386
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Mass Spectrometry Analysis for Clinical Applications: A Review

, , , , , & show all

References

  • Javanshad, R.; Venter, A. R. Ambient Ionization Mass Spectrometry: Real-Time, Proximal Sample Processing and Ionization. Anal. Methods 2017, 9, 4896–4907. DOI: 10.1039/C7AY00948H.
  • Lee, S.; Chintalapudi, K.; Badu-Tawiah, A. K. Clinical Chemistry for Developing Countries: Mass Spectrometry. Annu. Rev. Anal. Chem. 2021, 14, 437–465. DOI: 10.1146/annurev-anchem-091520-085936.
  • Jannetto, P. J.; Fitzgerald, R. L. Effective Use of Mass Spectrometry in the Clinical Laboratory. Clin. Chem. 2016, 62, 92–98. DOI: 10.1373/clinchem.2015.248146.
  • Foster, J. M.; Degroeve, S.; Gatto, L.; Visser, M.; Wang, R.; Griss, J.; Apweiler, R.; Martens, L. A Posteriori Quality Control for the Curation and Reuse of Public Proteomics Data. Proteomics 2011, 11, 2182–2194. DOI: 10.1002/pmic.201000602.
  • Adaway, J. E.; Keevil, B. G.; Owen, L. J. Liquid Chromatography Tandem Mass Spectrometry in the Clinical Laboratory. Ann. Clin. Biochem. 2015, 52, 18–38. DOI: 10.1177/0004563214557678.
  • Fung, A. W. S.; Sugumar, V.; Ren, A. H.; Kulasingam, V. Emerging Role of Clinical Mass Spectrometry in Pathology. J. Clin. Pathol. 2020, 73, 61–69. DOI: 10.1136/jclinpath-2019-206269.
  • Rolland, D. C. M.; Lim, M. S.; Elenitoba-Johnson, K. S. J. Mass Spectrometry and Proteomics in Hematology. Semin. Hematol. 2019, 56, 52–57. DOI: 10.1053/j.seminhematol.2018.05.009.
  • Lin, N.; Huang, J.; Violante, S.; Orsini, J. J.; Caggana, M.; Hughes, E. E.; Stevens, C.; DiAntonio, L.; Chieh Liao, H.; Hong, X.; et al. Liquid Chromatography-Tandem Mass Spectrometry Assay of Leukocyte Acid Alpha-Glucosidase for Post-Newborn Screening Evaluation of Pompe Disease. Clin. Chem. 2017, 63, 842–851. DOI: 10.1373/clinchem.2016.259036.
  • Durie, D.; Yeh, E.; McIntosh, N.; Fisher, L.; Bulman, D. E.; Birnboim, H. C.; Chakraborty, P.; Al-Dirbashi, O. Y. Quantification of DNA in Neonatal Dried Blood Spots by Adenine Tandem Mass Spectrometry. Anal. Chem. 2018, 90, 801–806. DOI: 10.1021/acs.analchem.7b03265.
  • Hines, J. M.; Bancos, I.; Bancos, C.; Singh, R. D.; Avula, A. V.; Young, W. F.; Grebe, S. K.; Singh, R. J. High-Resolution, Accurate-Mass (HRAM) Mass Spectrometry Urine Steroid Profiling in the Diagnosis of Adrenal Disorders. Clin. Chem. 2017, 63, 1824–1835. DOI: 10.1373/clinchem.2017.271106.
  • Shen, C.; Sun, Z.; Chen, D.; Su, X.; Jiang, J.; Li, G.; Lin, B.; Yan, J. Developing Urinary Metabolomic Signatures as Early Bladder Cancer Diagnostic Markers. OMICS 2015, 19, 1–11. DOI: 10.1089/omi.2014.0116.
  • Forsdahl, G.; Zanitzer, K.; Erceg, D.; Gmeiner, G. Quantification of Endogenous Steroid Sulfates and Glucuronides in Human Urine after Intramuscular Administration of Testosterone Esters. Steroids 2020, 157, 108614. DOI: 10.1016/j.steroids.2020.108614.
  • Klinke, G.; Richter, S.; Monostori, P.; Schmidt-Mader, B.; Garcia-Cazorla, A.; Artuch, R.; Christ, S.; Opladen, T.; Hoffmann, G. F.; Blau, N.; et al. Targeted Cerebrospinal Fluid Analysis for Inborn Errors of Metabolism on an LC-MS/MS Analysis Platform. J. Inherit. Metab. Dis. 2020, 43, 712–725. DOI: 10.1002/jimd.12213.
  • Brown, H. M.; Pirro, V.; Cooks, R. G. From DESI to the MasSpec Pen: Ambient Ionization Mass Spectrometry for Tissue Analysis and Intrasurgical Cancer Diagnosis. Clin. Chem. 2018, 64, 628–630. DOI: 10.1373/clinchem.2017.281923.
  • Pu, F.; Chiang, S.; Zhang, W.; Ouyang, Z. Direct Sampling Mass Spectrometry for Clinical Analysis. Analyst 2019, 144, 1034–1051. DOI: 10.1039/c8an01722k.
  • Zhou, X.; Zhang, W.; Ouyang, Z. Recent Advances in on-Site Mass Spectrometry Analysis for Clinical Applications. Trends Analyt. Chem. 2022, 149, 116548. DOI: 10.1016/j.trac.2022.116548.
  • Feider, C. L.; Krieger, A.; DeHoog, R. J.; Eberlin, L. S. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal. Chem. 2019, 91, 4266–4290. DOI: 10.1021/acs.analchem.9b00807.
  • Robles, J.; Marcos, J.; Renau, N.; Garrostas, L.; Segura, J.; Ventura, R.; Barcelo, B.; Barcelo, A.; Pozo, O. J. Quantifying Endogenous Androgens, Estrogens, Pregnenolone and Progesterone Metabolites in Human Urine by Gas Chromatography Tandem Mass Spectrometry. Talanta 2017, 169, 20–29. DOI: 10.1016/j.talanta.2017.03.032.
  • Duncan, M. W.; Nedelkov, D.; Walsh, R.; Hattan, S. J. Applications of MALDI Mass Spectrometry in Clinical Chemistry. Clin. Chem. 2016, 62, 134–143. DOI: 10.1373/clinchem.2015.239491.
  • Beale, D. J.; Pinu, F. R.; Kouremenos, K. A.; Poojary, M. M.; Narayana, V. K.; Boughton, B. A.; Kanojia, K.; Dayalan, S.; Jones, O. A. H.; Dias, D. A. Review of Recent Developments in GC-MS Approaches to Metabolomics-Based Research. Metabolomics 2018, 14, 152. DOI: 10.1007/s11306-018-1449-2.
  • Fattuoni, C.; Palmas, F.; Noto, A.; Barberini, L.; Mussap, M.; Grapov, D.; Dessi, A.; Casu, M.; Casanova, A.; Furione, M.; et al. Primary HCMV Infection in Pregnancy from Classic Data towards Metabolomics: An Exploratory Analysis. Clin. Chim. Acta 2016, 460, 23–32. DOI: 10.1016/j.cca.2016.06.005.
  • Kiseleva, O.; Kurbatov, I.; Ilgisonis, E.; Poverennaya, E. Defining Blood Plasma and Serum Metabolome by GC-MS. Metabolites 2021, 12, 15. DOI: 10.3390/metabo12010015.
  • McShane, A. J.; Bunch, D. R.; Wang, S. Therapeutic Drug Monitoring of Immunosuppressants by Liquid Chromatography-Mass Spectrometry. Clin. Chim. Acta 2016, 454, 1–5. DOI: 10.1016/j.cca.2015.12.027.
  • Begou, O.; Gika, H. G.; Theodoridis, G. A.; Wilson, I. D. Quality Control and Validation Issues in LC-MS Metabolomics. Methods Mol. Biol. 2018, 1738, 15–26. DOI: 10.1007/978-1-4939-7643-0_2.
  • Ding, J.; Feng, Y.-Q. Mass Spectrometry-Based Metabolomics for Clinical Study: Recent Progresses and Applications. Trends Anal. Chem. 2023, 158, 116896. DOI: 10.1016/j.trac.2022.116896.
  • Bian, Y.; Gao, C.; Kuster, B. On the Potential of Micro-Flow LC-MS/MS in Proteomics. Expert Rev. Proteomics 2022, 19, 153–164. DOI: 10.1080/14789450.2022.2134780.
  • Zeki, O. C.; Eylem, C. C.; Recber, T.; Kir, S.; Nemutlu, E. Integration of GC-MS and LC-MS for Untargeted Metabolomics Profiling. J. Pharm. Biomed. Anal. 2020, 190, 113509. DOI: 10.1016/j.jpba.2020.113509.
  • Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and Polymer Analyses up to m/z 100 000 by Laser Ionization Time-of-Flight Mass Spectrometry. Rapid Comm. Mass Spectrometry 1988, 2, 151–153. DOI: 10.1002/rcm.1290020802.
  • Wang, P.; Giese, R. W. Recommendations for Quantitative Analysis of Small Molecules by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. J. Chromatogr. A 2017, 1486, 35–41. DOI: 10.1016/j.chroma.2017.01.040.
  • Popp, R.; Li, H.; Borchers, C. H. Immuno-MALDI (iMALDI) Mass Spectrometry for the Analysis of Proteins in Signaling Pathways. Expert Rev. Proteomics 2018, 15, 701–708. DOI: 10.1080/14789450.2018.1516147.
  • Clark, A. E.; Kaleta, E. J.; Arora, A.; Wolk, D. M. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: A Fundamental Shift in the Routine Practice of Clinical Microbiology. Clin. Microbiol. Rev. 2013, 26, 547–603. DOI: 10.1128/CMR.00072-12.
  • Wu, J.; Rong, Z.; Xiao, P.; Li, Y. Imaging Method by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Tissue or Tumor: A Mini Review. Processes 2022, 10, 388. DOI: 10.3390/pr10020388.
  • Wilschefski, S. C.; Baxter, M. R. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin. Biochem. Rev. 2019, 40, 115–133. DOI: 10.33176/AACB-19-00024.
  • Cid-Barrio, L.; Calderon-Celis, F.; Costa-Fernandez, J. M.; Encinar, J. R. Assessment of the Potential and Limitations of Elemental Mass Spectrometry in Life Sciences for Absolute Quantification of Biomolecules Using Generic Standards. Anal. Chem. 2020, 92, 13500–13508. DOI: 10.1021/acs.analchem.0c02942.
  • He, Y.; Chen, S.; Huang, L.; Wang, Z.; Wu, Y.; Fu, F. Combination of Magnetic-Beads-Based Multiple Metal Nanoparticles Labeling with Hybridization Chain Reaction Amplification for Simultaneous Detection of Multiple Cancer Cells with Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2019, 91, 1171–1177. DOI: 10.1021/acs.analchem.8b05085.
  • Nakano, M.; Uemura, O.; Honda, M.; Ito, T.; Nakajima, Y.; Saitoh, S. Development of Tandem Mass Spectrometry-Based Creatinine Measurement Using Dried Blood Spot for Newborn Mass Screening. Pediatr. Res. 2017, 82, 237–243. DOI: 10.1038/pr.2017.56.
  • Ismail, I. T.; Showalter, M. R.; Fiehn, O. Inborn Errors of Metabolism in the Era of Untargeted Metabolomics and Lipidomics. Metabolites 2019, 9, 242. DOI: 10.3390/metabo9100242.
  • Hakkinen, M. R.; Heinosalo, T.; Saarinen, N.; Linnanen, T.; Voutilainen, R.; Lakka, T.; Jaaskelainen, J.; Poutanen, M.; Auriola, S. Analysis by LC-MS/MS of Endogenous Steroids from Human Serum, Plasma, Endometrium and Endometriotic Tissue. J. Pharm. Biomed. Anal. 2018, 152, 165–172. DOI: 10.1016/j.jpba.2018.01.034.
  • Deng, Y.; Zhang, Y.; Li, S.; Zhou, W.; Ye, L.; Wang, L.; Tao, T.; Gu, J.; Yang, Z.; Zhao, D.; et al. Steroid Hormone Profiling in Obese and Nonobese Women with Polycystic Ovary Syndrome. Sci. Rep. 2017, 7, 14156. DOI: 10.1038/s41598-017-14534-2.
  • Groeneveld, G.; de Puit, M.; Bleay, S.; Bradshaw, R.; Francese, S. Detection and Mapping of Illicit Drugs and Their Metabolites in Fingermarks by MALDI MS and Compatibility with Forensic Techniques. Sci. Rep. 2015, 5, 11716. DOI: 10.1038/srep11716.
  • Wang, X.; Jiao, X.; Tian, Y.; Zhang, J.; Zhang, Y.; Li, J.; Yang, F.; Xu, M.; Yu, X. Associations between Maternal Vitamin D Status during Three Trimesters and Cord Blood 25(OH)D Concentrations in Newborns: A Prospective Shanghai Birth Cohort Study. Eur. J. Nutr. 2021, 60, 3473–3483. DOI: 10.1007/s00394-021-02528-w.
  • Leung, L. M.; Fondrie, W. E.; Doi, Y.; Johnson, J. K.; Strickland, D. K.; Ernst, R. K.; Goodlett, D. R. Identification of the ESKAPE Pathogens by Mass Spectrometric Analysis of Microbial Membrane Glycolipids. Sci. Rep. 2017, 7, 6403. DOI: 10.1038/s41598-017-04793-4.
  • Cho, K. C.; Clark, D. J.; Schnaubelt, M.; Teo, G. C.; Leprevost, F. D. V.; Bocik, W.; Boja, E. S.; Hiltke, T.; Nesvizhskii, A. I.; Zhang, H. Deep Proteomics Using Two Dimensional Data Independent Acquisition Mass Spectrometry. Anal. Chem. 2020, 92, 4217–4225. DOI: 10.1021/acs.analchem.9b04418.
  • Hartenbach, F.; Velasquez, E.; Nogueira, F. C. S.; Domont, G. B.; Ferreira, E.; Colombo, A. P. V. Proteomic Analysis of Whole Saliva in Chronic Periodontitis. J. Proteomics 2020, 213, 103602. DOI: 10.1016/j.jprot.2019.103602.
  • Beauxis, Y.; Genta-Jouve, G. MetWork: A Web Server for Natural Products Anticipation. Bioinformatics 2019, 35, 1795–1796. DOI: 10.1093/bioinformatics/bty864.
  • Kim, K.-J.; Park, H.-G.; Hwang, C.-H.; Ann, D.-H.; Song, W.-S.; Choi, K.-Y.; Yang, Y.-H.; Park, S.; Kim, Y.-G. Quantitative Targeted Metabolomics for 15d-deoxy-Δ12, 14-PGJ2 (15d-PGJ2) by MALDI-MS. Biotechnol. Bioproc. E 2017, 22, 100–106. DOI: 10.1007/s12257-016-0558-x.
  • Ivanovová, E.; Piskláková, B.; Dobešová, D.; Kvasnička, A.; Friedecký, D. Novel LC-MS Tools for Diagnosing Inborn Errors of Metabolism. Microchem. J. 2021, 170, 106654. DOI: 10.1016/j.microc.2021.106654.
  • Rossi, C.; Cicalini, I.; Rizzo, C.; Zucchelli, M.; Consalvo, A.; Valentinuzzi, S.; Semeraro, D.; Gasparroni, G.; Brindisino, P.; Gazzolo, D.; et al. A False-Positive Case of Methylmalonic Aciduria by Tandem Mass Spectrometry Newborn Screening Dependent on Maternal Malnutrition in Pregnancy. IJERPH 2020, 17, 3601. DOI: 10.3390/ijerph17103601.
  • Wang, Z.; Wang, H.; Peng, Y.; Chen, F.; Zhao, L.; Li, X.; Qin, J.; Li, Q.; Wang, B.; Pan, B.; et al. A Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)-Based Assay to Profile 20 Plasma Steroids in Endocrine Disorders. Clin. Chem. Lab. Med. 2020, 58, 1477–1487. DOI: 10.1515/cclm-2019-0869.
  • Schiffer, L.; Arlt, W.; Storbeck, K. H. Intracrine Androgen Biosynthesis, Metabolism and Action Revisited. Mol. Cell Endocrinol. 2018, 465, 4–26. DOI: 10.1016/j.mce.2017.08.016.
  • Hurst, E. A.; Homer, N. Z.; Denham, S. G.; MacFarlane, E.; Campbell, S.; Boswinkel, M.; Mellanby, R. J. Development and Application of a LC-MS/MS Assay for Simultaneous Analysis of 25-hydroxyvitamin-D and 3-Epi-25-hydroxyvitamin-D Metabolites in Canine Serum. J. Steroid Biochem. Mol. Biol. 2020, 199, 105598. DOI: 10.1016/j.jsbmb.2020.105598.
  • Ulvik, A.; Midttun, O.; McCann, A.; Meyer, K.; Tell, G.; Nygard, O.; Ueland, P. M. Tryptophan Catabolites as Metabolic Markers of Vitamin B-6 Status Evaluated in Cohorts of Healthy Adults and Cardiovascular Patients. Am. J. Clin. Nutr. 2020, 111, 178–186. DOI: 10.1093/ajcn/nqz228.
  • Yuan, H.; Yu, S.; Chai, G.; Liu, J.; Zhou, Q. T. An LC-MS/MS Method for Simultaneous Analysis of the Cystic Fibrosis Therapeutic Drugs Colistin, Ivacaftor and Ciprofloxacin. J. Pharm. Anal. 2021, 11, 732–738. DOI: 10.1016/j.jpha.2021.02.004.
  • Barco, S.; Mesini, A.; Barbagallo, L.; Maffia, A.; Tripodi, G.; Pea, F.; Saffioti, C.; Castagnola, E.; Cangemi, G. A Liquid Chromatography-Tandem Mass Spectrometry Platform for the Routine Therapeutic Drug Monitoring of 14 Antibiotics: Application to Critically Ill Pediatric Patients. J. Pharm. Biomed. Anal. 2020, 186, 113273. DOI: 10.1016/j.jpba.2020.113273.
  • Chu, L.; Wu, Y.; Duan, C.; Yang, J.; Yang, H.; Xie, Y.; Zhang, Q.; Qiao, S.; Li, X.; Shen, Z.; et al. Simultaneous Quantitation of Zidovudine, Efavirenz, Lopinavir and Ritonavir in Human Hair by Liquid Chromatography-Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1097–1098, 54–63. DOI: 10.1016/j.jchromb.2018.08.031.
  • Van Der Gugten, J. G.; Holmes, D. T. Quantitation of Plasma Renin Activity in Plasma Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Methods Mol. Biol. 2016, 1378, 243–253. DOI: 10.1007/978-1-4939-3182-8_26.
  • Skogvold, H. B.; Sandas, E. M.; Osteby, A.; Lokken, C.; Rootwelt, H.; Ronning, P. O.; Wilson, S. R.; Elgstoen, K. B. P. Bridging the Polar and Hydrophobic Metabolome in Single-Run Untargeted Liquid Chromatography-Mass Spectrometry Dried Blood Spot Metabolomics for Clinical Purposes. J. Proteome Res. 2021, 20, 4010–4021. DOI: 10.1021/acs.jproteome.1c00326.
  • Guo, J.; Huan, T. Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition Modes in Liquid Chromatography-Mass Spectrometry Based Untargeted Metabolomics. Anal. Chem. 2020, 92, 8072–8080. DOI: 10.1021/acs.analchem.9b05135.
  • Shuford, C. M.; Johnson, J. S.; Thompson, J. W.; Holland, P. L.; Hoofnagle, A. N.; Grant, R. P. More Sensitivity Is Always Better: Measuring Sub-Clinical Levels of Serum Thyroglobulin on a μLC-MS/MS System. Clin. Mass Spectrom. 2020, 15, 29–35. DOI: 10.1016/j.clinms.2020.01.001.
  • Petrera, A.; Von Toerne, C.; Behler, J.; Huth, C.; Thorand, B.; Hilgendorff, A.; Hauck, S. M. Multiplatform Approach for Plasma Proteomics: Complementarity of Olink Proximity Extension Assay Technology to Mass Spectrometry-Based Protein Profiling. J. Proteome Res. 2021, 20, 751–762. DOI: 10.1021/acs.jproteome.0c00641.
  • Parr, M. K.; Joseph, J. F. NDMA Impurity in Valsartan and Other Pharmaceutical Products: Analytical Methods for the Determination of N-Nitrosamines. J. Pharm. Biomed. Anal. 2019, 164, 536–549. DOI: 10.1016/j.jpba.2018.11.010.
  • Hou, T. Y.; Chiang-Ni, C.; Teng, S. H. Current Status of MALDI-TOF Mass Spectrometry in Clinical Microbiology. J. Food Drug Anal. 2019, 27, 404–414. DOI: 10.1016/j.jfda.2019.01.001.
  • Costa, M. M.; Martin, H.; Estellon, B.; Dupe, F. X.; Saby, F.; Benoit, N.; Tissot-Dupont, H.; Million, M.; Pradines, B.; Granjeaud, S.; et al. Exploratory Study on Application of MALDI-TOF-MS to Detect SARS-CoV-2 Infection in Human Saliva. J. Clin. Med. 2022, 11, 295. DOI: 10.3390/jcm11020295.
  • Chen, C. J.; Liao, W. L.; Chang, C. T.; Liao, H. Y.; Tsai, F. J. Urine Proteome Analysis by C18 Plate-Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Allows Noninvasive Differential Diagnosis and Prediction of Diabetic Nephropathy. PLoS One 2018, 13, e0200945. DOI: 10.1371/journal.pone.0200945.
  • Heitland, P.; Koster, H. D. Human Biomonitoring of 73 Elements in Blood, Serum, Erythrocytes and Urine. J. Trace Elem. Med. Biol. 2021, 64, 126706. DOI: 10.1016/j.jtemb.2020.126706.
  • Zhang, R.; Qiang, R.; Song, C.; Ma, X.; Zhang, Y.; Li, F.; Wang, R.; Yu, W.; Feng, M.; Yang, L.; et al. Spectrum Analysis of Inborn Errors of Metabolism for Expanded Newborn Screening in a Northwestern Chinese Population. Sci. Rep. 2021, 11, 2699. DOI: 10.1038/s41598-021-81897-y.
  • Archibald, E.; Garrod; M, A.; Oxon, M. D.; Lond, F. R. C. P. The Incidence of Alkaptonuria: A Study in Chemical Individuality. Lancet 1902, 160, 1616–1620. DOI: 10.1016/S0140-6736(01)41972-6.
  • Tan, J.; Chen, D.; Chang, R.; Pan, L.; Yang, J.; Yuan, D.; Huang, L.; Yan, T.; Ning, H.; Wei, J.; et al. Tandem Mass Spectrometry Screening for Inborn Errors of Metabolism in Newborns and High-Risk Infants in Southern China: Disease Spectrum and Genetic Characteristics in a Chinese Population. Front. Genet. 2021, 12, 631688. DOI: 10.3389/fgene.2021.631688.
  • Yang, Q.; Xu, L.; Tang, L. J.; Yang, J. T.; Wu, B. Q.; Chen, N.; Jiang, J. H.; Yu, R. Q. Simultaneous Detection of Multiple Inherited Metabolic Diseases Using GC-MS Urinary Metabolomics by Chemometrics Multi-Class Classification Strategies. Talanta 2018, 186, 489–496. DOI: 10.1016/j.talanta.2018.04.081.
  • Lin, Y.; Zheng, Q.; Zheng, T.; Zheng, Z.; Lin, W.; Fu, Q. Expanded Newborn Screening for Inherited Metabolic Disorders and Genetic Characteristics in a Southern Chinese Population. Clin. Chim. Acta 2019, 494, 106–111. DOI: 10.1016/j.cca.2019.03.1622.
  • Caterino, M.; Ruoppolo, M.; Villani, G. R. D.; Marchese, E.; Costanzo, M.; Sotgiu, G.; Dore, S.; Franconi, F.; Campesi, I. Influence of Sex on Urinary Organic Acids: A Cross-Sectional Study in Children. Int. J. Mol. Sci. 2020, 21, 582. DOI: 10.3390/ijms21020582.
  • Tanaka, K.; Budd, M. A.; Efron, M. L.; Isselbacher, K. J. Isovaleric Acidemia: A New Genetic Defect of Leucine Metabolism. Proc. Natl. Acad. Sci. U S A. 1966, 56, 236–242. DOI: 10.1073/pnas.56.1.236.
  • Yang, N.; Gong, L. F.; Zhao, J. Q.; Yang, H. H.; Ma, Z. J.; Liu, W.; Wan, Z. H.; Kong, Y. Y. Inborn Errors of Metabolism Detectable by Tandem Mass Spectrometry in Beijing. J. Pediatr. Endocrinol. Metab. 2020, 33, 639–645. DOI: 10.1515/jpem-2019-0420.
  • Ombrone, D.; Giocaliere, E.; Forni, G.; Malvagia, S.; la Marca, G. Expanded Newborn Screening by Mass Spectrometry: New Tests, Future Perspectives. Mass Spectrom. Rev. 2016, 35, 71–84. DOI: 10.1002/mas.21463.
  • Han, L. S.; Ye, J.; Qiu, W. J.; Gao, X. L.; Wang, Y.; Gu, X. F. Selective Screening for Inborn Errors of Metabolism on Clinical Patients Using Tandem Mass Spectrometry in China: A Four-Year Report. J. Inherit. Metab. Dis. 2007, 30, 507–514. DOI: 10.1007/s10545-007-0543-9.
  • Jin, L.; Liu, Z.; Zeng, J.; Zhao, H.; Zhang, J.; Zhu, B.; Zhang, Y.; Zhang, T.; Zhang, C. A Simple Method for Rapid Screening and Diagnosis of Common Organic Acidemias: Quantitative Detection of Serum and Urine Organic Acid Profiles Based on Liquid Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2022, 414, 7823–7837. DOI: 10.1007/s00216-022-04316-9.
  • Jacob, M.; Malkawi, A.; Albast, N.; Al Bougha, S.; Lopata, A.; Dasouki, M.; Abdel Rahman, A. M. A Targeted Metabolomics Approach for Clinical Diagnosis of Inborn Errors of Metabolism. Anal. Chim. Acta 2018, 1025, 141–153. DOI: 10.1016/j.aca.2018.03.058.
  • Wang, Q.; Mesaros, C.; Blair, I. A. Ultra-High Sensitivity Analysis of Estrogens for Special Populations in Serum and Plasma by Liquid Chromatography-Mass Spectrometry: Assay Considerations and Suggested Practices. J. Steroid Biochem. Mol. Biol. 2016, 162, 70–79. DOI: 10.1016/j.jsbmb.2016.01.002.
  • Keevil, B. G. LC-MS/MS Analysis of Steroids in the Clinical Laboratory. Clin. Biochem. 2016, 49, 989–997. DOI: 10.1016/j.clinbiochem.2016.04.009.
  • Zhang, C.; Wu, F.; Zhang, Y.; Wang, X.; Zhang, X. A Novel Combination of Immunoreaction and ICP-MS as a Hyphenated Technique for the Determination of Thyroid-Stimulating Hormone (TSH) in Human Serum. J. Anal. At. Spectrom. 2001, 16, 1393–1396. DOI: 10.1039/b106387c.
  • Li, X. S.; Li, S.; Kellermann, G. Simultaneous Determination of Three Estrogens in Human Saliva without Derivatization or Liquid-Liquid Extraction for Routine Testing via Miniaturized Solid Phase Extraction with LC-MS/MS Detection. Talanta 2018, 178, 464–472. DOI: 10.1016/j.talanta.2017.09.062.
  • Rejtharová, M.; Rejthar, L.; Čačková, K. Determination of Testosterone Esters and Nortestosterone Esters in Animal Blood Serum by LC-MS/MS. Food Addit. Contam. A Chem. Anal. Control. Expo. Risk Assess. 2018, 35, 233–240. DOI: 10.1080/19440049.2017.1388544.
  • Lenders, J. W.; Duh, Q. Y.; Eisenhofer, G.; Gimenez-Roqueplo, A. P.; Grebe, S. K.; Murad, M. H.; Naruse, M.; Pacak, K.; Young, W. F. Pheochromocytoma and Paraganglioma: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2014, 99, 1915–1942. DOI: 10.1210/jc.2014-1498.
  • Yuan, T. F.; Le, J.; Cui, Y.; Peng, R.; Wang, S. T.; Li, Y. An LC-MS/MS Analysis for Seven Sex Hormones in Serum. J. Pharm. Biomed. Anal. 2019, 162, 34–40. DOI: 10.1016/j.jpba.2018.09.014.
  • Gaudl, A.; Kratzsch, J.; Ceglarek, U. Advancement in Steroid Hormone Analysis by LC-MS/MS in Clinical Routine diagnostics - A Three Year Recap from Serum Cortisol to Dried Blood 17 Alpha-Hydroxyprogesterone. J. Steroid Biochem. Mol. Biol. 2019, 192, 105389. DOI: 10.1016/j.jsbmb.2019.105389.
  • Van Faassen, M.; Bischoff, R.; Eijkelenkamp, K.; De Jong, W. H. A.; Van der Ley, C. P.; Kema, I. P. In Matrix Derivatization Combined with LC-MS/MS Results in Ultrasensitive Quantification of Plasma Free Metanephrines and Catecholamines. Anal. Chem. 2020, 92, 9072–9078. DOI: 10.1021/acs.analchem.0c01263.
  • Knuuttila, M.; Hamalainen, E.; Poutanen, M. Applying Mass Spectrometric Methods to Study Androgen Biosynthesis and Metabolism in Prostate Cancer. J. Mol. Endocrinol. 2019, 62, R255–R267. DOI: 10.1530/JME-18-0150.
  • Bae, Y. J.; Zeidler, R.; Baber, R.; Vogel, M.; Wirkner, K.; Loeffler, M.; Ceglarek, U.; Kiess, W.; Körner, A.; Thiery, J.; Kratzsch, J. Reference Intervals of Nine Steroid Hormones over the Life-Span Analyzed by LC-MS/MS: Effect of Age, Gender, Puberty, and Oral Contraceptives. J. Steroid Biochem. Mol. Biol. 2019, 193, 105409. DOI: 10.1016/j.jsbmb.2019.105409.
  • Voegel, C. D.; Baumgartner, M. R.; Kraemer, T.; Wust, S.; Binz, T. M. Simultaneous Quantification of Steroid Hormones and Endocannabinoids (ECs) in Human Hair Using an Automated Supported Liquid Extraction (SLE) and LC-MS/MS - Insights into EC Baseline Values and Correlation to Steroid Concentrations. Talanta 2021, 222, 121499. DOI: 10.1016/j.talanta.2020.121499.
  • Song, Y.; Xu, C.; Kuroki, H.; Liao, Y.; Tsunoda, M. Recent Trends in Analytical Methods for the Determination of Amino Acids in Biological Samples. J. Pharm. Biomed. Anal. 2018, 147, 35–49. DOI: 10.1016/j.jpba.2017.08.050.
  • Yun, B. H.; Guo, J. S.; Bellamri, M.; Turesky, R. J. DNA Adducts: Formation, Biological Effects, and New Biospecimens for Mass Spectrometric Measurements in Humans. Mass Spectrom. Rev. 2020, 39, 55–82. DOI: 10.1002/mas.21570.
  • Tanna, S.; Ogwu, J.; Lawson, G. Hyphenated Mass Spectrometry Techniques for Assessing Medication Adherence: Advantages, Challenges, Clinical Applications and Future Perspectives. Clin. Chem. Lab. Med. 2020, 58, 643–663. DOI: 10.1515/cclm-2019-0820.
  • Vogliardi, S.; Favretto, D.; Frison, G.; Maietti, S.; Viel, G.; Seraglia, R.; Traldi, P.; Ferrara, S. D. Validation of a Fast Screening Method for the Detection of Cocaine in Hair by MALDI-MS. Anal. Bioanal. Chem. 2010, 396, 2435–2440. DOI: 10.1007/s00216-009-3387-3.
  • Ameline, A.; Gheddar, L.; Raul, J. S.; Kintz, P. Characterization of Letrozole in Human Hair Using LC-MS/MS and Confirmation by LC-HRMS: Application to a Doping Case. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1162, 122495. DOI: 10.1016/j.jchromb.2020.122495.
  • Li, B.; Van Schepdael, A.; Hoogmartens, J.; Adams, E. Characterization of Impurities in Tobramycin by Liquid Chromatography-Mass Spectrometry. J. Chromatogr. A 2009, 1216, 3941–3945. DOI: 10.1016/j.chroma.2009.03.023.
  • Almalki, A. H.; Hussein, E. A.; Naguib, I. A.; Abdelaleem, E. A.; Zaazaa, H. E.; Abdallah, F. F. Development and Validation of Ecofriendly HPLC-MS Method for Quantitative Assay of Amoxicillin, Dicloxacillin, and Their Official Impurity in Pure and Dosage Forms. J. Anal. Methods Chem. 2021, 2021, 5570938–5570939. DOI: 10.1155/2021/5570938.
  • Mwankuna, C. J.; Uwamaliya, G. A.; Mariki, E. E.; Mabiki, F.; Malebo, H. M.; Mdegela, R.; Styrishave, B. A HPLC-MS/MS Method for Screening of Selected Antibiotic Adulterants in Herbal Drugs. Anal. Methods 2022, 14, 1060–1068. DOI: 10.1039/d1ay01966j.
  • Di Rago, M.; Pantatan, S.; Hargreaves, M.; Wong, K.; Mantinieks, D.; Kotsos, A.; Glowacki, L.; Drummer, O. H.; Gerostamoulos, D. High Throughput Detection of 327 Drugs in Blood by LC-MS-MS with Automated Data Processing. J. Anal. Toxicol. 2021, 45, 154–183. DOI: 10.1093/jat/bkaa057.
  • Ji, J. J.; Yan, H.; Xiang, P.; Shen, B.; Shen, M. An LC-MS/MS Method for the Simultaneous Determination of 12 Psychotropic Drugs and Metabolites in Hair: Identification of Acute Quetiapine Poisoning Using Hair Root. Forensic Sci. Int. 2019, 301, 341–349. DOI: 10.1016/j.forsciint.2019.05.040.
  • Gonsalves, A. R.; Pineiro, M.; Martins, J. M.; Barata, P. A.; Menezes, J. C. Identification of Alprazolam and Its Degradation Products Using LC-MS-MS. Arkivoc 2009, 2010, 128–141. DOI: 10.3998/ark.5550190.0011.513.
  • Wu, Y.; Yang, J.; Duan, C.; Chu, L.; Chen, S.; Qiao, S.; Li, X.; Deng, H. Simultaneous Determination of Antiretroviral Drugs in Human Hair with Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1083, 209–221. DOI: 10.1016/j.jchromb.2018.03.021.
  • Lawson, G.; Cocks, E.; Tanna, S. Bisoprolol, Ramipril and Simvastatin Determination in Dried Blood Spot Samples Using LC-HRMS for Assessing Medication Adherence. J. Pharm. Biomed. Anal. 2013, 81–82, 99–107. DOI: 10.1016/j.jpba.2013.04.002.
  • Munns, C. F.; Shaw, N.; Kiely, M.; Specker, B. L.; Thacher, T. D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M. Z.; Mäkitie, O.; et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J. Clin. Endocrinol. Metab. 2016, 101, 394–415. DOI: 10.1210/jc.2015-2175.
  • Makris, K.; Sempos, C.; Cavalier, E. The Measurement of Vitamin D Metabolites Part II-the Measurement of the Various Vitamin D Metabolites. Hormones 2020, 19, 97–107. DOI: 10.1007/s42000-020-00188-9.
  • Carlberg, C.; Munoz, A. An Update on Vitamin D Signaling and Cancer. Semin. Cancer Biol. 2022, 79, 217–230. DOI: 10.1016/j.semcancer.2020.05.018.
  • Murdaca, G.; Tonacci, A.; Negrini, S.; Greco, M.; Borro, M.; Puppo, F.; Gangemi, S. Emerging Role of Vitamin D in Autoimmune Diseases: An Update on Evidence and Therapeutic Implications. Autoimmun. Rev. 2019, 18, 102350. DOI: 10.1016/j.autrev.2019.102350.
  • Cai, Z.; Zhang, Q.; Xia, Z.; Zheng, S.; Zeng, L.; Han, L.; Yan, J.; Ke, P.; Zhuang, J.; Wu, X.; et al. Determination of Serum 25-Hydroxyvitamin D Status among Population in Southern China by a High Accuracy LC-MS/MS Method Traced to Reference Measurement Procedure. Nutr. Metab. 2020, 17, 8. DOI: 10.1186/s12986-020-0427-7.
  • Garg, U. 25-Hydroxyvitamin D Testing: Immunoassays versus Tandem Mass Spectrometry. Clin. Lab. Med. 2018, 38, 439–453. DOI: 10.1016/j.cll.2018.05.007.
  • Tran, M. T.; Hoang, K.; Greaves, R. F. Practical Application of Biological Variation and Sigma Metrics Quality Models to Evaluate 20 Chemistry Analytes on the Beckman Coulter AU680. Clin. Biochem. 2016, 49, 1259–1266. DOI: 10.1016/j.clinbiochem.2016.08.008.
  • Zhang, Y.; Bala, V.; Mao, Z.; Chhonker, Y. S.; Murry, D. J. Quantification of Fat-Soluble Vitamins and Their Metabolites in Biological Matrices: An Updated Review. Bioanalysis 2020, 12, 625–640. DOI: 10.4155/bio-2020-0069.
  • Abu Kassim, N. S.; Shaw, P. N.; Hewavitharana, A. K. Simultaneous Determination of 12 Vitamin D Compounds in Human Serum Using Online Sample Preparation and Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2018, 1533, 57–65. DOI: 10.1016/j.chroma.2017.12.012.
  • Vogeser, M.; Seger, C. Quality Management in Clinical Application of Mass Spectrometry Measurement Systems. Clin. Biochem. 2016, 49, 947–954. DOI: 10.1016/j.clinbiochem.2016.07.005.
  • Rodriguez-Temporal, D.; Rodriguez-Sanchez, B.; Alcaide, F. Evaluation of MALDI Biotyper Interpretation Criteria for Accurate Identification of Nontuberculous Mycobacteria. J. Clin. Microbiol. 2020, 58, e01103-20. DOI: 10.1128/JCM.01103-20.
  • Wolk, D. M.; Clark, A. E. Matrix-Assisted Laser Desorption Time of Flight Mass Spectrometry. Clin. Lab. Med. 2018, 38, 471–486. DOI: 10.1016/j.cll.2018.05.008.
  • Samuel, L. P.; Balada-Llasat, J. M.; Harrington, A.; Cavagnolo, R. Multicenter Assessment of Gram Stain Error Rates. J. Clin. Microbiol. 2016, 54, 1442–1447. DOI: 10.1128/JCM.03066-15.
  • Payto, D.; Heideloff, C.; Wang, S. Sensitive, Simple, and Robust Nano-Liquid Chromatography-Mass Spectrometry Method for Amyloid Protein Subtyping. Methods Mol. Biol. 2016, 1378, 55–60. DOI: 10.1007/978-1-4939-3182-8_7.
  • Lasch, P.; Schneider, A.; Blumenscheit, C.; Doellinger, J. Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS1) and in Silico Peptide Mass Libraries. Mol. Cell. Proteomics 2020, 19, 2125–2139. DOI: 10.1074/mcp.TIR120.002061.
  • Yo, C. H.; Shen, Y. H.; Hsu, W. T.; Mekary, R. A.; Chen, Z. R.; Lee, W. T. J.; Chen, S. C.; Lee, C. C. MALDI‐TOF Mass Spectrometry Rapid Pathogen Identification and Outcomes of Patients with Bloodstream Infection: A Systematic Review and Meta‐Analysis. Microb. Biotechnol. 2022, 15, 2667–2682. DOI: 10.1111/1751-7915.14124.
  • Israr, M. Z.; Bernieh, D.; Salzano, A.; Cassambai, S.; Yazaki, Y.; Suzuki, T. Matrix-Assisted Laser Desorption Ionisation (MALDI) Mass Spectrometry (MS): Basics and Clinical Applications. Clin. Chem. Lab. Med. 2020, 58, 883–896. DOI: 10.1515/cclm-2019-0868.
  • Tsuchida, S.; Nakayama, T. MALDI-Based Mass Spectrometry in Clinical Testing: Focus on Bacterial Identification. Appl. Sci. 2022, 12, 2814. DOI: 10.3390/app12062814.
  • Jang, K. S.; Kim, Y. H. Rapid and Robust MALDI-TOF MS Techniques for Microbial Identification: A Brief Overview of Their Diverse Applications. J. Microbiol. 2018, 56, 209–216. DOI: 10.1007/s12275-018-7457-0.
  • Li, Y.; Shan, M.; Zhu, Z.; Mao, X.; Yan, M.; Chen, Y.; Zhu, Q.; Li, H.; Gu, B. Application of MALDI-TOF MS to Rapid Identification of Anaerobic Bacteria. BMC Infect. Dis. 2019, 19, 941–951. DOI: 10.1186/s12879-019-4584-0.
  • Angeletti, S. Matrix Assisted Laser Desorption Time of Flight Mass Spectrometry (MALDI-TOF MS) in Clinical Microbiology. J. Microbiol. Methods 2017, 138, 20–29. DOI: 10.1016/j.mimet.2016.09.003.
  • Tsuchida, S.; Umemura, H.; Nakayama, T. Current Status of Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) in Clinical Diagnostic Microbiology. Molecules 2020, 25, 4775. DOI: 10.3390/molecules25204775.
  • Xiu, L.; Zhang, C.; Wu, Z.; Peng, J. Establishment and Application of a Universal Coronavirus Screening Method Using MALDI-TOF Mass Spectrometry. Front. Microbiol. 2017, 8, 1510. DOI: 10.3389/fmicb.2017.01510.
  • Zvezdanova, M. E.; Escribano, P.; Ruiz, A.; Martinez-Jimenez, M. C.; Pelaez, T.; Collazos, A.; Guinea, J.; Bouza, E.; Rodriguez-Sanchez, B. Increased Species-Assignment of Filamentous Fungi Using MALDI-TOF MS Coupled with a Simplified Sample Processing and an in-House Library. Med. Mycol. 2019, 57, 63–70. DOI: 10.1093/mmy/myx154.
  • Quintela-Baluja, M.; Bohme, K.; Fernandez-No, I. C.; Morandi, S.; Alnakip, M. E.; Caamano-Antelo, S.; Barros-Velazquez, J.; Calo-Mata, P. Characterization of Different Food-Isolated Enterococcus Strains by MALDI-TOF Mass Fingerprinting. Electrophoresis 2013, 34, 2240–2250. DOI: 10.1002/elps.201200699.
  • Cobo, F. Application of Maldi-Tof Mass Spectrometry in Clinical Virology: A Review. Open Virol. J. 2013, 7, 84–90. DOI: 10.2174/1874357920130927003.
  • Kassim, A.; Pfluger, V.; Premji, Z.; Daubenberger, C.; Revathi, G. Comparison of Biomarker Based Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and Conventional Methods in the Identification of Clinically Relevant Bacteria and Yeast. BMC Microbiol. 2017, 17, 128. DOI: 10.1186/s12866-017-1037-z.
  • Becker, P. T.; de Bel, A.; Martiny, D.; Ranque, S.; Piarroux, R.; Cassagne, C.; Detandt, M.; Hendrickx, M. Identification of Filamentous Fungi Isolates by MALDI-TOF Mass Spectrometry: Clinical Evaluation of an Extended Reference Spectra Library. Med. Mycol. 2014, 52, 826–834. DOI: 10.1093/mmy/myu064.
  • Yan, L.; Yi, J.; Huang, C.; Zhang, J.; Fu, S.; Li, Z.; Lyu, Q.; Xu, Y.; Wang, K.; Yang, H.; et al. Rapid Detection of COVID-19 Using MALDI-TOF-Based Serum Peptidome Profiling. Anal. Chem. 2021, 93, 4782–4787. DOI: 10.1021/acs.analchem.0c04590.
  • Rybicka, M.; Miłosz, E.; Bielawski, K. P. Superiority of MALDI-TOF Mass Spectrometry over Real-Time PCR for SARS-CoV-2 RNA Detection. Viruses 2021, 13, 730. DOI: 10.3390/v13050730.
  • Sepiashvili, L.; Kohlhagen, M. C.; Snyder, M. R.; Willrich, M. A. V.; Mills, J. R.; Dispenzieri, A.; Murray, D. L. Direct Detection of Monoclonal Free Light Chains in Serum by Use of Immunoenrichment-Coupled MALDI-TOF Mass Spectrometry. Clin. Chem. 2019, 65, 1015–1022. DOI: 10.1373/clinchem.2018.299461.
  • Zhang, B.; Whiteaker, J. R.; Hoofnagle, A. N.; Baird, G. S.; Rodland, K. D.; Paulovich, A. G. Clinical Potential of Mass Spectrometry-Based Proteogenomics. Nat. Rev. Clin. Oncol. 2019, 16, 256–268. DOI: 10.1038/s41571-018-0135-7.
  • Shi, R.; Kumar, C.; Zougman, A.; Zhang, Y.; Podtelejnikov, A.; Cox, J.; Wiśniewski, J. R.; Mann, M. Analysis of the Mouse Liver Proteome Using Advanced Mass Spectrometry. J. Proteome Res. 2007, 6, 2963–2972. DOI: 10.1021/pr0605668.
  • Biemann, K.; Tsunakawa, S.; Sonnenbichler, J.; Feldmann, H.; Dütting, D.; Zachau, H. G. Structure of an Odd Nucleoside from Serine-Specific Transfer Ribonucleic Acid. Angew. Chem. Int. Ed. Engl. 1966, 5, 590–591. DOI: 10.1002/anie.196605902.
  • Antunes, M. V.; Charao, M. F.; Linden, R. Dried Blood Spots Analysis with Mass Spectrometry: Potentials and Pitfalls in Therapeutic Drug Monitoring. Clin. Biochem. 2016, 49, 1035–1046. DOI: 10.1016/j.clinbiochem.2016.05.004.
  • Cao, Y.; Feng, J.; Tang, L.; Mo, G.; Mo, W.; Deng, B. Detection of Three Tumor Biomarkers in Human Lung Cancer Serum Using Single Particle Inductively Coupled Plasma Mass Spectrometry Combined with Magnetic Immunoassay. Spectrochim. Acta B 2020, 166, 105797. DOI: 10.1016/j.sab.2020.105797.
  • Ren, D.; Ran, L.; Yang, C.; Xu, M.; Yi, L. Integrated Strategy for Identifying Minor Components in Complex Samples Combining Mass Defect, Diagnostic Ions and Neutral Loss Information Based on Ultra-Performance Liquid Chromatography-High Resolution Mass Spectrometry Platform: Folium Artemisiae Argyi as a Case Study. J. Chromatogr. A 2018, 1550, 35–44. DOI: 10.1016/j.chroma.2018.03.044.
  • Sindelar, M.; Patti, G. J. Chemical Discovery in the Era of Metabolomics. J. Am. Chem. Soc. 2020, 142, 9097–9105. DOI: 10.1021/jacs.9b13198.
  • Musharraf, S. G.; Siddiqui, A. J.; Shamsi, T.; Naz, A. SERUM Metabolomics of Acute Lymphoblastic Leukaemia and Acute Myeloid Leukaemia for Probing Biomarker Molecules. Hematol. Oncol. 2017, 35, 769–777. DOI: 10.1002/hon.2313.
  • Wu, M.; Xu, Y.; Fitch, W. L.; Zheng, M.; Merritt, R. E.; Shrager, J. B.; Zhang, W.; Dill, D. L.; Peltz, G.; Hoang, C. D. Liquid Chromatography/Mass Spectrometry Methods for Measuring Dipeptide Abundance in Non-Small-Cell Lung Cancer. Rapid Commun. Mass Spectrom. 2013, 27, 2091–2098. DOI: 10.1002/rcm.6656.
  • Araujo-Castro, M.; Valderrabano, P.; Escobar-Morreale, H. F.; Hanzu, F. A.; Casals, G. Urine Steroid Profile as a New Promising Tool for the Evaluation of Adrenal Tumors. Literature Review. Endocrine 2021, 72, 40–48. DOI: 10.1007/s12020-020-02544-6.
  • Zhang, Q.; Li, X.; Yin, X.; Wang, H.; Fu, C.; Wang, H.; Li, K.; Li, Y.; Zhang, X.; Liang, H.; et al. Metabolomic Profiling Reveals Serum L-Pyroglutamic Acid as a Potential Diagnostic Biomarker for Systemic Lupus Erythematosus. Rheumatology 2021, 60, 598–606. DOI: 10.1093/rheumatology/keaa126.
  • Roy, C.; Tremblay, P. Y.; Bienvenu, J. F.; Ayotte, P. Quantitative Analysis of Amino Acids and Acylcarnitines Combined with Untargeted Metabolomics Using Ultra-High Performance Liquid Chromatography and Quadrupole Time-of-Flight Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1027, 40–49. DOI: 10.1016/j.jchromb.2016.05.006.
  • Carlson, A. K.; Rawle, R. A.; Adams, E.; Greenwood, M. C.; Bothner, B.; June, R. K. Application of Global Metabolomic Profiling of Synovial Fluid for Osteoarthritis Biomarkers. Biochem. Biophys. Res. Commun. 2018, 499, 182–188. DOI: 10.1016/j.bbrc.2018.03.117.
  • Zhang, J.; Yu, W.; Suliburk, J.; Eberlin, L. S. Will Ambient Ionization Mass Spectrometry Become an Integral Technology in the Operating Room of the Future? Clin. Chem. 2016, 62, 1172–1174. DOI: 10.1373/clinchem.2016.258723.
  • Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Mass Spectrometry Sampling under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473. DOI: 10.1126/science.1104404.
  • Wang, H.; Fei, Z.; Li, Z.; Xing, R.; Liu, Z.; Zhang, Y.; Ding, H. Coupling Laser Desorption with Corona Beam Ionization for Ambient Mass Spectrometric Analysis of Solution and Powder Samples. Talanta 2018, 179, 364–368. DOI: 10.1016/j.talanta.2017.11.039.
  • Laskin, J.; Lanekoff, I. Ambient Mass Spectrometry Imaging Using Direct Liquid Extraction Techniques. Anal. Chem. 2016, 88, 52–73. DOI: 10.1021/acs.analchem.5b04188.
  • Taylor, M. J.; Liyu, A.; Vertes, A.; Anderton, C. R. Ambient Single-Cell Analysis and Native Tissue Imaging Using Laser-Ablation Electrospray Ionization Mass Spectrometry with Increased Spatial Resolution. J. Am. Soc. Mass Spectrom. 2021, 32, 2490–2494. DOI: 10.1021/jasms.1c00149.
  • Tamura, K.; Horikawa, M.; Sato, S.; Miyake, H.; Setou, M. Discovery of Lipid Biomarkers Correlated with Disease Progression in Clear Cell Renal Cell Carcinoma Using Desorption Electrospray Ionization Imaging Mass Spectrometry. Oncotarget 2019, 10, 1688–1703. DOI: 10.18632/oncotarget.26706.
  • King, M. E.; Zhang, J.; Lin, J. Q.; Garza, K. Y.; DeHoog, R. J.; Feider, C. L.; Bensussan, A.; Sans, M.; Krieger, A.; Badal, S.; et al. Rapid Diagnosis and Tumor Margin Assessment during Pancreatic Cancer Surgery with the MasSpec Pen Technology. Proc. Natl. Acad. Sci. U S A. 2021, 118, e2104411118. DOI: 10.1073/pnas.2104411118.
  • Golf, O.; Strittmatter, N.; Karancsi, T.; Pringle, S. D.; Speller, A. V.; Mroz, A.; Kinross, J. M.; Abbassi-Ghadi, N.; Jones, E. A.; Takats, Z. Rapid Evaporative Ionization Mass Spectrometry Imaging Platform for Direct Mapping from Bulk Tissue and Bacterial Growth Media. Anal. Chem. 2015, 87, 2527–2534. DOI: 10.1021/ac5046752.
  • Tzafetas, M.; Mitra, A.; Paraskevaidi, M.; Bodai, Z.; Kalliala, I.; Bowden, S.; Lathouras, K.; Rosini, F.; Szasz, M.; Savage, A.; et al. The Intelligent Knife (iKnife) and Its Intraoperative Diagnostic Advantage for the Treatment of Cervical Disease. Proc. Natl. Acad. Sci. U S A. 2020, 117, 7338–7346. DOI: 10.1073/pnas.1916960117.
  • St John, E. R.; Balog, J.; McKenzie, J. S.; Rossi, M.; Covington, A.; Muirhead, L.; Bodai, Z.; Rosini, F.; Speller, A. V. M.; Shousha, S.; et al. Rapid Evaporative Ionisation Mass Spectrometry of Electrosurgical Vapours for the Identification of Breast Pathology: Towards an Intelligent Knife for Breast Cancer Surgery. Breast Cancer Res. 2017, 19, 59. DOI: 10.1186/s13058-017-0845-2.
  • Mason, S.; Manoli, E.; Poynter, L.; Alexander, J.; Paizs, P.; Adebesin, A.; Goldin, R.; Darzi, A.; Takats, Z.; Kinross, J. Mass Spectrometry Transanal Minimally Invasive Surgery (MS-TAMIS) to Promote Organ Preservation in Rectal Cancer. Surg. Endosc. 2020, 34, 3618–3625. DOI: 10.1007/s00464-019-07140-y.
  • Balog, J.; Sasi-Szabó, L.; Kinross, J.; Lewis, M. R.; Muirhead, L. J.; Veselkov, K.; Mirnezami, R.; Dezső, B.; Damjanovich, L.; Darzi, A.; et al. Intraoperative Tissue Identification Using Rapid Evaporative Ionization Mass Spectrometry. Sci. Transl. Med. 2013, 5, 194ra93. DOI: 10.1126/scitranslmed.3005623.
  • Sans, M.; Zhang, J.; Lin, J. Q.; Feider, C. L.; Giese, N.; Breen, M. T.; Sebastian, K.; Liu, J.; Sood, A. K.; Eberlin, L. S. Performance of the MasSpec Pen for Rapid Diagnosis of Ovarian Cancer. Clin. Chem. 2019, 65, 674–683. DOI: 10.1373/clinchem.2018.299289.
  • Zhang, J.; Rector, J.; Lin, J. Q.; Young, J. H.; Sans, M.; Katta, N.; Giese, N.; Yu, W.; Nagi, C.; Suliburk, J.; et al. Nondestructive Tissue Analysis for Ex Vivo and In Vivo Cancer Diagnosis Using a Handheld Mass Spectrometry System. Sci. Transl. Med. 2017, 9, eaan3968. DOI: 10.1126/scitranslmed.aan3968.
  • Swiner, D. J.; Jackson, S.; Burris, B. J.; Badu-Tawiah, A. K. Applications of Mass Spectrometry for Clinical Diagnostics: The Influence of Turnaround Time. Anal. Chem. 2020, 92, 183–202. DOI: 10.1021/acs.analchem.9b04901.
  • Zhang, J.; Sans, M.; Garza, K. Y.; Eberlin, L. S. Mass Spectrometry Technologies to Advance Care for Cancer Patients in Clinical and Intraoperative Use. Mass Spectrom. Rev. 2021, 40, 692–720. DOI: 10.1002/mas.21664.
  • Drabińska, N.; Flynn, C.; Ratcliffe, N.; Belluomo, I.; Myridakis, A.; Gould, O.; Fois, M.; Smart, A.; Devine, T.; Costello, B. D. L. A Literature Survey of All Volatiles from Healthy Human Breath and Bodily Fluids: The Human Volatilome. J. Breath Res. 2021, 15, 034001. DOI: 10.1088/1752-7163/abf1d0.
  • Pizzini, A.; Filipiak, W.; Wille, J.; Ager, C.; Wiesenhofer, H.; Kubinec, R.; Blaško, J.; Tschurtschenthaler, C.; Mayhew, C. A.; Weiss, G.; Bellmann-Weiler, R. Analysis of Volatile Organic Compounds in the Breath of Patients with Stable or Acute Exacerbation of Chronic Obstructive Pulmonary Disease. J. Breath Res. 2018, 12, 036002. DOI: 10.1088/1752-7163/aaa4c5.
  • Fowler, K. T.; Hugh-Jones, P. Mass Spectrometry Applied to Clinical Practice and Research. Br. Med. J. 1957, 1, 1205–1211. DOI: 10.1136/bmj.1.5029.1205.
  • Hua, Q.; Zhu, Y.; Liu, H. Detection of Volatile Organic Compounds in Exhaled Breath to Screen Lung Cancer: A Systematic Review. Future Oncol. 2018, 14, 1647–1662. DOI: 10.2217/fon-2017-0676.
  • Chen, X.; Muhammad, K. G.; Madeeha, C.; Fu, W.; Xu, L.; Hu, Y.; Liu, J.; Ying, K.; Chen, L.; Yurievna, G. O. Calculated Indices of Volatile Organic Compounds (VOCs) in Exhalation for Lung Cancer Screening and Early Detection. Lung Cancer 2021, 154, 197–205. DOI: 10.1016/j.lungcan.2021.02.006.
  • Das, S.; Pal, S.; Mitra, M. Significance of Exhaled Breath Test in Clinical Diagnosis: A Special Focus on the Detection of Diabetes Mellitus. J. Med. Biol. Eng. 2016, 36, 605–624. DOI: 10.1007/s40846-016-0164-6.
  • Wu, X.; Zhang, J.; Yan, X.; Zhu, Y.; Li, W.; Li, P.; Chen, H.; Zhang, W.; Cheng, N.; Xiang, T. Characterization of Liver Failure by the Analysis of Exhaled Breath by Extractive Electrospray Ionization Mass Spectrometry (EESI-MS): A Pilot Study. Anal. Lett. 2021, 54, 1038–1054. DOI: 10.1080/00032719.2020.1793993.
  • Shamraeva, M. A.; Bormotov, D. S.; Shamarina, E. V.; Bocharov, K. V.; Peregudova, O. V.; Pekov, S. I.; Nikolaev, E. N.; Popov, I. A. Spherical Sampler Probes Enhance the Robustness of Ambient Ionization Mass Spectrometry for Rapid Drugs Screening. Molecules 2022, 27, 945. DOI: 10.3390/molecules27030945.
  • Vasiljevic, T.; Gomez-Rios, G. A.; Li, F.; Liang, P.; Pawliszyn, J. High-Throughput Quantification of Drugs of Abuse in Biofluids via 96-Solid-Phase Microextraction-Transmission Mode and Direct Analysis in Real Time Mass Spectrometry. Rapid Commun. Mass Spectrom. 2019, 33, 1423–1433. DOI: 10.1002/rcm.8477.
  • Li, J.; Zheng, Y.; Mi, W.; Muyizere, T.; Zhang, Z. Polystyrene-Impregnated Paper Substrates for Direct Mass Spectrometric Analysis of Proteins and Peptides in Complex Matrices. Anal. Methods 2018, 10, 2803–2811. DOI: 10.1039/C8AY01081A.
  • Jett, R.; Skaggs, C.; Manicke, N. E. Drug Screening Method Development for Paper Spray Coupled to a Triple Quadrupole Mass Spectrometer. Anal. Methods 2017, 9, 5037–5043. DOI: 10.1039/C7AY01009E.
  • Chiang, S.; Zhang, W.; Ouyang, Z. Paper Spray Ionization Mass Spectrometry: Recent Advances and Clinical Applications. Expert Rev. Proteomics 2018, 15, 781–789. DOI: 10.1080/14789450.2018.1525295.
  • Wu, J.; Zhang, W.; Ouyang, Z. On-Demand Mass Spectrometry Analysis by Miniature Mass Spectrometer. Anal. Chem. 2021, 93, 6003–6007. DOI: 10.1021/acs.analchem.1c00575.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.