-Glucosidase-Catalyzed Hydrolysis of Quercetin Glycosides in Onion Waste. Green Chem. 2006, 8, 949–959. DOI: 10.1039/B608011A.
  • Shi, Y.; Williamson, G. Comparison of the Urinary Excretion of Quercetin Glycosides from Red Onion and Aglycone from Dietary Supplements in Healthy Subjects: A Randomized, Single-Blinded, Cross-over Study. Food Funct. 2015, 6, 1443–1448. DOI: 10.1039/C5FO00155B.
  • Bugianesi, R.; Serafini, M.; Simone, F.; Wu, D.; Meydani, S.; Ferro-Luzzi, A.; Azzini, E.; Maiani, G. High-Performance Liquid Chromatography with Coulometric Electrode Array Detector for the Determination of Quercetin Levels in Cells of the Immune System. Anal. Biochem. 2000, 284, 296–300. DOI: 10.1006/abio.2000.4697.
  • Mustafa, A. M.; Abouelenein, D.; Angeloni, S.; Maggi, F.; Navarini, L.; Sagratini, G.; Santanatoglia, A.; Torregiani, E.; Vittori, S.; Caprioli, G. A New HPLC-MS/MS Method for the Simultaneous Determination of Quercetin and Its Derivatives in Green Coffee Beans. Foods 2022, 11, 3033. DOI: 10.3390/foods11193033.
  • Kim, T. H.; Shin, H. Y.; Park, S. Y.; Kim, H.; Chung, D. K. Development and Validation of a Method for Determining the Quercetin-3-O-Glucuronide and Ellagic Acid Content of Common Evening Primrose (Oenothera biennis) by HPLC-UVD. Molecules 2021, 26, 267. DOI: 10.3390/molecules26020267.
  • Bartle, K. D.; Myers, P. History of Gas Chromatography. TrAC Trends Anal. Chem. 2002, 21, 547–557. DOI: 10.1016/S0165-9936(02)00806-3.
  • Pohjamo, S. P.; Hemming, J. E.; Willfo, S. M.; Reunanen, M. H. T.; Holmbom, B. R. Phenolic Extractives in Salix caprea Wood and Knots. Phytochemistry 2003, 63, 165–169. DOI: 10.1016/S0031-9422(03)00050-5.
  • Deng, F.; Zito, S. W. Development and Validation of a Gas Chromatographic-Mass Spectrometric Method for Simultaneous Identification and Quantification of Marker Compounds Including Bilobalide, Ginkgolides and Flavonoids in Ginkgo biloba L. extract and Pharmaceutical Preparation. J. Chromatogr. A 2003, 986, 121–127. DOI: 10.1016/S0021-9673(02)01921-0.
  • Fiamegos, Y. C.; Nanos, C. G.; Vervoort, J.; Stalikas, C. D. Analytical Procedure for the in-Vial derivatization – Extraction of Phenolic Acids and Flavonoids in Methanolic and Aqueous Plant Extracts Followed by Gas Chromatography with Mass-Selective Detection. J. Chromatogr. A 2004, 1041, 11–18. DOI: 10.1016/j.chroma.2004.04.041.
  • Canini, A.; Alesiani, D.; D’Arcangelo, G.; Tagliatesta, P. Gas Chromatography-Mass Spectrometry Analysis of Phenolic Compounds from Carica papaya L. leaf. J. Food Compos. Anal. 2007, 20, 584–590. DOI: 10.1016/j.jfca.2007.03.009.
  • Füzfai, Z.; Molnár-Perl, I. Gas Chromatographic-Mass Spectrometric Fragmentation Study of Flavonoids as Their Trimethylsilyl Derivatives: Analysis of Flavonoids, Sugars, Carboxylic and Amino Acids in Model Systems and in Citrus Fruits. J. Chromatogr. A 2007, 1149, 88–101. DOI: 10.1016/j.chroma.2007.01.060.
  • Wang, C.; Zuo, Y. Ultrasound-Assisted Hydrolysis and Gas Chromatography-Mass Spectrometric Determination of Phenolic Compounds in Cranberry Products. Food Chem. 2011, 128, 562–568. DOI: 10.1016/j.foodchem.2011.03.066.
  • Watson, D. G.; Oliveira, E. J. Solid-Phase Extraction and Gas Chromatography-Mass Spectrometry Determination of Kaempferol and Quercetin in Human Urine after Consumption of Ginkgo biloba Tablets. J. Chromatogr. B Biomed. Sci. Appl. 1999, 723, 203–210. DOI: 10.1016/S0378-4347(98)00509-X.
  • Tokuşoǧlu, Ö.; Ünal, M. K.; Yildirim, Z. HPLC-UV and GC-MS Characterization of the Flavonol Aglycons Quercetin, Kaempferol, and Myricetin in Tomato Pastes and Other Tomato-Based Products. Acta Chromatogr. 2003, 13, 196–207.
  • Khaled, K. A.; El-Sayed, Y. M. High Performance Liquid Chromatographic Assay for the Determination of Quercetin in Plasma. J. Liq. Chromatogr. Relat. Technol. 2000, 23, 455–465. DOI: 10.1081/JLC-100101464.
  • Yang, X.; Zhang, X.; Yuan, Z.; Li, X.; Zhang, L.; Fan, L. Simultaneous Determination of Myricitrin, Hyperin, Quercitroside, and Quercetin in Folium Rhododendri Micranthi by RP – HPLC. J. Chromatogr. Sci. 2009, 47, 714–717. DOI: 10.1093/chromsci/47.8.714.
  • Bele, A. A.; Khale, A.; Archana, M.; Bele, A. An Overview on Thin Layer Chromatography. IJPSR 2011, 2, 256–267.
  • Fenimore, D. C.; Davis, C. M. High Performance Thin-Layer Chromatography. Anal. Chem. 1981, 53, 252–266. DOI: 10.1021/ac00225a001.
  • Ramu, B.; Chittela, K. B. High Performance Thin Layer Chromatography and Its Role Pharmaceutical Industry: Review Email Address High Performance Thin Layer Chromatography and Its Role Pharmaceutical Industry: Review. Open Sci. J. Biosci. Bioeng. 2018, 5, 29–34.
  • Sharma, A.; C, S.; K, T. L.; Singh, M.; V, R. C. Herbal Medicine for Market Potential in India: An Overview. Acad. J. Plant 2008, 1, 26–36.
  • Kaliszan, R. QSRR: Quantitative Structure-(Chromatographic) Retention Relationships. Chem. Rev. 2007, 107, 3212–3246. DOI: 10.1021/cr068412z.
  • Ciura, K.; Dziomba, S.; Nowakowska, J.; Markuszewski, M. J. Thin Layer Chromatography in Drug Discovery Process. J. Chromatogr. A 2017, 1520, 9–22. DOI: 10.1016/J.CHROMA.2017.09.015.
  • Randhawa, K.; Kumar, D.; Jamwal, A.; Kumar, S. Screening of Antidepressant Activity and Estimation of Quercetin from Coccinia indica Using TLC Densitometry. Pharm. Biol. 2015, 53, 1867–1874. DOI: 10.3109/13880209.2015.1025289.
  • Sambandam, B.; Thiyagarajan, D.; Ayyaswamy, A.; Raman, P. Extraction and Isolation of Flavonoid Quercetin from the Leaves of Trigonella foenum-Graecum and Their anti-Oxidant Activity. Int. J. Pharm. Pharm. Sci. 2016, 8, 120–124.
  • Kumar, A.; Kumar, D.; Kumar, S.; Shri, R. Comparative Evaluation of Quercetin Content in Three Varieties of Allium cepa Using TLC Densitometry. Int. J. Adv. Pharmacy Biol. Chem. 2015, 4, 612–619.
  • Chakraborthy, G. S.; Ghorpade, P. M. Determination of Quercetin by Hptlc in “Calendula officinalis” Extract. Int. J. Pharm. Biol. Sci. 2010, 1, 1–4.
  • Mythili, T.; Ravindhran, R. Determination of Quercetin by HPTLC Method in Sesbania sesban (L.) Merr. Stem Extract. Int. J. Adv. Pharmacy Biol. Chem. 2013, 2, 113–119.
  • Jain, A.; Lodhi, S.; Singhai, A. K. Simultaneous Estimation of Quercetin and Rutin in Tephrosia purpurea Pers by High Performance Thin- Layer Chromatography. Asian J. Tradit. Med. 2009, 4, 104–109.
  • Nikolova, M.; Berkov, S.; Ivancheva, S. A Rapid TLC Method for Analysis of External Flavonoid Aglycones in Plant Exudates. Acta Chromatogr 2004, 14, 110–114.
  • Ligor, M.; Kornyšova, O.; Maruška, A.; Buszewski, B. Determination of Flavonoids in Tea and Rooibos Extracts by TLC and HPLC. JPC – J. Planar Chromatogr. – Mod. TLC Akadémiai Kiadó 2008, 21, 355–360. DOI: 10.1556/JPC.21.2008.5.7.
  • Shakya, A.; Chaudhary, S. K.; Bhat, H. R.; Gogoi, N.; Ghosh, S. K. A Rapid High-Performance Thin-Layer Chromatographic Method to Estimate Quercetin in Benincasa hispida (Thunb.) Cogn. Fruit Pulp. JPC – J. Planar Chromatogr. – Mod. TLC Akadémiai Kiadó 2019, 32, 467–474. DOI: 10.1556/1006.2019.32.6.4.
  • Imran, M.; Iqubal, M. K.; Ahmad, S.; Ali, J.; Baboota, S. Stability-Indicating High-Performance Thin-Layer Chromatographic Method for the Simultaneous Determination of Quercetin and Resveratrol in the Lipid-Based Nanoformulation. JPC – J. Planar Chromatogr. – Mod. TLC Akadémiai Kiadó 2019, 32, 393–400. DOI: 10.1556/1006.2019.32.5.7.
  • Tristantini, D.; Jessica, A. Determination of Flavonoid Content of Mixed Herbs Extract Using Colorimetric Method and Thin Layer Chromatography (TLC). AIP Conf. Proc. 2019, 2092(1), 30004. DOI: 10.1063/1.5096708.
  • Pobłocka-Olech, L.; Głód, D.; Żebrowska, M. E.; Sznitowska, M.; Krauze-Baranowska, M. TLC Determination of Flavonoids from Different Cultivars of Allium cepa and Allium ascalonicum. Acta Pharm. 2016, 66, 543–554. DOI: 10.1515/acph-2016-0038.
  • Xu, X.; Qi, X.; Wang, W.; Chen, G. Separation and Determination of Flavonoids in Agrimonia pilosa Ledeb. by Capillary Electrophoresis with Electrochemical Detection. J. Sep. Sci. 2005, 28, 647–652. DOI: 10.1002/JSSC.200400095.
  • Cao, Y. H.; Wang, Y.; Yuan, Q. Analysis of Flavonoids and Phenolic Acid in Propolis by Capillary Electrophoresis. Chromatography 2004, 59, 135–140. DOI: 10.1365/S10337-003-0138-Z.
  • Xu, X.; Yu, L.; Chen, G. Determination of Flavonoids in Portulaca oleracea L. by Capillary Electrophoresis with Electrochemical Detection. J. Pharm. Biomed. Anal. 2006, 41, 493–499. DOI: 10.1016/J.JPBA.2006.01.013.
  • Sun, Y.; Guo, T.; Sui, Y.; Li, F. Determination of Adenosine, Rutin and Quercetin in Carthamus tinctorius by HPCE. Yao Xue Xue Bao 2003, 38, 283–285.
  • Yan, J.; Wang, M.; Lü, J. Determination of Rutin, Quercetin, and Chlorogenic Acid in Mulberry Leaves by Capillary Zone Electrophoresis. Anal. Lett. 2004, 37, 3287–3297. DOI: 10.1081/AL-200040356.
  • Cao, Y.; Zhang, X.; Fang, Y.; Ye, J. Determination of Active Ingredients of Apocynum venetum by Capillary Electrophoresis with Electrochemical Detection. Microchim. Acta 2001 1371 Springer: 2001, 137, 57–62. DOI: 10.1007/S006040170028.
  • Tallini, L. R.; Pedrazza, G. P.; Bordignon, S. A. d L.; Costa, A. C.; Steppe, M.; Fuentefria, A.; Zuanazzi, J. A. Analysis of Flavonoids in Rubus erythrocladus and Morus NIGRA Leaves Extracts by Liquid Chromatography and Capillary Electrophoresis. Rev. Bras. Farmacogn. Soc. Brasil. Farmacog. 2015, 25, 219–227. DOI: 10.1016/J.BJP.2015.04.003.
  • Volpi, N. Separation of Flavonoids and Phenolic Acids from Propolis by Capillary Zone Electrophoresis. Electrophoresis 2004, 25, 1872–1878. DOI: 10.1002/ELPS.200405949.
  • Caridi, D.; Trenerry, V. C.; Rochfort, S.; Duong, S.; Laugher, D.; Jones, R. Profiling and Quantifying Quercetin Glucosides in Onion (Allium cepa L.) Varieties Using Capillary Zone Electrophoresis and High Performance Liquid Chromatography. Food Chem. Elsevier 2007, 105, 691–699. DOI: 10.1016/J.FOODCHEM.2006.12.063.
  • Chen, G.; Zhang, H.; Ye, J. Determination of Rutin and Quercetin in Plants by Capillary Electrophoresis with Electrochemical Detection. Anal. Chim. Acta 2000, 423, 69–76. DOI: 10.1016/S0003-2670(00)01099-0.
  • Sun, Y.; Guo, T.; Sui, Y.; Li, F. Quantitative Determination of Rutin, Quercetin, and Adenosine in Flos Carthami by Capillary Electrophoresis. J. Sep. Sci. 2003, 26, 1203–1206. DOI: 10.1002/JSSC.200301437.
  • Prasongsidh, B. C.; Skurray, G. R. Capillary Electrophoresis Analysis of Trans- and Cis-Resveratrol, Quercetin, Catechin and Gallic Acid in Wine. Food Chem. 1998, 62, 355–358. DOI: 10.1016/S0308-8146(97)00153-2.
  • Li, X.; Zhang, Y.; Yuan, Z. Separation and Determination of Rutin and Quercetin in the Flowers of Sophora japonica L. by Capillary Electrophoresis with Electrochemical Detection. Chromatography 2002, 55, 243–246. DOI: 10.1007/BF02492150.
  • Memon, A. F.; Solangi, A. R.; Memon, S. Q.; Mallah, A.; Memon, N.; Memon, A. A. Simultaneous Determination of Quercetin, Rutin, Naringin, and Naringenin in Different Fruits by Capillary Zone Electrophoresis. Food Anal. Methods 2017, 10, 83–91. DOI: 10.1007/S12161-016-0552-0.
  • Gao, R.; Wang, L.; Yang, Y.; Ni, J.; Zhao, L.; Dong, S.; Guo, M. Simultaneous Determination of Oleanolic Acid, Ursolic Acid, Quercetin and Apigenin in Swertia mussotii Franch by Capillary Zone Electrophoresis with Running Buffer Modifier. Biomed. Chromatogr. 2015, 29, 402–409. DOI: 10.1002/BMC.3290.
  • Sun, L.; Meng, L.; Chen, J.; Ma, J.; Hu, R.; Jia, D. Z. Determination of Rutin and Quercetin in Mulberry Leaves by High Performance Capillary Electrophoresis. Se pu Chin. J. Chromatogr. 2001, 19, 395–397.
  • Wang, J.; Wang, H.; Han, S. Ultrasensitive Determination of Epicatechin, Rutin, and Quercetin by Capillary Electrophoresis Chemiluminescence. Acta Chromatogr. 2012, 24, 679–688. DOI: 10.1556/ACHROM.24.2012.4.13.
  • de Simón, B. F.; Estrella, I.; Hernández, T. Flavonoid Separation by Capillary Electrophoresis. Effect of Temperature and pH. Chromatography 1995, 41, 389–392. DOI: 10.1007/BF02318610.
  • Brett, A. M. O.; Ghica, M.-E. Electrochemical Oxidation of Quercetin. Electroanalysis John Wiley & Sons, Ltd: 2003, 15, 1745–1750. DOI: 10.1002/ELAN.200302800.
  • Zielińska, D.; Nagels, L.; Piskuła, M. K. Determination of Quercetin and Its Glucosides in Onion by Electrochemical Methods. Anal. Chim. Acta. 2008, 617, 22–31. DOI: 10.1016/J.ACA.2008.01.037.
  • Yola, M. L.; Gupta, V. K.; Eren, T.; Şen, A. E.; Atar, N. A Novel Electro Analytical Nanosensor Based on Graphene Oxide/Silver Nanoparticles for Simultaneous Determination of Quercetin and Morin. Electrochim. Acta Pergamon 2014, 120, 204–211. DOI: 10.1016/J.ELECTACTA.2013.12.086.
  • Zheng, Y.; Ye, L.; Yan, L.; Gao, Y. The Electrochemical Behavior and Determination of Quercetin in Choline Chloride/Urea Deep Eutectic Solvent Electrolyte Based on Abrasively Immobilized Multi-Wall Carbon Nanotubes Modified Electrode. Int. J. Electrochem. Sci. 2014, 9, 238–248. DOI: 10.1016/S1452-3981(23)07712-X.
  • Saber-Tehrani, M.; Pourhabib, A.; Husain, S. W.; Arvand, M. Electrochemical Behavior and Voltammetric Determination of Quercetin in Foods by Graphene Nanosheets Modified Electrode. Anal. Bioanal. Electrochem. 2013, 5, 1–18.
  • Sun, S.; Zhang, M.; Li, Y.; He, X. A Molecularly Imprinted Polymer with Incorporated Graphene Oxide for Electrochemical Determination of Quercetin. Sensors (Basel) 2013, 13, 5493–5506. DOI: 10.3390/S130505493.
  • Zhang, W.; Zong, L.; Geng, G.; Li, Y.; Zhang, Y. Enhancing Determination of Quercetin in Honey Samples through Electrochemical Sensors Based on Highly Porous Polypyrrole Coupled with Nanohybrid Modified GCE. Sensors Actuators B Chem. 2018, 257, 1099–1109. DOI: 10.1016/J.SNB.2017.11.059.
  • Yao, Y. Y.; Zhang, L.; Wang, Z. F.; Xu, J. K.; Wen, Y. P. Electrochemical Determination of Quercetin by Self-Assembled Platinum Nanoparticles/Poly(Hydroxymethylated-3,4-Ethylenedioxylthiophene) Nanocomposite Modified Glassy Carbon Electrode. Chinese Chem. Lett. 2014, 25, 505–510. DOI: 10.1016/J.CCLET.2014.01.028.
  • Li, J.; Qu, J.; Yang, R.; Qu, L.; de, B.; Harrington, P. A Sensitive and Selective Electrochemical Sensor Based on Graphene Quantum Dot/Gold Nanoparticle Nanocomposite Modified Electrode for the Determination of Quercetin in Biological Samples. Electroanalysis 2016, 28, 1322–1330. DOI: 10.1002/ELAN.201500490.
  • Lin, X. Q.; He, J. B.; Zha, Z. G. Simultaneous Determination of Quercetin and Rutin at a Multi-Wall Carbon-Nanotube Paste Electrodes by Reversing Differential Pulse Voltammetry. Sensors Actuators B Chem. 2006, 119, 608–614. DOI: 10.1016/J.SNB.2006.01.016.
  • Manokaran, J.; Muruganantham, R.; Muthukrishnaraj, A.; Balasubramanian, N. Platinum- Polydopamine @SiO2 Nanocomposite Modified Electrode for the Electrochemical Determination of Quercetin. Electrochim. Acta Pergamon 2015, 168, 16–24. DOI: 10.1016/J.ELECTACTA.2015.04.016.
  • Stefanov, C.; Negut, C. C.; Gugoasa, L. A. D.; van Staden, J().; Koos, F. Gold Nanoparticle-Graphene Quantum Dots Nanozyme for the Wide Range and Sensitive Electrochemical Determination of Quercetin in Plasma Droplets. Microchim. Acta 2020, 187, 1–10. DOI: 10.1007/s00604-020-04587-y.
  • Zielinska, D.; Wiczkowski, W.; Piskula, M. K. Determination of the Relative Contribution of Quercetin and Its Glucosides to the Antioxidant Capacity of Onion by Cyclic Voltammetry and Spectrophotometric Methods. J. Agric. Food Chem. 2008, 56, 3524–3531. DOI: 10.1021/jf073521f.
  • Korotkova, E. I.; Voronova, O. A.; Dorozhko, E. V. Study of Antioxidant Properties of Flavonoids by Voltammetry. J. Solid State Electrochem. 2012, 16, 2435–2440. DOI: 10.1007/s10008-012-1707-6.
  • Al-Rashdi, A. A.; Farghaly, O. A.; Naggar, A. H. Voltammetric Determination of Pharmaceutical Compounds at Bare and Modified Solid Electrodes: A Review. Com J. Chem. Pharm. Res. 2018, 10, 21–43.
  • Shaikh, A. A.; Firdaws, J.; Serajee, S., Badrunnessa,  ; Rahman, M. S.; Bakshi, P. K. Electrochemical Studies of the pH Dependence of Cu(II) Reduction in Aqueous Britton-Robinson Buffer Solution. Int. J. Electrochem. Sci. 2011, 6, 2333–2343. DOI: 10.1016/S1452-3981(23)18188-0.
  • Yardım, Y.; Keskin, E.; Şentürk, Z. Voltammetric Determination of Mixtures of Caffeine and Chlorogenic Acid in Beverage Samples Using a Boron-Doped Diamond Electrode. Talanta 2013, 116, 1010–1017. DOI: 10.1016/j.talanta.2013.08.005.
  • Ghoneim, M.; Mabrouk, E.; Hassanein, A.; El-Attar, M.; Hesham, E. Voltammetric and Potentiometric Studies of Some Sulpha drug-Schiff Base Compounds and Their Metal Complexes. Open Chem. 2007, 5, 898–911. DOI: 10.2478/s11532-007-0035-7.
  • Mabrouk, M.; Abdelfattah, I. I.; Mansour, F. R. Green Method for Determination of Four anti-Viral Drugs Using Micellar Liquid Chromatography: Application to Dosage Form Analysis. Sustain. Chem. Pharm. 2023, 35, 101202. DOI: 10.1016/j.scp.2023.101202.
  • Habib, A.; Mabrouk, M. M.; Fekry, M.; Mansour, F. R. Glycerol as a New Mobile Phase Modifier for Green Liquid Chromatographic Determination of Ascorbic Acid and Glutathione in Pharmaceutical Tablets. J. Pharm. Biomed. Anal. 2022, 219, 114870. DOI: 10.1016/j.jpba.2022.114870.
  • Habib, A.; Mabrouk, M. M.; Fekry, M.; Mansour, F. R. Glycerol as a Novel Green Mobile Phase Modifier for Reversed Phase Liquid Chromatography. Microchem. J. 2021, 169, 106587. DOI: 10.1016/J.MICROC.2021.106587.
  • Kamal, A. H.; Hammad, M. A.; Kannouma, R. E.; Mansour, F. R. Response Surface Optimization of a Vortex-Assisted Dispersive Liquid–Liquid Microextraction Method for Highly Sensitive Determination of Repaglinide in Environmental Water by HPLC/UV. BMC Chem. 2022, 16, 33. DOI: 10.1186/s13065-022-00826-w.
  • Hammad, M. A.; Kamal, A. H.; Kannouma, R. E.; Mansour, F. R. Vortex-Assisted Dispersive Liquid–Liquid Microextraction Coupled with Deproteinization for Determination of Nateglinide in Human Plasma Using HPLC/UV. J. Chromatogr. Sci. 2021, 59, 297–304. DOI: 10.1093/chromsci/bmaa096.
  • Kannouma, R. E.; Hammad, M. A.; Kamal, A. H.; Mansour, F. R. A Dispersive Liquid–Liquid Microextraction Method Based on Solidification of Floating Organic Droplet for Determination of Antiviral Agents in Environmental Water Using HPLC/UV. Microchem. J 2021, 171, 106790. DOI: 10.1016/j.microc.2021.106790.
  • Abdelaziz, M. A.; Saleh, A. M.; Mansour, F. R.; Danielson, N. D. A Gadolinium-Based Magnetic Ionic Liquid for Dispersive Liquid–Liquid Microextraction of Ivermectin from Environmental Water. J. Chromatogr. Sci. 2023. DOI: 10.1093/chromsci/bmac101.
  • Danielson, N. D.; Mansour, F. R.; Zhou, L.; Connell, C. V.; Dotlich, E. M.; Gibler, J. N.; Norman, B. E.; Grossman, S.; Wei, W.; Zhang, Y. Liquid Chromatography with Alkylammonium Formate Ionic Liquid Mobile Phases and Fluorescence Detection. J. Chromatogr. A 2018, 1559, 128–135. DOI: 10.1016/j.chroma.2018.03.020.
  • Abdelaziz, M. A.; Mansour, F. R.; Danielson, N. D. A Gadolinium-Based Magnetic Ionic Liquid for Dispersive Liquid–Liquid Microextraction. Anal. Bioanal. Chem. 2021, 413, 205–214. DOI: 10.1007/s00216-020-02992-z.
  • El-Malla, S. F.; Elshenawy, E. A.; Hammad, S. F.; Mansour, F. R. N-Doped Carbon Dots as a Fluorescent Nanosensor for Determination of Colchicine Based on Inner Filter Effect. J. Fluoresc. 2021, 31, 675–684. DOI: 10.1007/s10895-021-02698-0.
  • Ahmed Abdel Hamid, M.; Elagamy, S. H.; Gamal, A.; Mansour, F. R. Microwave Prepared Nitrogen and Sulfur co-Doped Carbon Quantum Dots for Rapid Determination of Ascorbic Acid through a Turn off–on Strategy. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2023, 293, 122440–122410. 1016/j.saa.2023.122440. DOI: 10.1016/j.saa.2023.122440.
  • El-Malla, S. F.; Elshenawy, E. A.; Hammad, S. F.; Mansour, F. R. Rapid Microwave Synthesis of N,S-Doped Carbon Quantum Dots as a Novel Turn off-on Sensor for Label-Free Determination of Copper and Etidronate Disodium. Anal. Chim. Acta. 2022, 1197, 339491–339410. 1016/j.aca.2022.339491. DOI: 10.1016/j.aca.2022.339491.
  • Kannouma, R. E.; Hammad, M. A.; Kamal, A. H.; Mansour, F. R. Miniaturization of Liquid-Liquid Extraction; the Barriers and the Enablers. Microchem. J. 2022, 182, 107863–107810. 1016/j.microc.2022.107863. DOI: 10.1016/j.microc.2022.107863.
  • Abdallah, I. A.; Hammad, S. F.; Bedair, A.; Abdelhameed, R. M.; Locatelli, M.; Mansour, F. R. Applications of Layered Double Hydroxides in Sample Preparation: A Review. Microchem. J. 2023, 192, 108916–108910. 1016/j.microc.2023.108916. DOI: 10.1016/j.microc.2023.108916.
  • Abdelhameed, R. M.; Hammad, S. F.; Abdallah, I. A.; Bedair, A.; Locatelli, M.; Mansour, F. R. A Hybrid Microcrystalline Cellulose/Metal-Organic Framework for Dispersive Solid Phase Microextraction of Selected Pharmaceuticals: A Proof-of-Concept. J. Pharm. Biomed. Anal. 2023, 235, 115609–115610. 1016/j.jpba.2023.115609. DOI: 10.1016/j.jpba.2023.115609.
  • Alsaeed, B.; Mansour, F. R. Distance-Based Paper Microfluidics; Principle, Technical Aspects and Applications. Microchem. J. 2020, 155, 104664–104610. 1016/j.microc.2020.104664. DOI: 10.1016/j.microc.2020.104664.
  • Zayed, B. A.; Ali, A. N.; Elgebaly, A. A.; Talaia, N. M.; Hamed, M.; Mansour, F. R. Smartphone-Based Point-of-Care Testing of the SARS-CoV-2: A Systematic Review. Sci. Afr. 2023, 21, e01757. DOI: 10.1016/j.sciaf.2023.e01757.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.