538
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Analytical Tools and Methods for Explosive Analysis in Forensics: A Critical Review

&

References

  • Updated Working Procedure Manual. Explosives, Directorate of Forensic Science Services, Ministry of Home Affairs, Govt. of India. 2021. dfs.nic.in/pdfs/EXPLOsive.pdf.
  • Bevan, J. Conventional Ammunition in Surplus – A reference guide, Small Arms Survey, 2008.
  • Bell, S. Explosives and Improvised Explosive Devices. In Forensic Science: An Introduction to Scientific and Investigative Techniques, 5th ed.; CRC Press, 2019; pp. 197–211.
  • Beveridge, A. Forensic Investigation of Explosions; Routledge & CRC Press: London, UK, 2011. https://www.routledge.com/Forensic-Investigation-of-Explosions/Beveridge/p/book/9780367778200.
  • Forbes, T.-P.; Krauss, S. T.; Gillen, G. Trace Detection and Chemical Analysis of Homemade Fuel-Oxidizer Mixture Explosives: Emerging Challenges and Perspectives. Trends Analyt. Chem. 2020, 131, 116023. DOI: 10.1016/j.trac.2020.116023.
  • Cagan, A.; Oxley, J. Counter Terrorist Detection Techniques of Explosives; 2nd ed.; Elsevier Science: New York, 2021.
  • Evans-Nguyen, K.; Hutches, K. Forensic Analysis of Fire Debris and Explosives; Springer: Switzerland, 2019.
  • Gooch, J.; Daniel, B.; Abbate, V.; Frascione, N. Taggant Materials in Forensic Science: A Review. Trends Anal. Chem. 2016, 83, 49–54. DOI: 10.1016/j.trac.2016.08.003.
  • Manerikar, A.; Li, F.; Kak, A. DEBISim: A Simulation Pipeline for Dual Energy CT-Based Baggage Inspection Systems. J. X-ray. Sci. Technol. 2021, 29, 259–285. DOI: 10.3233/XST-200808.
  • Miller, E.-A.; Campbell, L.-W.; Deshmukh, N.; Gilbert, A.-J.; Ivanusa, P.; Jacob, R.-E.; Kasparek, D.-M.; McCall, J.-D.; Munoz, E.; Owsley Jr, S.-L.; et al. 2021 Gratings-Based Phase Contrast X-Ray Imaging: Progress towards a Prototype System for Explosives Detection. Proc. SPIE: Anomaly Detect. Imag. X-Rays (ADIX) VI, 11738, 1173802. DOI: 10.1117/12.2589938.
  • Crocombe, R.-A.; Leary, P.-E.; Kammrath, B.-W. Portable Spectroscopy and Spectrometry: Vol. 1: Technologies and Instrumentation; Wiley: London, 2021.
  • Crocombe, R.-A.; Leary, P.-E.; Kammrath, B.-W. Portable Spectroscopy and Spectrometry: Vol. 2: Applications; Wiley: London, 2021.
  • Lara-Ibeas, I.; Cuevas, A.; Le Calvé, S. Recent Developments and Trends in Miniaturized Gas Preconcentrators for Portable Gas Chromatography Systems: A Review. Sens. Actuator B Chem 2021, 346, 130449. DOI: 10.1016/j.snb.2021.130449.
  • Wei-Hao Li, M.; Ghosh, A.; Venkatasubramanian, A.; Sharma, R.; Huang, X.; Fan, X. High-Sensitivity Micro-Gas Chromatograph-Photoionization Detector for Trace Vapor Detection. ACS Sens. 2021, 6, 2348–2355. DOI: 10.1021/acssensors.1c00482.
  • Qualley, A.; Hughes, G.-T.; Rubenstein, M.-H. Data Quality Improvement for Field-Portable Gas Chromatography-Mass Spectrometry through the Use of Isotopic Analogues for in-Situ Calibration. Environ. Chem. 2020, 17, 28–38. DOI: 10.1071/EN19134.
  • USEPA. Method 529, Determination of explosives and related compounds in drinking water by solid phase extraction and capillary column gas chromatography/mass spectrometry, 2005.
  • USEPA. SW-846 Test Method 8330A: Nitroaromatics and Nitramines by High Performance Liquid Chromatography (HPLC), 2015.
  • USEPA, Method 8330B (SW-846): Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC), 2019.
  • USEPA, SW-846 Test Method 8095. Explosives by Gas Chromatography, 2015.
  • USEPA, SW-846 Test Method 9056A. Determination of Inorganic Anions by Ion Chromatography, 2015.
  • USEPA, SW-846 Test Method 3535A. Solid-Phase Extraction (SPE), 2015.
  • USEPA, SW-846 Test Method 8510. Colorimetric Screening Procedure for Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and Octahydro-1,3,5,7-tetranitro-1,3,5,7- tetrazocine (HMX) in Soil, 2015.
  • USEPA, SW-846 Test Method 8515. Colorimetric Screening Method for Trinitrotoluene (TNT) in Soil, 2015.
  • USEPA, SW-846 Test Method 4050. Trinitrotoluene (TNT) Explosives in Soil by Immunoassay, 2015.
  • ASTM E2520-21. Standard Practice for Measuring and Scoring Performance of Trace Explosive Chemical Detectors. https://www.astm.org/e2520-21.html.
  • ASTM E2677-20. Standard Test Method for Estimating Limits of Detection in Trace Detectors for Explosives and Drugs of Interest. https://www.astm.org/e2677-20.html.
  • ASTM E2998-16. Standard Practice for Characterization and Classification of Smokeless Powder. https://www.astm.org/e2998-16.html.
  • ASTM E2999-17. Standard Test Method for Analysis of Organic Compounds in Smokeless Powder by Gas Chromatography-Mass Spectrometry and Fourier Transform Infrared Spectroscopy. https://www.astm.org/e2999-17.html.
  • ASTM E3196-21. Standard Terminology Relating to the Examination of Explosives. https://www.astm.org/e3196-21.html.
  • ASTM E3253-21. Standard Practice for Establishing an Examination Scheme for Intact Explosives. https://www.astm.org/e3253-21.html.
  • ASTM E3329-21e01. Standard Practice for Establishing an Examination Scheme for Explosive Residues. https://www.astm.org/e3329-21e01.html.
  • ASTM D5143-06r15e01. Standard Test Method for Analysis of Nitroaromatic and Nitramine Explosive in Soil by High Performance Liquid Chromatography. https://www.astm.org/d5143-06r15e01.html.
  • Technical/Scientific Working Group for Fire and Explosion Analysis Publications. https://www.swgfex.com/publications.
  • Greibl, W. End User Commentary on Advances in the Analysis of Explosives. In: Emerging Technologies for the Analysis of Forensic Traces, Francese, S., Ed.; Springer: Switzerland, 2019; pp. 241–243. DOI: 10.1007/978-3-030-20542-3_16.
  • Zhang, W.; Tang, Y.; Shi, A.; Bao, L.; Shen, Y.; Shen, R.; Ye, Y. Recent Developments in Spectroscopic Techniques for the Detection of Explosives. Materials (Basel) 2018, 11, 1364. DOI: 10.3390/ma11081364.
  • Holubowitch, N.-E.; Crabtree, C.; Budimir, Z. Electroanalysis and Spectroelectrochemistry of Nonaromatic Explosives in Acetonitrile Containing Dissolved Oxygen. Anal. Chem. 2020, 92, 11617–11626. DOI: 10.1021/acs.analchem.0c01174.
  • Goudsmits, E.; Sharples, G.-P.; Birkett, J.-W. Recent Trends in Organic Gunshot Residue Analysis. Trends Anal. Chem. 2015, 74, 46–57. DOI: 10.1016/j.trac.2015.05.010.
  • Grate, J.-W.; Ewing, R.-G.; Atkinson, D.-A. Vapor-Generation Methods for Explosives-Detection Research. Trends Anal. Chem. 2012, 41, 1–14. DOI: 10.1016/j.trac.2012.08.007.
  • Wen, P.; Amin, M.; Herzog, W.-D.; Kunz, R.-R. Key Challenges and Prospects for Optical Standoff Trace Detection of Explosives. Trends Anal. Chem. 2018, 100, 136–144. DOI: 10.1016/j.trac.2017.12.014.
  • Yinon, J. Field Detection and Monitoring of Explosives. Trends Anal. Chem. 2002, 21, 292–301. DOI: 10.1016/s0165-9936(02)00408-9.
  • To, K.-C.; Ben-Jaber, S.; Parkin, I.-P. Recent Developments in the Field of Explosive Trace Detection. ACS Nano. 2020, 14, 10804–10833. DOI: 10.1021/acsnano.0c01579.
  • Nabiev, S.-S.; Palkina, L.-A. Modern Technologies for Detection and Identification of Explosive Agents and Devices. Russ. J. Phys. Chem. B 2017, 11, 729–776. DOI: 10.1134/S1990793117050190.
  • Brown, K.-E.; Greenfield, M.-T.; McGrane, S.-D.; Moore, D.-S. Advances in Explosives Analysis—Part I: Animal, Chemical, Ion, and Mechanical Methods. Anal. Bioanal. Chem. 2016, 408, 35–47. DOI: 10.1007/s00216-015-9040-4.
  • Moore, D.-S. Instrumentation for Trace Detection of High Explosives. Rev. Sci. Instrum. 2004, 75, 2499–2512. DOI: 10.1063/1.1771493.
  • Huri, A.; Ahmad, U.; Ibrahim, R. A Review of Explosive Residue Detection from Forensic Chemistry Perspective. Malays. J. Anal. Sci. 2017, 21, 267–282. http://www.ukm.my/mjas/v21_n2/pdf/MohamadAfiq_21_2_1.pdf.
  • Caygill, J.-S.; Davis, F.; Higson, S.-P.-J. Current Trends in Explosive Detection Techniques. Talanta 2012, 88, 14–29. DOI: 10.1016/j.talanta.2011.11.043.
  • Klapec, D.-J.; Czarnopys, G. Analysis and Detection of Explosives and Explosives Residues Review: 2010 to 2013. In 17th Interpol International Forensic Science Managers Symposium, Lyon 8th-10th October 2013; pp. 280–435.
  • Klapec, D.-J.; Czarnopys, G. Analysis and Detection of Explosives and Explosives Residues Review: 2013 to 2016. In 18th Interpol International Forensic Science Managers Symposium, Lyon 11th-13th October 2016; pp. 194–261.
  • Klapec, D.-J.; Czarnopys, G.; Pannuto, J. Interpol Review of the Analysis and Detection of Explosives and Explosives Residues 2016-2019. Forensic Sci. Int. Synerg. 2020, 2, 670–700. DOI: 10.1016/j.fsisyn.2020.01.020.
  • Klapec, D.-J.; Czarnopys, G.; Pannuto, J. Interpol Review of the Analysis and Detection of Explosives and Explosives Residues. Forensic Sci. Int. Synerg. 2023, 6, 100298. DOI: 10.1016/j.fsisyn.2022.100298.
  • DeGreeff, L.; Peranich, K. Canine Olfactory Detection of Trained Explosive and Narcotic Odors in Mixtures Using a Mixed Odor Delivery Device. Forensic Sci. Int. 2021, 329, 111059. DOI: 10.1016/j.forsciint.2021.111059.
  • DeGreeff, L.; Katilie, C.-J.; Johnson, R.-F.; Vaughan, S. Quantitative Vapor Delivery for Improved Canine Threshold Testing. Anal. Bioanal. Chem. 2021, 413, 955–966. DOI: 10.1007/s00216-020-03052-2.
  • DeGreeff, L.-E.; Simon, A.-G.; Peranich, K.; Holness, H.-K.; Frank, K.; Furton, K.-G. Generalization and Discrimination of Molecularly Similar Odorants in Detection Canines and the Influence of Training. Behav. Processes. 2020, 177, 104148. DOI: 10.1016/j.beproc.2020.104148.
  • Kokocińska-Kusiak, A.; Woszczyło, M.; Zybala, M.; Maciocha, J.; Barłowska, K.; Dzięcioł, M. Canine Olfaction: Physiology, Behavior, and Possibilities for Practical Applications. Animals (Basel) 2021, 11, 2463. DOI: 10.3390/ani11082463.
  • Jendrny, P.; Twele, F.; Meller, S.; Osterhaus, A.-D.-M.-E.; Schalke, E.; Volk, H.-A. Canine Olfactory Detection and Its Relevance to Medical Detection. BMC Infect. Dis. 2021, 21, 838. DOI: 10.1186/s12879-021-06523-8.
  • Munjal, P.; Sharma, B.; Sethi, J.-R.; Dalal, A.; Gholap, S.-L. Identification and Analysis of Organic Explosives from Post-Blast Debris by Nuclear Magnetic Resonance. J. Hazard. Mater. 2021, 403, 124003. DOI: 10.1016/j.jhazmat.2020.124003.
  • Liu, Y.; Li, J.; Wang, G.; Zu, B.; Dou, X. One-Step Instantaneous Detection of Multiple Military and Improvised Explosives Facilitated by Colorimetric Reagent Design. Anal. Chem. 2020, 92, 13980–13988. DOI: 10.1021/acs.analchem.0c02893.
  • Marshall, M.; Oxley, J.-C. Aspects of Explosives Detection. Elsevier: New York, 2009. DOI: 10.1016/B978-0-12-374533-0.X0001-3.
  • Jiménez, A.-M.; Navas, M.-J. Chemiluminescence Detection Systems for the Analysis of Explosives. J. Hazard. Mater. 2004, 106, 1–5. DOI: 10.1016/j.jhazmat.2003.07.005.
  • Pumera, M.; Wang, J. Contactless Conductivity Detector for Microchip Capillary Electrophoresis: Fast Measurements of Explosives and Explosive Residues. JALA J. Assoc. Lab. Autom. 2016, DOI: 10.1016/S1535-5535-04-00206-0.
  • Banas, A.; Banas, K.; Bahou, M.; Moser, H. O.; Wen, L.; Yang, P.; Li, Z. J.; Cholewa, M.; Lim, S. K.; Lim, C. Post-Blast Detection of traces of Explosives by Means of Fourier Transform Infrared Spectroscopy. Vib. Spectrosc. 2009, 51, 168–176. DOI: 10.1016/j.vibspec.2009.04.003.
  • Makarov, A.; Lobrutto, R.; Christodoulatos, C.; Jerkovich, A. The Use of Ultra High-Performance Liquid Chromatography for Studying Hydrolysis Kinetics of CL-20 and Related Energetic Compounds. J. Hazard. Mater. 2009, 162, 1034–1040. DOI: 10.1016/j.jhazmat.2008.05.157.
  • Sánchez, C.; Carlsson, H.; Colmsjö, A.; Crescenzi, C.; Batlle, R. Determination of Nitroaromatic Compounds in Air Samples at Femtogram Level Using C18 Membrane Sampling and on-Line Extraction with LC − MS. Anal. Chem. 2003, 75, 4639–4645. DOI: 10.1021/ac034278w.
  • Glackin, J.-M.-E.; Gillanders, R.-N.; Eriksson, F.; Fjällgren, M.; Engblom, J.; Mohammed, S.; Samuel, D.-W.; Turnbull, G.-A. Explosives Detection by Swabbing for Improvised Explosive Devices. Analyst 2021, 145, 7956–7963. DOI: 10.1039/D0AN01312A.
  • Bao, H.; Wei, T.-X.; Li, X.-L.; Zhao, Z.; Cui, H.; Zhang, P. Detection of TNT by a Molecularly Imprinted Polymer Film-Based Surface Plasmon Resonance Sensor. Chin. Sci. Bull. 2012, 57, 2102–2105. DOI: 10.1007/s11434-012-5122-2.
  • Elbasuney, S.; El-Sharkawy, Y.-H. Instant Identification of Explosive Material: Laser Induced Photoacoustic Spectroscopy versus Fourier Transform Infrared. Trends Anal. Chem. 2018, 108, 269–277. DOI: 10.1016/j.trac.2018.09.012.
  • Zuck, A.; Kendler, S. Visual Study of Explosive Particles during Fast Thermal Analysis. Sens. Actuators Phys. 2018, 283, 330–339. DOI: 10.1016/j.sna.2018.09.058.
  • Parker, G.-R.; Heatwole, E.-M.; Holmes, M.-D.; Asay, B.-W.; Dickson, P.-M.; McAfee, J.-M. Deflagration-to-Detonation Transition in Hot HMX and HMX-Based Polymer-Bonded Explosives. Combust. Flame 2020, 215, 295–308. DOI: 10.1016/j.combustflame.2020.01.040.
  • Patidar, L.; Khichar, M.; Thynell, S.-T. A Comprehensive Mechanism for Liquid-Phase Decomposition of 1,3,5,7-Tetranitro-1,3,5,7-Tetrazoctane (HMX): Thermolysis Experiments and Detailed Kinetic Modeling. Combust. Flame 2020, 212, 67–78. DOI: 10.1016/j.combustflame.2019.10.025.
  • Wang, Z.; Cao, D.; Xu, Z.; Wang, J.; Chen, L. Thermal Safety Study on the Synthesis of HMX by Nitrourea Method. Process Saf. Environ. Protect. 2020, 137, 282–288. DOI: 10.1016/j.psep.2020.02.013.
  • Zhang, J.; Wang, S.; Ma, Y.; Chen, L.; Chen, W. Investigation of the Decomposition Kinetics and Thermal Hazards of 2,4-Dinitrotoluene on Simulation Approach. Thermochim. Acta 2020, 684, 178350. DOI: 10.1016/j.tca.2019.178350.
  • Babrauskas, V.; Leggett, D. Thermal Decomposition of Ammonium Nitrate. Fire Mater 2020, 44, 250–268. DOI: 10.1002/fam.2797.
  • Benhammada, A.; Trache, D. Thermal Decomposition of Energetic Materials Using TG-FTIR and TG-MS: A State-of-the-Art Review. Appl. Spectrosc. Rev. 2020, 55, 724–777. DOI: 10.1080/05704928.2019.1679825.
  • Hao, R.; Zhao, J.; Liu, J.; You, H.; Fang, J. Remote Raman Detection of Trace Explosives by Laser Beam Focusing and Plasmonic Spray Enhancement Methods. Anal. Chem. 2022, 94, 11230–11237. DOI: 10.1021/acs.analchem.2c01732.
  • Bishnoi, S.; Patel, T.; Thomas, R. G.; Jilju, R.; Sarkar, P. S.; Nayak, B. K. Study of Tagged Neutron Method with Laboratory D-T Neutron Generator for Explosive Detection. Eur. Phys. J. Plus 2020, 135, 428. DOI: 10.1140/epjp/s13360-020-00402-y.
  • Irlam, R.-C.; Parkin, M.-C.; Brabazon, D.-P.; Beardah, M.-S.; O'Donnell, M.; Barron, L.-P. Improved Determination of Femtogram-Level Organic Explosives in Multiple Matrices Using Dual-Sorbent Solid Phase Extraction and Liquid Chromatography-High Resolution Accurate Mass Spectrometry. Talanta 2019, 203, 65–76. DOI: 10.1016/j.talanta.2019.05.047.
  • Perr, J.-M.; Furton, K.-G.; Almirall, J.-R. Gas Chromatography Positive Chemical Ionization and Tandem Mass Spectrometry for the Analysis of Organic High Explosives. Talanta 2005, 67, 430–436. DOI: 10.1016/j.talanta.2005.01.035.
  • Schramm, S.; Léonço, D.; Hubert, C.; Tabet, J.-C.; Bridoux, M. Development and Validation of an Isotope Dilution Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry Method for the Reliable Quantification of 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB) and 14 Other Explosives and Their Degradation Products in Environmental Water Samples. Talanta 2015, 143, 271–278. DOI: 10.1016/j.talanta.2015.04.063.
  • Girotti, S.; Ferri, E.; Maiolini, E.; Bolelli, L.; D'Elia, M.; Coppe, D.; Romolo, F. S. A Quantitative Chemiluminescent Assay for Analysis of Peroxide-Based Explosives. Anal. Bioanal. Chem. 2011, 400, 313–320. DOI: 10.1007/s00216-010-4626-3.
  • Parajuli, S.; Miao, W. Sensitive Determination of Hexamethylene Triperoxide Diamine Explosives, Using Electrogenerated Chemiluminescence Enhanced by Silver Nitrate. Anal. Chem. 2009, 81, 5267–5272. DOI: 10.1021/ac900489a.
  • Mahbub, P.; Hasan, C.-K.; Rudd, D.; Voelcker, N.-H.; Orbell, J.; Cole, I.; Macka, M. Rapid and Selective Screening of Organic Peroxide Explosives Using Acid-Hydrolysis Induced Chemiluminescence. Anal. Chim. Acta. 2023, 1255, 341156. DOI: 10.1016/j.aca.2023.341156.
  • Monterola, M.-P.-P.; Smith, B.-W.; Omenetto, N.; Winefordner, J.-D. Photofragmentation of Nitro-Based Explosives with Chemiluminescence Detection. Anal. Bioanal. Chem. 2008, 391, 2617–2626. DOI: 10.1007/s00216-008-2177-7.
  • Park, J.-Y.; Kricka, L.-J. Prospects for the Commercialization of Chemiluminescence-Based Point-of-Care and on-Site Testing Devices. Anal. Bioanal. Chem. 2014, 406, 5631–5637. DOI: 10.1007/s00216-014-7697-8.
  • Calcerrada, M.; González-Herráez, M.; García-Ruiz, C. Recent Advances in Capillary Electrophoresis Instrumentation for the Analysis of Explosives. Trends Anal. Chem. 2016, 75, 75–85. DOI: 10.1016/j.trac.2015.08.005.
  • Bezemer, K.; van Duin, L.; Martin-Alberca, C.; Somsen, G.; Schoenmakers, P.; Haselberg, R.; van Asten, A. Rapid Forensic Chemical Classification of Confiscated Flash Banger Fireworks Using Capillary Electrophoresis. Forensic Chem. 2019, 16, 100187. DOI: 10.1016/j.forc.2019.100187.
  • Kaljurand, M.; Mazina-Šinkar, J. Portable Capillary Electrophoresis as a Green Analytical Technology. Trends Anal. Chem. 2022, 157, 116811. DOI: 10.1016/j.trac.2022.116811.
  • Bezemer, K. D. B.; Forbes, T. P.; Hulsbergen, A. W. C.; Verkouteren, J.; Krauss, S. T.; Koeberg, M.; Schoenmakers, P. J.; Gillen, G.; van Asten, A. C. Emerging Techniques for the Detection of Pyrotechnic Residues from Seized Postal Packages Containing Fireworks. Forensic Sci. Int. 2020, 308, 110160. DOI: 10.1016/j.forsciint.2020.110160.
  • Krauss, S.-T.; Forbes, T.-P.; Jobes, D. Inorganic Oxidizer Detection from Propellants, Pyrotechnics, and Homemade Explosive Powders Using Gradient Elution Moving Boundary Electrophoresis. Electrophoresis 2021, 42, 279–288. DOI: 10.1002/elps.202000279.
  • Krauss, S.-T.; Forbes, T.-P.; Lawrence, J.-A.; Gillen, G.; Verkouteren, J.-R. Detection of Fuel-Oxidizer Explosives Utilizing Portable Capillary Electrophoresis with Wipebased Sampling. Electrophoresis 2020, 41, 1482–1490. DOI: 10.1002/elps.202000094.
  • Pinheiro, K.-M.-P.; Moreira, R.-C.; Rezende, K.-C.-A.; Talhavini, M.; Logrado, L.-P.-L.; Baio, J.-A.-F.; Lanza, M.-R.-V.; Coltro, W.-K.-T. Rapid Separation of Post-Blast Explosive Residues on Glass Electrophoresis Microchips. Electrophoresis 2019, 40, 462–468. DOI: 10.1002/elps.201800245.
  • Sharma, S.-P.; Lahiri, S.-C. Characterization and Identification of Explosives and Explosive Residues Using GC-MS, an FTIR Microscope, and HPTLC. J. Energ. Mater. 2005, 23, 239–264. DOI: 10.1080/07370650591006795.
  • Huri, A.; Ahmad, U. Forensic Analysis of High Explosive Residues from Selected Cloth. Malays. J. Anal. Sci. 2014, 18, 68–77. DOI: 10.17576/mjas-2017-2102-01.
  • Ahmad, U.-K.; Rajendran, S.; Ling, L.-W.; Hooi, Y.-C. Forensic Analysis of High Explosives Residues in Post-Blast Water Samples Employing Solid Phase Extraction for Analyte Pro-Concentration. Malays. J. Anal. Sci. 2008, 12, 367–374. https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=43008188.
  • Johns, C.; Hutchinson, J. P.; Guijt, R. M.; Hilder, E. F.; Haddad, P. R.; Macka, M.; Nesterenko, P. N.; Gaudry, A. J.; Dicinoski, G. W.; Breadmore, M. C. Micellar Electrokinetic Chromatography of Organic and Peroxide-Based Explosives. Anal. Chim. Acta. 2015, 876, 91–97. DOI: 10.1016/j.aca.2015.02.070.
  • Dicinoski, G.-W.; Shellie, R.-A.; Haddad, P. R. Forensic Identification of Inorganic Explosives by Ion Chromatography. Anal. Lett. 2006, 39, 639–657. DOI: 10.1080/00032710600609735.
  • Meng, H.-B.; Wang, T.-R.; Guo, B.-Y.; Hashi, Y.; Guo, C.-X.; Lin, J.-M. Simultaneous Determination of Inorganic Anions and Cations in Explosive Residues by Ion Chromatography. Talanta 2008, 76, 241–245. DOI: 10.1016/j.talanta.2008.01.054.
  • Hutchinson, J.-P.; Johns, C.; Dicinoski, G.-W.; Jones, L.; Breadmore, M.-C.; Haddad, P.-R. Identification of Improvised Inorganic Explosives Devices by Analysis of Postblast Residues Using Ion Chromatography and Capillary Electrophoresis. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, Wiley, 2020, DOI: 10.1002/9780470027318.a9031.pub2.
  • Walsh, M.-E. Determination of Nitroaromatic, Nitramine, and Nitrate Ester Explosives in Soil by Gas Chromatography and an Electron Capture Detector. Talanta 2001, 54, 427–438. DOI: 10.1016/S0039-9140(00)00541-5.
  • Andrasko, J.; Lagesson-Andrasko, L.; Dahlén, J.; Jonsson, B.-H. Analysis of Explosives by GC-UV. J. Forensic Sci. 2017, 62, 1022–1027. DOI: 10.1111/1556-4029.13364.
  • Pagliano, E.; Campanella, B.; D'Ulivo, A.; Mester, Z. Derivatization Chemistries for the Determination of Inorganic Anions and Structurally Related Compounds by Gas chromatography - A Review. Anal. Chim. Acta. 2018, 1025, 12–40. DOI: 10.1016/j.aca.2018.03.043.
  • Pouretedal, H.-R.; Damiri, S.; Sharifi, A.-R. Statistical Optimization for Determination of Trace Amounts of RDX in Matrix of HMX Using GC-ECD. SN Appl. Sci. 2019, 1, 1–9. DOI: 10.1007/s42452-019-0477-5.
  • Cruse, C.; Goodpaster, J. Optimization of Gas Chromatography/Vacuum Ultraviolet (GC/VUV) Spectroscopy for Explosive Compounds and Application to Post-Blast Debris. Forensic Chem. 2021, 26, 100362. DOI: 10.1016/j.forc.2021.100362.
  • Cruse, C.; Pu, J.; Goodpaster, J. Identifying Thermal Decomposition Products of Nitrate Ester Explosives Using Gas Chromatography-Vacuum Ultraviolet Spectroscopy: An Experimental and Computation Study. Appl. Spectrosc. 2020, 74, 1486–1495. DOI: 10.1177/0003702820915506.
  • Cruse, C. A.; Goodpaster, J. V. Thermal and Spectroscopic Analysis of Nitrated Compounds and Their Breakdown Products Using Gas Chromatography/Vacuum UV Spectroscopy (GC/VUV). Anal. Chim. Acta. 2021, 1143, 117–123. DOI: 10.1016/j.aca.2020.11.041.
  • Gruber, B.; Weggler, B.-A.; Jaramillo, R.; Murrell, K.-A.; Piotrowski, P.-K.; Dorman, F.-L. Comprehensive Two-Dimensional Gas Chromatography in Forensic Science: A Critical Review of Recent Trends. Trends Anal. Chem. 2018, 105, 292–301. DOI: 10.1016/j.trac.2018.05.017.
  • Kaur, V.; Kumar, A.; Malik, A. K.; Rai, P. K.; Gaurav,  . SPME-HPLC: A New Approach to the Analysis of Explosives. J. Hazard Mater. 2007, 147, 691–697. DOI: 10.1016/j.jhazmat.2007.05.054.
  • Moazzen, S.; Zarei, A.; Mardi, K. Green Sample Preparation Based on Directly Suspended Droplet Microextraction Using Deep Eutectic Solvent for Ultra-Trace Quantification of Nitroaromatic Explosives by High Performance Liquid Chromatography. J. Anal. Chem. 2021, 76, 1296–1304. DOI: 10.1134/S1061934821110083.
  • Steiner, A.; Lurie, I. Applicability of Liquid and Supercritical Fluid Chromatographic Separation Techniques with Diode Array Ultraviolet Detection for Forensic Analysis. Forensic Chem. 2021, 26, 100359. DOI: 10.1016/j.forc.2021.100359.
  • Freye, C.-E.; Rosales, C.-J.; Thompson, D.-G.; Brown, G.-W.; Larson, S.-A. Development of Comprehensive Two-Dimensional Liquid Chromatography for Investigating Aging of Plastic Bonded Explosives. J. Chromatogr. A 2020, 1611, 460580. DOI: 10.1016/j.chroma.2019.460580.
  • Tabrizchi, M.; Ilbeigi, V. Detection of Explosives by Positive Corona Discharge Ion Mobility Spectrometry. J. Hazard. Mater. 2010, 176, 692–696. DOI: 10.1016/j.jhazmat.2009.11.087.
  • Waltman, M.-J.; Dwivedi, P.; Hill, H.-H.; Blanchard, W.-C.; Ewing, R. G. Characterization of a Distributed Plasma Ionization Source (DPIS) for Ion Mobility Spectrometry and Mass Spectrometry. Talanta 2008, 77, 249–255. DOI: 10.1016/j.talanta.2008.06.014.
  • Amo-Gonzalez, M.; Perez, S.; Delgado, R.; Arranz, G.; Carnicero, I. Tandem Ion Mobility Spectrometry for the Detection of Traces of Explosives in Cargo at Concentrations of Parts per Quadrillion. Anal. Chem. 2019, 91, 14009–14018. DOI: 10.1021/acs.analchem.9b03589.
  • Anttalainen, O.; Puton, J.; Kontunen, A.; Karjalainen, M.; Kumpulainen, P.; Oksala, N.; Safaei, Z.; Roine, A. Possible Strategy to Use Differential Mobility Spectrometry in Real Time Applications. Int. J. Ion Mobil. Spec. 2020, 23, 1–8. DOI: 10.1007/s12127-019-00251-1.
  • Bohnhorst, A.; Hitzemann, M.; Lippman, M.; Kirk, A.-T.; Zimmermann, S. Enhanced Resolving Power by Moving Field Ion Mobility Spectrometry. Anal. Chem. 2020, 92, 12967–12974. DOI: 10.1021/acs.analchem.0c01653.
  • Smith, B.-L.; Boisdon, C.; Young, I.-S.; Praneenararat, T.; Vilaivan, T.; Maher, S. Flexible Drift Tube for High Resolution Ion Mobility Spectrometry (Flex-DT-IMS). Anal. Chem. 2020, 92, 9104–9112. DOI: 10.1021/acs.analchem.0c01357.
  • Liu, H.-B.; Chen, Y.; Bastiaans, G.-J.; Zhang, X.-C. Detection and Identification of Explosive RDX by THz Diffuse Reflection Spectroscopy. Opt. Express. 2006, 14, 415–423. DOI: 10.1364/OPEX.14.000415.
  • Chen, J.; Chen, Y.; Zhao, H.; Bastiaans, G.-J.; Zhang, X.-C. Absorption Coefficients of Selected Explosives and Related Compounds in the Range of 0.1–2.8 THz. Opt. Express. 2007, 15, 12060–12067. DOI: 10.1364/OE.15.012060.
  • Sleiman, J.-B.; Bousquet, B.; Palka, N.; Mounaix, P. Quantitative Analysis of Hexahydro-1,3,5-Trinitro-1,3,5, Triazine/Pentaerythritol Tetranitrate (RDX-PETN) Mixtures by Terahertz Time Domain Spectroscopy. Appl. Spectrosc. 2015, 69, 1464–1471. DOI: 10.1366/15-07937.
  • Choi, K.; Hong, T.; Sim, K. I.; Ha, T.; Cheol, B.-P.; Hyuk, J.-C.; Gyeong, C.-S.; Hoon, J.-K. Reflection Terahertz Time-Domain Spectroscopy of RDX and HMX Explosives. J. Appl. Phys. 2014, 115, . DOI: 10.1063/1.4861616.
  • Kidavu, A.; Nagaraju, N.; Damarala, G.; Chaudhary, A. Scattering Analysis of Explosive Materials Mixed in Teflon Matrix in THz Regime. Workshop on Recent Advances in Photonics, Guwahati, India, 2019. DOI: 10.1109/WRAP47485.2019.9013700.
  • Kumar, P.-N.; Ganesh, D.; Nagaraju, M.; Chaudhary, A.-K. Detection of Explosives and Non-Explosive Materials from a Soil Matrix Using 0.5 and 1.5. THz Radiation ICOL-2019 2021, 889–893. DOI: 10.1007/978-981-15-9259-1_204.
  • Tang, Z.; Miao, J.; Liu, Q.; Qu, W.; Luo, L.; Shang, L.; Deng, H. Ammonium Perchlorate Moisture Quantitative Detection Using Terahertz Spectroscopy Combined with Chemometrics. Microchem. J. 2021, 169, 106635. DOI: 10.1016/j.microc.2021.106635.
  • Vaks, V.; Domracheva, E.; Chernyaeva, M.; Pripolzin, S.; Anfertev, V.; Yablokov, A.; Lukyanenk, I.; Sheikov, Y. High-Resolution Terahertz Spectroscopy for Investigation of Energetic Materials during Their Thermal Decomposition. IEEE Trans. THz. Sci. Technol. 2021, 11, 443–453. DOI: 10.1109/TTHZ.2021.3074030.
  • He, N.; Ni, Y.; Teng, J.; Li, H.; Yao, L.; Zhao, P. Identification of Inorganic Oxidizing Salts in Homemade Explosives Using Fourier Transform Infrared Spectroscopy. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 221, 117164. DOI: 10.1016/j.saa.2019.117164.
  • Suppajariyawat, P.; Elie, M.; Baron, M.; Gonzalez-Rodriguez, J. Classification of ANFO Samples Based on Their Fuel Composition by GC–MS and FTIR Combined with Chemometrics. Forensic Sci. Int. 2019, 301, 415–425. DOI: 10.1016/j.forsciint.2019.06.001.
  • Su, P.; Liang, W.; Zhang, G.; Wen, X.; Chang, H.; Meng, Z.; Xue, M.; Qiu, L. Quantitative Detection of Components in Polymer-Bonded Explosives through near-Infrared Spectroscopy with Partial Least Square Regression. ACS Omega. 2021, 6, 23163–23169. DOI: 10.1021/acsomega.1c02745.
  • Tao, T.; Sui, X.; Li, S.; Wang, N. A Study on Consumption and Characterization of Stabilizer Content of NEPE Propellant via FTIR. Propellants. Explo. Pyrotec. 2019, 44, 889–895. DOI: 10.1002/prep.201800340.
  • Wojtas, J.; Szala, M. Thermally Enhanced FTIR Spectroscopy Applied to Study of Explosives Stability. Measurement 2021, 184, 110000. DOI: 10.1016/j.measurement.2021.110000.
  • Gottfried, J.-L.; De Lucia, F.-C.; Munson, C.-A.; Miziolek, A.-W. Laser-Induced Breakdown Spectroscopy for Detection of Explosives Residues: A Review of Recent Advances, Challenges, and Future Prospects. Anal. Bioanal. Chem. 2009, 395, 283–300. DOI: 10.1007/s00216-009-2802-0.
  • De Lucia, F.-C.; Gottfried, J.-L.; Munson, C.-A.; Miziolek, A.-W. Multivariate Analysis of Standoff Laser-Induced Breakdown Spectroscopy Spectra for Classification of Explosive-Containing Residues. Appl. Opt. 2008, 47, G112–G121. DOI: 10.1364/AO.47.00G112.
  • Bohling, C.; Hohmann, K.; Scheel, D.; Bauer, C.; Schippers, W.; Burgmeier, J.; Willer, U.; Holl, G.; Schade, W. All-Fiber-Coupled Laser-Induced Breakdown Spectroscopy Sensor for Hazardous Materials Analysis. Spectrochim. Acta Part B at. Spectrosc. 2007, 62, 1519–1527. DOI: 10.1016/j.sab.2007.10.038.
  • Junjuri, R.; Gummadi, A.-P.; Gundawar, M.-K. Single-Shot Compact Spectrometer Based Standoff LIBS Configuration for Explosive Detection Using Artificial Neural Networks. Optik 2020, 204, 163946. DOI: 10.1016/j.ijleo.2019.163946.
  • Junjuri, R.; Gummadi, A.-P.; Gundawar, M.-K. Identification of the Explosive Mixtures Using Laser Induced Breakdown Spectroscopy (LIBS). ICOL–2019 2021, 391–394. DOI: 10.1007/978-981-15-9259-1_89.
  • Joubert, V.; Silvestre, V.; Ladroue, V.; Besacier, F.; Blondel, P.; Akoka, S.; Baguet, E.; Remaud, G.-S. Forensic Application of Position-Specific Isotopic Analysis of Trinitrotoluene (TNT) by NMR to Determine 13C and 15N Intramolecular Isotopic Profiles. Talanta 2020, 213, 120819. DOI: 10.1016/j.talanta.2020.120819.
  • Nevzorov, A.; Orlov, A.; Stankevich, D. Machine Learning in NQR TNT Express Detection System. J. Magn. Reson. 2019, 308, 106596. DOI: 10.1016/j.jmr.2019.106596.
  • Santos, A.-D.-C.; Dutra, L.-M.; Menezes, L.-R.-A.; Santos, M.-F.-C.; Barison, A. Forensic NMR Spectroscopy: Just a Beginning of a Promising Partnership. Trends Anal. Chem. 2018, 107, 31–42. DOI: 10.1016/j.trac.2018.07.015.
  • Ramos, C.; Dagdigian, P.-J. Detection of Vapors of Explosives and Explosive-Related Compounds by Ultraviolet Cavity Ringdown Spectroscopy. Appl. Opt. 2007, 46, 620–627. DOI: 10.1364/AO.46.000620.
  • El-Sharkawy, Y.-H.; Elbasuney, S.; El-Sherif, A.; Eltahlawy, M.; Ayoub, H.-S. Instantaneous Identification of Hazardous Explosive-Related Materials Using Laser Induced Photoacoustic Spectroscopy. Trends Anal. Chem. 2018, 106, 151–158. DOI: 10.1016/j.trac.2018.07.007.
  • Sun, J.; Shu, X.; Liu, Y.; Zhang, H.; Liu, X.; Jiang, Y.; Kang, B.; Xue, C.; Song, G. Investigation on the Thermal Expansion and Theoretical Density of 1,3,5‐Trinitro‐1,3,5‐Triazacyclohexane. Propellants. Explo. Pyrotec. 2011, 36, 341–346. DOI: 10.1002/prep.201000026.
  • Koudryashov, V.-I.; Serebryakov, A.-S.; Smirnov, V.-V. Investigation of Possibility to Detect the detonators of the Explosive Devices by Means of ED XRF Approach. Detection and Disposal of Improvised Explosives; Springer Netherlands, 2006; pp. 223–226. DOI: 10.1007/978-1-4020-4887-6_20.
  • Schachel, T.-D.; Stork, A.; Schulte-Ladbeck, R.; Vielhaber, T.; Karst, U. Identification and Differentiation of Commercial and Military Explosives via High Performance Liquid Chromatography – High Resolution Mass Spectrometry (HPLC-HRMS), X-Ray Diffractometry (XRD) and X-Ray Fluorescence Spectroscopy (XRF): Towards a Forensic Substance Database on Explosives. Forensic Sci. Int. 2020, 308, 110180. DOI: 10.1016/j.forsciint.2020.110180.
  • Pacheco-Londono, L.; Ortiz-Rivera, W.; Primera-Pedrozo, O.; Hernández-Rivera, S. Vibrational Spectroscopy Standoff Detection of Explosives. Anal. Bioanal. Chem. 2009, 395, 323–335. DOI: 10.1007/s00216-009-2954-y.
  • Fleger, Y.; Nagli, L.; Gaft, M.; Rosenbluh, M. Narrow Gated Raman and Luminescence of Explosives. J. Lumin. 2009, 129, 979–983. DOI: 10.1016/j.jlumin.2009.04.008.
  • Ali, E.; Edwards, H.; Hargreaves, M.; Scowen, I. Detection of Explosives on Human Nail Using Confocal Raman Microscopy. J. Raman Spectroscopy 2009, 40, 144–149. DOI: 10.1002/jrs.2096.
  • Portnov, A.; Bar, I.; Rosenwaks, S. Highly Sensitive Standoff Detection of Explosives via Backward Coherent anti-Stokes Raman Scattering. Appl. Phys. B 2010, 98, 529–535. DOI: 10.1007/s00340-009-3709-3.
  • López-López, M.; García-Ruiz, C. Infrared and Raman Spectroscopy Techniques Applied to Identification of Explosives. Trends Anal. Chem. 2014, 54, 36–44. DOI: 10.1016/j.trac.2013.10.011.
  • Xu, Z.; Meng, X. Detection of 3-Nitro-1,2,4-Triazol-3-One (NTO) by Surface-Enhanced Raman Spectroscopy. Vib. Spectrosc. 2012, 63, 390–395. DOI: 10.1016/j.vibspec.2012.08.008.
  • Gillibert, R.; Huang, J. Q.; Zhang, Y.; Fu, W. L.; Lamy de la Chapelle, M. Explosive Detection by Surface Enhanced Raman Scattering. Trends Anal. Chem. 2018, 105, 166–172. DOI: 10.1016/j.trac.2018.03.018.
  • Huang, Y.; Liu, W.; Gong, Z.; Wu, W.; Fan, M.; Wang, D.; Alexandre, G. Detection of Buried Explosives Using a Surface-Enhanced Raman Scattering (SERS) Substrate Tailored for Miniaturized Spectrometers. ACS Sens. 2020, 5, 2933–2939. DOI: 10.1021/acssensors.0c01412.
  • Milligan, K.; Shand, N.-C.; Graham, D.; Faulds, K. Detection of Multiple Nitroaromatic Explosives via Formation of a Janowsky Complex and SERS. Anal. Chem. 2020, 92, 3253–3261. DOI: 10.1021/acs.analchem.9b05062.
  • Adhikari, S.; Ampadu, E.-K.; Kim, M.; Noh, D.; Oh, E.; Lee, D. Detection of Explosives by SERS Platform Using Metal Nanogap Substrates. Sensors (Basel) 2021, 21, 5567. DOI: 10.3390/s21165567.
  • Zapata, F.; García-Ruiz, C. Analysis of Different Materials Subjected to Open-Air Explosions in Search of Explosive Traces by Raman Microscopy. Forensic Sci. Int. 2017, 275, 57–64. DOI: 10.1016/j.forsciint.2017.02.032.
  • Ramachandran, K.; Kumari, A.; Acharyya, J.-N.; Chaudhary, A.-K. Study of Photo Induced Charge Transfer Mechanism of PEDOT with Nitro Groups of RDX, HMX and TNT Explosives Using anti-Stokes and Stokes Raman Lines Ratios. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 251, 119360. DOI: 10.1016/j.saa.2020.119360.
  • Thongrom, S.; Kalasuwan, P.; van Dommelen, P.; Daengngam, C. Development of a Cost-Effective Remote Explosives Detection System Based on Raman Spectroscopy. J. Phys. Conf. Ser. 2021, 1719, 012080. DOI: 10.1088/1742-6596/1719/1/012080.
  • Gasser, C.; Göschl, M.; Ofner, J.; Lendl, B. Stand-off Hyperspectral Raman Imaging and Random Decision Forest Classification: A Potent Duo for the Fast, Remote Identification of Explosives. Anal. Chem. 2019, 91, 7712–7718. DOI: 10.1021/acs.analchem.9b00890.
  • Forbes, T.-B.; Sisco, E. Recent Advances in Ambient Mass Spectrometry of Trace Explosives. Analyst 2018, 143, 1948–1969. DOI: 10.1039/C7AN02066J.
  • Ostrinskaya, A.; Kunz, R.-R.; Clark, M.; Kingsborough, R.-P.; Ong, T.; Deneault, S. Rapid Quantitative Analysis of Multiple Explosive Compound Classes on a Single Instrument via Flow-Injection Analysis Tandem Mass Spectrometry. J. Forensic Sci. 2019, 64, 223–230. DOI: 10.1111/1556-4029.13827.
  • Cotte-Rodríguez, I.; Takáts, Z.; Talaty, N.; Chen, H.; Cooks, R.-G. Desorption Electrospray Ionization of Explosives on Surfaces: Sensitivity and Selectivity Enhancement by Reactive Desorption Electrospray Ionization. Anal. Chem. 2005, 77, 6755–6764. DOI: 10.1021/ac050995+.
  • Garcia-Reyes, J.-F.; Harper, J.-D.; Salazar, G.-A.; Charipar, N.-A.; Ouyang, Z.; Cooks, R.-G. Detection of Explosives and Related Compounds by Low-Temperature Plasma Ambient Ionization Mass Spectrometry. Anal. Chem. 2011, 83, 1084–1092. DOI: 10.1021/ac1029117.
  • Gaiffe, G.; Cole, R.-B.; Sonnette, A.; Floch, N.; Bridoux, M.-C. Identification of Postblast Residues by DART-High Resolution Mass Spectrometry Combined with Multivariate Statistical Analysis of the Kendrick Mass Defect. Anal. Chem. 2019, 91, 8093–8100. DOI: 10.1021/acs.analchem.9b00137.
  • Frazier, J.; Benefield, V.; Zhang, M. Practical Investigation of Direct Analysis in Real Time Mass Spectrometry for Fast Screening of Explosives. Forensic Chem. 2020, 18, 100233. DOI: 10.1016/j.forc.2020.100233.
  • Denis, E.-H.; Morrison, K.-A.; Wharton, S.; Phillips, S.; Myers, S.-C.; Foxe, M.-P.; Ewing, R.-G. Trace Explosive Residue Detection of HMX and RDX in Post-Detonation Dust from an Open-Air Environment. Talanta 2021, 227, 122124. DOI: 10.1016/j.talanta.2021.122124.
  • Matos, M.-P.-V.; Jackson, G.-P. Isotope Ratio Mass Spectrometry in Forensic Science Applications. Forensic Chem. 2019, 13, 100154. DOI: 10.1016/j.forc.2019.100154.
  • Gao, Y.; Chu, F.; Chen, W.; Wang, X.; Pan, Y. Arc-Induced Nitrate Reagent Ion for Analysis of Trace Explosives on Surfaces Using Atmospheric Pressure Arc Desorption/Ionization Mass Spectrometry. Anal. Chem. 2022, 94, 5463–5468. DOI: 10.1021/acs.analchem.1c05650.
  • Hernandes, V.-V.; Franco, M.-F.; Santos, J.-M.; Melendez-Perez, J.-J.; de Morais, D.-R.; de Carvalho Rocha, W.-F.; Borges, R.; de Souza, W.; Zacca, J.-J.; Logrado, L.-P.-L.; et al. Characterization of ANFO Explosive by High Accuracy ESI(±)–FTMS with Forensic Identification on Real Samples by EASI(−)–MS. Forensic Sci. Int. 2015, 249, 156–164. DOI: 10.1016/j.forsciint.2015.01.006.
  • Benson, S.-J.; Lennard, C.-J.; Maynard, P.; Hill, D.-M.; Andrew, A.-S.; Roux, C. Forensic Analysis of Explosives Using Isotope Ratio Mass Spectrometry (IRMS) - Discrimination of Ammonium Nitrate Sources. Sci. Justice. 2009, 49, 73–80. DOI: 10.1016/j.scijus.2009.04.005.
  • Widory, D.; Minet, J.-J.; Barbe-Leborgne, M. Sourcing Explosives: A Multi-Isotope Approach. Sci. Justice. 2009, 49, 62–72. DOI: 10.1016/j.scijus.2008.11.001.
  • Black, C.; D'Souza, T.; Smith, J. C.; Hearns, N. G. Identification of Post-Blast Explosive Residues Using Direct-Analysis-in-Real-Time and Mass Spectrometry (DART-MS). Forensic Chem. 2019, 16, 100185. DOI: 10.1016/j.forc.2019.100185.
  • Bonnar, C.; Popelka-Filcoff, R.; Kirkbride, K. Armed with the Facts: A Method for the Analysis of Smokeless Powders by Ambient Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2020, 31, 1943–1956. DOI: 10.1021/jasms.0c00193.
  • Fowble, K.-L.; Musah, R.-A. Simultaneous Imaging of Latent Fingermarks and Detection of Analytes of Forensic Relevance by Laser Ablation Direct Analysis in Real Time Imaging-Mass Spectrometry (LADI-MS). Forensic Chem. 2019, 15, 100173. DOI: 10.1016/j.forc.2019.100173.
  • An, S.; Liu, S.; Cao, J.; Lu, S. Nitrogen-Activated Oxidation in Nitrogen Direct Analysis in Real Time Mass Spectrometry (DART-MS) and Rapid Detection of Explosives Using Thermal Desorption DART-MS. J. Am. Soc. Mass Spectrom. 2019, 30, 2092–2100. DOI: 10.1007/s13361-019-02279-3.
  • Dang, M.; Liu, R.; Dong, F.; Liu, B.; Hou, K. Vacuum Ultraviolet Photoionization on-Line Mass Spectrometry: Instrumentation Developments and Applications. Trends Anal. Chem. 2022, 149, 116542. DOI: 10.1016/j.trac.2022.116542.
  • Hong, H.; Habib, A.; Bi, L.; Qais, D. S.; Wen, L. Hollow Cathode Discharge Ionization Mass Spectrometry: Detection, Quantification and Gas Phase Ion-Molecule Reactions of Explosives and Related Compounds. Crit. Rev. Anal. Chem. 2022, 236, 1–27. DOI: 10.1080/10408347.2022.2067467.
  • Hong, H.; Habib, A.; Bi, L.; Wen, L. Gas Phase Ion-Molecule Reactions of Nitroaromatic Explosive Compounds Studied by Mass Spectrometry. Talanta 2022, 236, 122834. DOI: 10.1016/j.talanta.2021.122834.
  • Habib, A.; Bi, L.; Wen, L. Simultaneous Detection and Quantification of Explosives by a Modified Hollow Cathode Discharge Ion Source. Talanta 2021, 233, 122596. DOI: 10.1016/j.talanta.2021.122596.
  • Habib, A.; Bi, L.; Hong, H.; Wen, L. Challenges and Strategies of Chemical Analysis of Drugs of Abuse and Explosives by Mass Spectrometry. Front. Chem. 2020, 8, 598487. DOI103389/fchem.2020.598487. DOI: 10.3389/fchem.2020.598487.
  • Hiraoka, K.; Takaishi, R.; Ninomiya, S.; Rankin-Turner, S. Electrospray Droplet Impact/Secondary Ion Mass Spectrometry (EDI/SIMS) Applied to the Analysis of Explosives. Int. J. Mass Spectrom. 2023, 484, 116993. DOI: 10.1016/j.ijms.2022.116993.
  • Ninomiya, S.; Iwamoto, S.; Usmanov, D.; Hiraoka, K.; Yamabe, S. Negative-Mode Mass Spectrometric Study on dc Corona, ac Corona and Dielectric Barrier Discharge Ionization in Ambient Air Containing H2O2, 2,4,6-Trinitrotoluene (TNT), and 1,3,5-Trinitroperhydro-1,3,5-Triazine (RDX). Int. J. Mass Spectrom. 2021, 459, 116440. DOI: 10.1016/j.ijms.2020.116440.
  • Kuila, D.-K.; Chakrabortty, A.; Sharma, S.-P.; Lahiri, S.-C. Composition Profile of Low Explosives from Cases in India. Forensic Sci. Int. 2006, 159, 127–131. DOI: 10.1016/j.forsciint.2005.06.012.
  • Verkouteren, J.-R. Particle Characteristics of Trace High Explosives: RDX and PETN*. J. Forensic Sci. 2007, 52, 335–340. DOI: 10.1111/j.1556-4029.2006.00354.x.
  • Kashkarov, A.-O.; Pruuel, E.-R.; Ten, K.-A.; Rubtsov, A.; Gerasimov, E.-Y.; Zubkov, P. Transmission Electron Microscopy and x-Ray Diffraction Studies of the Detonation Soot of High Explosives. J. Phys: Conf. Ser. 2016, 774, 012072. DOI: 10.1088/1742-6596/774/1/012072.
  • Martelo, L.-M.; Marques, L.-F.; Burrows, H.-D.; Berberan-Santos, M.-N. Explosives Detection: From Sensing to Response. In Florescence in Industry, Pedras, B., Ed.; Springer, 2019; pp. 293–320
  • Chen, L.; Cao, X.; Gao, J.; He, W.; Liu, J.; Wang, Y.; Zhou, X.; Shen, J.; Wang, B.; He, Y.; Tan, D. Nitrated Bacterial Cellulose-Based Energetic Nanocomposites as Propellants and Explosives for Military Applications. ACS Appl. Nano Mater. 2021, 4, 1906–1915. DOI: 10.1021/acsanm.0c03263.
  • Saravanan, A.; Maruthapandi, M.; Das, P.; Ganguly, S.; Margel, S.; Luong, J.-H.-T.; Gedanken, A. Applications of N-Doped Carbon Dots as Antimicrobial Agents, Antibiotic Carriers, and Selective Fluorescent Probes for Nitro Explosives. ACS Appl. Bio Mater. 2020, 3, 8023–8031. DOI: 10.1021/acsabm.0c01104.
  • Koyani, K.; Tharmavaram, M.; Pandey, G.; Rawtani, D.; Hussain, C. Sensors for the Detection of Explosives and Gunshots. In: Technology in Forensic Science: Sampling, Analysis, Data and Regulations, Rawtani, D., Hussain C. M. Eds.; John Wiley & Sons: New Jersey; 2020, pp. 199–220. DOI: 10.1002/9783527827688.ch10.
  • Wasilewski, T.; Gębicki, J. Emerging Strategies for Enhancing Detection of Explosives by Artificial Olfaction. Microchem. J. 2021, 164, 106025. DOI: 10.1016/j.microc.2021.106025.
  • Fan, J.; Meng, Z.; Dong, X.; Xue, M.; Qiu, L.; Liu, X.; Zhong, F.; He, X. Colorimetric Screening of Nitramine Explosives by Molecularly Imprinted Photonic Crystal Array. Microchem. J. 2020, 158, 105143. DOI: 10.1016/j.microc.2020.105143.
  • Li, X.; Wang, C.; Song, W.; Meng, C.; Zuo, C.; Xue, Y.; Lai, W.; Huang, W. Electron-Rich π-Extended Diindolotriazatruxene-Based Chemosensors with Highly Selective and Rapid Responses to Nitroaromatic Explosives. Chempluschem. 2019, 84, 1623–1629. DOI: 10.1002/cplu.201900347.
  • Liu, R.; Li, Z.; Huang, Z.; Li, K.; Yi, L. Biosensors for Explosives: State of Art and Future Trends. Trends Anal. Chem. 2019, 118, 123–137. DOI: 10.1016/j.trac.2019.05.034.
  • Manzanares Palenzuela, C.-L.; Pumera, M. (Bio)Analytical Chemistry Enabled by 3D Printing: Sensors and Biosensors. Trends Anal. Chem. 2018, 103, 110–118. DOI: 10.1016/j.trac.2018.03.016.
  • Zhang, T.; Hu, X.; Zu, B.; Dou, X. A March to Shape Optical Artificial Olfactory System toward Ultrasensitive Detection of Improvised Explosives. Adv. photonics. Res. 2022, 3, 2200006. DOI: 10.1002/adpr.202200006.
  • Scorsone, E.; Manai, R.; Cali, K.; Ricatti, M.; Farno, S.; Persaud, K.; Mucignat, C. Biosensor Array Based on Ligand Binding Proteins for Narcotics and Explosives Detection. Sensor. Actuator. B Chem. 2021, 334, 129587. DOI: 10.1016/j.snb.2021.129587.
  • Shemer, B.; Shpigel, E.; Hazan, C.; Kabessa, Y.; Agranat, A.; Belkin, S. Detection of Buried Explosives with Immobilized Bacterial Bioreporters. Microb. Biotechnol. 2021, 14, 251–261. DOI: 10.1111/1751-7915.13683.
  • Wasilewski, T.; Gębicki, J.; Kamysz, W. Bio-Inspired Approaches for Explosives Detection. Trends Anal. Chem. 2021, 142, 116330. DOI: 10.1016/j.trac.2021.116330.
  • Kathiravan, A.; Gowri, A.; Khamrang, T.; Kumar, M.-D.; Dhenadhayalan, N.; Lin, K.-C.; Velusamy, M.; Jaccob, M. Pyrene-Based Chemosensor for Picric Acid—Fundamentals to Smartphone Device Design. Anal. Chem. 2019, 91, 13244–13250. DOI: 10.1021/acs.analchem.9b03695.
  • Lu, D.; Cagan, A.; Munoz, R.-A.-A.; Tangkuaram, T.; Wang, J. Highly Sensitive Electrochemical Detection of Trace Liquid Peroxide Explosives at a Prussian-Blue ‘Artificial-Peroxidase’ Modified Electrode. Analyst 2006, 131, 1279–1281. DOI: 10.1039/B613092E.
  • Kovalev, I.-S.; Sadieva, L.-K.; Taniya, O.-S.; Yurk, V.-M.; Minin, A.-S.; Santra, S.; Zyryanov, G.-V.; Charushin, V.-N.; Chupakhin, O.-N.; Tsurkan, M.-V. Computer Vision vs. spectrofluorometer-Assisted Detection of Common Nitro-Explosive Components with Bola-Type PAH-Based Chemosensors. RSC Adv. 2021, 11, 25850–25857. DOI: 10.1039/D1RA03108B.
  • Yu, H.-A.; DeTata, D.-A.; Lewis, S.-W.; Silvester, D.-S. Recent Developments in the Electrochemical Detection of Explosives: Towards Field-Deployable Devices for Forensic Science. Trends Anal. Chem. 2017, 97, 374–384. DOI: 10.1016/j.trac.2017.10.007.
  • Krivitsky, V.; Filanovsky, B.; Naddaka, V.; Patolsky, F. Direct and Selective Electrochemical Vapor Trace Detection of Organic Peroxide Explosives via Surface Decoration. Anal. Chem. 2019, 91, 5323–5330. DOI: 10.1021/acs.analchem.9b00257.
  • Amali, R.-K.-A.; Lim, H.-N.; Ibrahim, I.; Huang, N.-M.; Zainal, Z.; Ahmad, S.-A.-A. Significance of Nanomaterials in Electrochemical Sensors for Nitrate Detection: A Review. Trends Environ. Anal. Chem. 2021, 31, e00135. DOI: 10.1016/j.teac.2021.e00135.
  • Li, P.; Li, X.; Chen, W. Recent Advances in Electrochemical Sensors for the Detection of 2, 4, 6-Trinitrotoluene. Curr. Opin. Electrochem. 2019, 17, 16–22. DOI: 10.1016/j.coelec.2019.04.013.
  • Apak, R.; Çekiç, S. D.; Üzer, A.; Çapanoğlu, E.; Çelik, S. E.; Bener, M.; Can, Z.; Durmazel, S. Colorimetric Sensors and Nanoprobes for Characterizing Antioxidant and Energetic Substances. Anal. Methods 2020, 12, 5266–5321. DOI: 10.1039/D0AY01521K.
  • Anderson, G.-P.; Moreira, S.-C.; Charles, P.-T.; Medintz, I.-L.; Goldman, E.-R.; Zeinali, M.; Taitt, C.-R. TNT Detection Using Multiplexed Liquid Array Displacement Immunoassays. Anal. Chem. 2006, 78, 2279–2285. DOI: 10.1021/ac051995c.
  • Chaudhary, S.; Sonkusre, P.; Chopra, A.; Bhasin, K. K.; Suri, C. R. UV-FIA: UV-Induced Fluoro-Immunochemical Assay for Ultra-Trace Detection of PETN, RDX, and TNT. Anal. Chim. Acta. 2019, 1077, 266–272. DOI: 10.1016/j.aca.2019.05.048.
  • Asha, K.-S.; Bhattacharyya, K.; Mandal, S. Discriminative Detection of Nitro Aromatic Explosives by a Luminescent Metal–Organic Framework. J. Mater. Chem. C 2014, 2, 10073–10081. DOI: 10.1039/C4TC01982B.
  • Xie, W.; Jiang, W.; Xu, G.; Zhang, S.; Xu, Y.; Su, Z. A Luminescent Metal–Organic Framework with Tetragonal Nanochannels as an Efficient Chemosensor for Nitroaromatic Explosives Detection. Cryst. Eng. Comm. 2021, 23, 3901–3906. DOI: 10.1039/D1CE00331C.
  • Yang, Y.; Shen, K.; Jun-Zhong, L.; Zhou, Y.; Liu, Q.; Hang, C.; Abdelhamid, H.-N.; Zhang, Z.; Chen, H. A Zn-MOF Constructed from Electron-Rich π-Conjugated Ligands with an Interpenetrated Graphene-like Net as an Efficient Nitroaromatic Sensor. RSC Adv. 2016, 6, 45475–45481. DOI: 10.1039/C6RA00524A.
  • Ogugu, E.-B.; Gillanders, R.-N.; Turnbull, G.-A. 2021 Thermal Desorption of Explosives Vapour from Organic Fluorescent Sensors. Chem. Proc. 5 (11). DOI: 10.3390/CSAC2021-10559.
  • Raza, W.; Kukkar, D.; Saulat, H.; Raza, N.; Azam, M.; Mehmood, A.; Kim, K.-H. Metalorganic Frameworks as an Emerging Tool for Sensing Various Targets in Aqueous and Biological Media. Trends Anal. Chem 2019, 120, 115654. DOI: 10.1016/j.trac.2019.115654.
  • Yu, Q.; Li, Z.; Cao, Q.; Qu, S.; Jia, Q. Advances in Luminescent Metal-Organic Framework Sensors Based on Post-Synthetic Modification. Trends Anal. Chem 2020, 129, 115939. DOI: 10.1016/j.trac.2020.115939.
  • Thakarda, J.; Agrawal, B.; Anil, D.; Jana, A.; Maity, P. Detection of Trace-Level Nitroaromatic Explosives by 1-Pyreneiodide-Ligated Luminescent Gold Nanostructures and Their Forensic Applications. Langmuir 2020, 36, 15442–15449. DOI: 10.1021/acs.langmuir.0c03117.
  • Agranat, A. J.; Kabessa, Y.; Shemer, B.; Shpigel, E.; Schwartsglass, O.; Atamneh, L.; Uziel, Y.; Ejzenberg, M.; Mizrachi, Y.; Garcia, Y.; et al. An Autonomous Bioluminescent Bacterial Biosensor Module for Outdoor Sensor Networks, and Its Application for the Detection of Buried Explosives. Biosens. Bioelectron. 2021, 185, 113253. DOI: 10.1016/j.bios.2021.113253.
  • Ahamad, M.-N.; Shahid, M.; Ahmad, M.; Sama, F. Cu(II) MOFs Based on Bipyridyls: Topology, Magnetism, and Exploring Sensing Ability toward Multiple Nitroaromatic Explosives. ACS Omega. 2019, 4, 7738–7749. DOI: 10.1021/acsomega.9b00715.
  • Kumar, P.; Deep, A.; Kim, K.-H. Metal Organic Frameworks for Sensing Applications. Trends Anal. Chem. 2015, 73, 39–53. DOI: 10.1016/j.trac.2015.04.009.
  • Devi, S.; Shaswat, S.; Kumar, V.; Sachdev, A.; Gopinath, P.; Tyagi, S. Nitrogen-Doped Carbon Quantum Dots Conjugated Isoreticular Metal-Organic Framework-3 Particles Based Luminescent Probe for Selective Sensing of Trinitrotoluene Explosive. Microchim. Acta 2020, 187, 536. DOI: 10.1007/s00604-020-04496-0.
  • Faheem, M.; Aziz, S.; Jing, X.; Ma, T.; Du, J.; Sun, F.; Tian, Y.; Zhu, G. Dual Luminescent Covalent Organic Frameworks for Nitro-Explosive Detection. J. Mater. Chem. A 2019, 7, 27148–27155. DOI: 10.1039/C9TA09497K.
  • Gao, E.; Liu, D.; Xing, J.; Feng, Y.; Su, J.; Liu, J.; Zhao, H.; Wang, N.; Jia, Z.; Zhang, X.; et al. A Recyclable bi-Functional Luminescent Zinc (II) Metal-Organic Framework as Highly Selective and Sensitive Sensing Probe for Nitraromatic Explosives and Fe3+ Ions. Appl. Organomet. Chem. 2019, 33, DOI: 10.1002/aoc.5109.
  • Gholivand, K.; Tizhoush, S.; Kozakiewicz, A. Two New Micro-Isostructural Metal–Organic Polymers Based on Mixed-Ligand Copper(I): Structures and Selective Sensing of Nitro Explosives in Water. Appl. Organom. Chem. 2020, 34, e5701. DOI: 10.1002/aoc.5701.
  • Siegel, R.; Glazier, S. TNT Sensor: Stern-Volmer Analysis of Luminescence Quenching of Ruthenium Bipyridine. J. Chem. Educ. 2021, 98, 2643–2648. DOI: 10.1021/acs.jchemed.0c01221.
  • Ma, Y.; Wang, S.; Wang, L. Nanomaterials for Luminescence Detection of Nitroaromatic Explosives. Trends Anal. Chem. 2015, 65, 13–21. DOI: 10.1016/j.trac.2014.09.007.
  • Singhaal, R.; Tashi, L.; Ul Nisa, Z.; Ashashi, N.-A.; Sen, C.; Devi, S.; Sheikh, H.-N. PEI Functionalized NaCeF4:Tb3+/Eu3+ for Photoluminescence Sensing of Heavy Metal Ions and Explosive Aromatic Nitro Compounds. RSC Adv. 2021, 11, 19333–19350. DOI: 10.1039/D1RA02910J.
  • Brzechwa-Chodzyńska, A.; Drożdż, W.; Harrowfield, J.; Stefankiewicz, A. R. Fluorescent Sensors: A Bright Future for Cages. Coord. Chem. Rev. 2021, 434, 213820. DOI: 10.1016/j.ccr.2021.213820.
  • Abuzalat, O.; Wong, D.; Park, S.; Kim, S. Highly Selective and Sensitive Fluorescent Zeolitic Imidazole Frameworks Sensor for Nitroaromatic Explosive Detection. Nanoscale 2020, 12, 13523–13530. DOI: 10.1039/D0NR01653E.
  • Cheng, C.; Nawaz, M.; Liu, C.; Shahzad, S.; Zhou, H.; Yu, C.; Jin, X. Phenothiazine and BN-Doped AIE Probes Integrated Fluorescence Sensor Array for Detection and Discrimination of Nitro Explosives. Chin. J. Anal. Chem. 2020, 48, e20075–e20080. DOI: 10.1016/S1872-2040(20)60034-2.
  • Delente, J.; Umadevi, D.; Byrne, K.; Schmitt, W.; Watson, G.; Gunnlaugsson, T.; Shanmugaraju, S. Hyper-Crosslinked 4-Amino-1,8-Naphthalimide Troger’s Base Containing Pyridinium Covalent Organic Polymer (COP) for Discriminative Fluorescent Sensing of Chemical Explosives. Supramol. Chem. 2020, 32, 508–517. DOI: 10.1080/10610278.2020.1825715.
  • Elbasuney, S.; Baraka, A.; El-Sharkawy, Y.; El-Sayyad, G. Superior Spectral Fluorescence Signature of Novel Illuminated Melamine Resin for Industrial Explosive Detection. Opt. Laser Technol. 2021, 140, 107066. DOI: 10.1016/j.optlastec.2021.107066.
  • Elbasuney, S.; Baraka, A.; Gobara, M.; El-Sharkawy, Y.-H. 3D Spectral Fluorescence Signature of Cerium(III)-Melamine Coordination Polymer: A Novel Sensing Material for Explosive Detection. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 245, 118941. DOI: 10.1016/j.saa.2020.118941.
  • Wang, Y.; Xu, Y.; Yang, Z.; Zhang, X.; Hu, Y.; Yang, R. Multi-Functional Lanthanide Coordination Polymers for Multi-Modal Detection of Nitroaromatics and Trace Water in Organic Solvents. J. Colloid Interface Sci. 2021, 598, 474–482. DOI: 10.1016/j.jcis.2021.04.045.
  • Anju, S. M.; Anjana, R. K.; Vijila, N. S.; Aswathy, A. O.; Jayakrishna, J.; Anjitha, B.; Anjalidevi, J. S.; Adhya, S.; George, S. Tb-Doped BSA–Gold Nanoclusters as a Bimodal Probe for the Selective Detection of TNT. Anal. Bioanal. Chem. 2020, 412, 4165–4172. DOI: 10.1007/s00216-020-02654-0.
  • Babar, D.-G.; Garje, S.-S. Nitrogen and Phosphorus co-Doped Carbon Dots for Selective Detection of Nitro Explosives. ACS Omega. 2020, 5, 2710–2717. DOI: 10.1021/acsomega.9b03234.
  • Diaz, L.; Munoz, M.; Paredes-Gil; Snejko, N.; Gomez-Lor, B.; Gutierrez-Puebla, E.; Monge, A. The Effect of Auxiliary Nitrogenated Linkers on the Design of New Cadmium Based Coordination Polymers as Sensors for Detection of Explosives Materials. Chem.-Eur. J. 2021, DOI: 10.1002/chem.202005166.
  • Ricci, P.-P.; Gregory, O.-J. Free-Standing, Thin-Film Sensors for the Trace Detection of Explosives. Sci. Rep. 2021, 11, 6623. DOI: 10.1038/s41598-021-86077-6.
  • George, G.; Edwards, C.-S.; Hayes, J.-I.; Yu, L.; Ede, S.-R.; Wen, J.-G.; Luo, Z.-P. A Novel Reversible Fluorescent Probe for the Highly Sensitive Detection of Nitro and Peroxide Organic Explosives Using Electrospun BaWO4 Nanofibers. J. Mater. Chem. C 2019, 7, 14949–14961. DOI: 10.1039/C9TC05068J.
  • Kanwal, S.; Jahan, S.; Mansoor, F. An Ultrasonic-Assisted Synthesis of Leather-Derived Luminescent Graphene Quantum Dots: Catalytic Reduction and Switch on–off Probe for Nitro-Explosives. RSC Adv. 2020, 10, 22959–22965. DOI: 10.1039/D0RA03715J.
  • Kayhomayun, Z.; Ghani, K.; Zargoosh, K. Template-Directed Synthesis of Sm2Ti2O7 Nanoparticles: A FRET-Based Fluorescent Chemosensor for the Fast and Selective Determination of Picric Acid. New J. Chem. 2020, 44, 16442–16451. DOI: 10.1039/D0NJ04219F.
  • Kayhomayun, Z.; Ghani, K.; Zargoosh, K. Surfactant-Assisted Synthesis of Fluorescent SmCrO3 Nanopowder and Its Application for Fast Detection of Nitroaromatic and Nitramine Explosives in Solution. Mater. Chem. Phys. 2020, 247, 122899. DOI: 10.1016/j.matchemphys.2020.122899.
  • Kumar, A.; Lu, C.; Tseng, W. Two in One: Poly(Ethyleneimine)-Modified MnO2 Nanosheets for Ultrasensitive Detection and Catalytic Reduction of 2,4,6-Trinitrotoluene and Other Nitro Aromatics. ACS Sustainable Chem. Eng. 2021, 9, 1142–1151. DOI: 10.1021/acssuschemeng.0c06224.
  • Chen, L.; McBranch, D.; Wang, R.; Whitten, D. Surfactant-Induced Modification of Quenching of Conjugated Polymer Fluorescence by Electron Acceptors: Applications for Chemical Sensing. Chem. Phys. Lett. 2000, 330, 27–33. DOI: 10.1016/S0009-2614(00)01072-1.
  • Qin, P.; Yang, H.; Zhao, X.; Qu, W.; Yao, H.; Wei, T.; Lin, Q.; Shi, B.; Zhang, Y. A Supramolecular Polymer Network Constructed by Pillar[5]Arene-Based Host–Guest Interactions and Its Application in Nitro Explosive Detection. J. Incl. Phenom. Macrocycl. Chem. 2022, 102, 295–302. DOI: 10.1007/s10847-021-01118-x.
  • Karadurmus, L.; Bilge, S.; Sınağ, A.; Ozkan, S.-A. Molecularly Imprinted Polymer (MIP)-Based Sensing for Detection of Explosives: Current Perspectives and Future Applications. TrAC Trends Anal. Chem. 2022, 155, 116694. DOI: 10.1016/j.trac.2022.116694.
  • Banerjee, S.; Mohapatra, S.-K.; Misra, M.; Mishra, I.-B. The Detection of Improvised Nonmilitary Peroxide Based Explosives Using a Titania Nanotube Array Sensor. Nanotechnology 2009, 20, 075502. DOI: 10.1088/0957-4484/20/7/075502.
  • Arman, A.; Sağlam, Ş.; Üzer, A.; Apak, R. Direct Electrochemical Determination of Peroxide-Type Explosives Using Well-Dispersed Multi-Walled Carbon Nanotubes/Polyethyleneimine-Modified Glassy Carbon Electrodes. Anal. Chem. 2021, 93, 11451–11460. DOI: 10.1021/acs.analchem.1c01397.
  • Jiang, Y.; Zhao, H.; Zhu, N.; Lin, Y.; Yu, P.; Mao, L. A Simple Assay for Direct Colorimetric Visualization of Trinitrotoluene at Picomolar Levels Using Gold Nanoparticles. Angew. Chem. 2008, 120, 8729–8732. DOI: 10.1002/ange.200804066.
  • Adegoke, O.; Nic Daeid, N. Colorimetric Optical Nanosensors for Trace Explosive Detection Using Metal Nanoparticles: Advances, Pitfalls, and Future Perspective. Emerg. Top. Life Sci. 2021, 5, 367–379. DOI: 10.1042/ETLS20200281.
  • Zhu, F.; Fang, H.; Liu, W.; Li, H.; Li, B.; Li, Y.; Yang, Y. Helical Mesoporous Organic–Inorganic Hybrid Silica Nanofibers Prepared Using a TPE-Based Silane for Explosive Detection. Mater. Lett. 2022, 306, 130957. DOI: 10.1016/j.matlet.2021.130957.
  • Zala, A.; Patel, H. Dendrimer Enhanced Fingerprint and Explosive Detection: A Critical Review. Eng. Sci. 2022, 20, 1–12. DOI: 10.30919/es8e688.
  • Seena, V.; Fernandes, A.; Pant, P.; Mukherji, S.; Rao, V.-R. Polymer Nanocomposite Nanomechanical Cantilever Sensors: Material Characterization, Device Development and Application in Explosive Vapour Detection. Nanotechnology 2011, 22, 295501. DOI: 10.1088/0957-4484/22/29/295501.
  • Chen, Y.; Xu, P.; Li, X. Self-Assembling Siloxane Bilayer Directly on SiO2 Surface of Micro-Cantilevers for Long-Term Highly Repeatable Sensing to Trace Explosives. Nanotechnology 2010, 21, 265501. DOI: 10.1088/0957-4484/21/26/265501.
  • Gulati, K.-K.; Gulia, S.; Gambhir, T.; Kumar, N.; Gambhir, V.; Reedy, M.-N. Standoff Detection and Identification of Explosives and Hazardous Chemicals in Simulated Real Field Scenario Using Time Gated Raman Spectroscopy. Def. Sc. J. 2019, 69, 342–347. DOI: 10.14429/dsj.69.13234.
  • Sharma, M.; Sharma, B.; Gupta, A.-K.; Pandey, D. Recent Developments of Image Processing to Improve Explosive Detection Methodologies and Spectroscopic Imaging Techniques for Explosive and Drug Detection. Multimed. Tools Appl. 2023, 82, 6849–6865. DOI: 10.1007/s11042-022-13578-5.
  • Elbasuney, S.; El-Sherif, A.-F. Complete Spectroscopic Picture of Concealed Explosives: Laser Induced Raman versus Infrared. Trends Anal. Chem. 2016, 85, 34–41. DOI: 10.1016/j.trac.2016.04.023.
  • Narlagiri, L.-M.; Bharati, M.-S.-S.; Beeram, R.; Banerjee, D.; Soma, V.-R. Recent Trends in Laser-Based Standoff Detection of Hazardous Molecules. Trends Anal. Chem. 2022, 153, 116645. DOI: 10.1016/j.trac.2022.116645.
  • Nazarian, A.; Presser, C. Forensic Analysis Methodology for Thermal and Chemical Characterization of Homemade Explosives. Thermochim. Acta 2014, 576, 60–70. DOI: 10.1016/j.tca.2013.10.036.
  • Tverjanovich, Y.; Tverjanovich, A.; Averyanov, A.; Panov, M.; Ilyshin, M.; Balmakov, M. Interaction of Laser Radiation with Explosives, Application and Perspectives. In Progress in Photo Science, Yamanouchi, K.; Tunik, S.; Makarov, V., Eds.; Springer, 2019; pp. 493–511.
  • Khan, H.; Koreshi, Z.-U.; Sheikh, S.-R.; Khan, M.-Y. Characteristic Photon Yields from Thermal Neutron Activation of Explosives for a Portable Detection System. J. Natn. Sci. Foundation Sri Lanka 2021, 49, 209–218. DOI: 10.4038/jnsfsr.v49i2.9349.
  • Huang, M.; Zhu, J.-Y.; Wu, J.; Li, R. Element Analysis Method of Concealed Explosive Based on TNA. Nucl. Sci. Tech. 2019, 30, 6. DOI: 10.1007/s41365-018-0527-5.
  • Li, J.; Jia, W.; Hei, D.; Yao, Z.; Cheng, C.; Zhao, D.; Sun, A. Research on the Luggage Detection System for Hidden Explosive Identification Based on PGNAA Technology. J. Radioanal. Nucl. Chem. 2022, 331, 953–965. DOI: 10.1007/s10967-021-08140-w.
  • Gierlik, M.; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, L.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; et al. SWAN - Detection of explosives by Means of Fast Neutron Activation Analysis. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2016, 834, 16–23. DOI: 10.1016/j.nima.2016.07.042.
  • Han, M.; Jing, S.; Gao, Y. Simulation and Data Analysis of a Portable Tagged Neutron System for Detection of Explosives Hidden in Packages. Radiat. Phys. Chem. 2021, 182, 109361. DOI: 10.1016/j.radphyschem.2021.109361.
  • Han, M.; Jing, S.; Gao, Y.; Guo, Y. Experiment and MCNP Simulation of a Portable Tagged Neutron Inspection System for Detection of Explosives in a Concrete Wall. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2019, 929, 156–161. DOI: 10.1016/j.nima.2019.03.069.
  • Hossny, K.; Hossny, A.-H.; Magdi, S.; Soliman, A.-Y.; Hossny, M. Detecting Shielded Explosives by Coupling Prompt Gamma Neutron Activation Analysis and Deep Neural Networks. Sci. Rep. 2020, 10, 13467. DOI: 10.1038/s41598-020-70537-6.
  • Sardet, A.; Perot, B.; Carasco, C.; Sannie, G.; Moretto, S.; Nebbia, G.; Fontana, C.; Pino, F. Performances of C-BORD’s Tagged Neutron Inspection System for Explosives and Illicit Drugs Detection in Cargo Containers. IEEE Trans. Nucl. Sci. 2021, 68, 346–353. DOI: 10.1109/TNS.2021.3050002.
  • Seman, J.; Giraldo, C.-H.-C.; Johnson, C.-E. Effects of Delaying Measurements of Concentration Using Neutron Activation Analysis on Explosive Taggants. Appl. Radiat. Isot. 2020, 156, 109007. DOI: 10.1016/j.apradiso.2019.109007.
  • Sudac, D., Pavlovic, M., Obhodas, J., Nad, K., Orlic, Z., Uroic, M., Rendic, D., Meric, I., Pettersen, H.E.S., Valkovic, V., Korolija M.,. Detection of Chemical Warfare (CW) Agents and the Other Hazardous Substances by Using Fast MeV Neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2020, 971, 164066. DOI: 10.1016/j.nima.2020.164066.
  • DeGreeff, L.; Rogers, D.-A.; Katilie, C.; Johnson, K.; Rose-Pehrsson, S. Technical Note: Headspace Analysis of Explosive Compounds Using a Novel Sampling Chamber. Forensic Sci. Int. 2015, 248, 55–60. DOI: 10.1016/j.forsciint.2014.12.022.
  • Cajigas, J.-M.-C.; Perez-Almodovar, L.; DeGreeff, L.-E. Headspace Analysis of Potassium Chlorate Using on-Fiber SPME Derivatization Coupled with GC/MS. Talanta 2019, 205, 120127. DOI: 10.1016/j.talanta.2019.120127.
  • Bünning, T.-H.; Strehse, J.-S.; Hollmann, A.-C.; Bötticher, T.; Maser, E. A Toolbox for the Determination of Nitroaromatic Explosives in Marine Water, Sediment, and Biota Samples on Femtogram Levels by GC-MS/MS. Toxics 2021, 9, 60. DOI: 10.3390/toxics9030060.
  • DeTata, D.; Collins, P.; McKinley, A. A Fast Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-QToF-MS) Method for the Identification of Organic Explosives and Propellants. Forensic Sci. Int. 2013, 233, 63–74. DOI: 10.1016/j.forsciint.2013.08.007.
  • Michel, P.; Boudenne, J.-L.; Robert-Peillard, F.; Coulomb, B. Analysis of Homemade Peroxide-Based Explosives in Water: A Review. Trends Anal. Chem. 2023, 158, 116884. DOI: 10.1016/j.trac.2022.116884.
  • Celin, S.-M.; Sharma, B.; Bhanot, P.; Kalsi, A.; Sahai, S.-K.; Tanwar, R.-K. Trends in Environmental Monitoring of High Explosives Present in Soil/Sediment/Groundwater Using LC-MS/MS. Mass Spectrom. Rev. 2023, 42, 1727–1771. DOI: 10.1002/mas.21778.
  • Gallidabino, M. D.; Irlam, R. C.; Salt, M. C.; O'Donnell, M.; Beardah, M. S.; Barron, L. P. Targeted and Non-Targeted Forensic Profiling of Black Powder Substitutes and Gunshot Residue Using Gradient Ion Chromatography – High Resolution Mass Spectrometry (IC-HRMS). Anal. Chim. Acta. 2019, 1072, 1–14. DOI: 10.1016/j.aca.2019.04.048.
  • Almeida-Assis, A.-C.; Caetano, J.; Florêncio, M.-H.; Cordeiro, C. Triacetone Triperoxide Characterization by FT-ICR Mass Spectrometry: Uncovering Multiple Forensic Evidence. Forensic Sci. Int. 2019, 301, 37–45. DOI: 10.1016/j.forsciint.2019.04.020.
  • Amin, M.; Wen, P.; Herzog, W.-D.; Kunz, R. R. Optimization of Ultraviolet Raman Spectroscopy for Trace Explosive Checkpoint Screening. Anal. Bioanal. Chem. 2020, 412, 4495–4504. DOI: 10.1007/s00216-020-02725-2.
  • Stefanuto, P.-H.; Perrault, K.-A.; Focant, J.-F.; Forbes, S.-L. Fast Chromatographic Method for Explosive Profiling. Chromatography 2015, 2, 213–224. DOI: 10.3390/chromatography2020213.
  • Banas, A.; Banas, K.; Lo, M.-K.-F.; Kansiz, M.; Kalaiselvi, S.-M.-P.; Lim, S.-K.; Loke, J.; Breese, M.-B.-H. Detection of High-explosive materials within Fingerprints by Means of Optical-Photothermal Infrared Spectromicroscopy. Anal. Chem. 2020, 92, 9649–9657. DOI: 10.1021/acs.analchem.0c00938.
  • Bandodkar, A.-J.; O'Mahony, A.-M.; Ramírez, J.; Samek, I.-A.; Anderson, S.-M.; Windmiller, J.-R.; Wang, J. Solid-State Forensic Finger Sensor for Integrated Sampling and Detection of Gunshot Residue and Explosives: Towards ‘Lab-on-a-Finger. Analyst 2013, 138, 5288–5295. DOI: 10.1039/C3AN01179H.
  • González-Calabuig, A.; Cetó, X.; del Valle, M. Electronic Tongue for Nitro and Peroxide Explosive Sensing. Talanta 2016, 153, 340–346. DOI: 10.1016/j.talanta.2016.03.009.
  • Kulcinski, G.-L.; Santarius, J.-F.; Johnson, K.; Megahed, A.; Bonomo, R.-L. Identification of Landmines and IEDs Using Compact Fusion Neutron Sources on Drones. Fusion Sci. Technol. 2017, 72, 1–6. DOI: 10.1080/15361055.2017.1333862.
  • Chantasen, N.; Boonpoonga, A.; Burintramart, S.; Athikulwongse, K.; Akkaraekthalin, P. Automatic Detection and Classification of Buried Objects Using Ground-Penetrating Radar for Counter-Improvised Explosive Devices. Radio Sci. 2018, 53, 210–227. DOI: 10.1002/2017RS006402.
  • Gutierrez, S.; Just, T.; Sachs, J.; Baer, C.; Vega, F. Field-Deployable System for the Measurement of Complex Permittivity of Improvised Explosives and Lossy Dielectric Materials. IEEE Sensors J. 2018, 18, 6706–6714. https://ieeexplore.ieee.org/document/8390915. DOI: 10.1109/JSEN.2018.2849322.
  • Chaudhary, S.; Ninsawat, S.; Nakamura, T. Non-Destructive Trace Detection of Explosives Using Pushbroom Scanning Hyperspectral Imaging System. Sensors (Basel) 2018, 19, 97. DOI: 10.3390/s19010097.
  • Taranto, V.; Ueland, M.; Forbes, S.-L.; Blanes, L. The Analysis of Nitrate Explosive Vapour Samples Using Lab-on-a-Chip Instrumentation. J. Chromatogr. A 2019, 1602, 467–473. DOI: 10.1016/j.chroma.2019.06.003.
  • Kachwal, V.; Joshi, M.; Mittal, V.; Choudhury, A.-R.; Laskar, I.-R. Strategic Design and Synthesis of AIEE (Aggregation Induced Enhanced Emission) Active Push-Pull Type Pyrene Derivatives for the Ultrasensitive Detection of Explosives. Sens. Bio-Sens. Res. 2019, 23, 100267. DOI: 10.1016/j.sbsr.2019.100267.
  • Feng, F.; Peng, Y.; Zhang, L.; Huang, W. Imine Organic Cages Derived from Tetraphenylethylene Dialdehydes Exhibiting Aggregation-Induced Emission and Explosives Detection. Dyes Pigments 2021, 194, 109657. DOI: 10.1016/j.dyepig.2021.109657.
  • Zhu, B.; Zhu, L.; Hou, T.; Ren, K.; Kang, K.; Xiao, C.; Luo, J. Cobalt Metal–Organic Frameworks with Aggregation-Induced Emission Characteristics for Fluorometric/Colorimetric Dual Channel Detection of Nitrogen-Rich Heterocyclic Compounds. Anal. Chem. 2022, 94, 3744–3748. DOI: 10.1021/acs.analchem.1c05537.
  • Kalva, N.; Tran, C. H.; Lee, M. W.; Augustine, R.; Lee, S. J.; Kim, I. Aggregation-Induced Emission-Active Hyperbranched Polymers Conjugated with Tetraphenylethylene for Nitroaromatic Explosive Detection. Dyes Pigments 2021, 194, 109617. DOI: 10.1016/j.dyepig.2021.109617.
  • Henshke, Y.; Shemer, B.; Belkin, S. The Escherichia coli azoR Gene Promoter: A New Sensing Element for Microbial Biodetection of Trace Explosives. Curr. Res. Biotechnol. 2021, 3, 21–28. DOI: 10.1016/j.crbiot.2021.01.003.
  • Kober, L.; Schaefer, P.; Hollert, H.; Frohme, M. A Novel Strategy for High-Throughput Sample Collection, Analysis and Visualization of Explosives’ Concentrations for Contaminated Areas. Int. J. Environ. Sci. Technol. 2023, 20, 1399–1410. DOI: 10.1007/s13762-022-04088-w.
  • Zhang, Y.; Li, H.; Wu, Q.-Y.; Gu, L. Non-Covalent Functionalization of Graphene Sheets by Pyrene-Endcapped Tetraphenylethene: Enhanced Aggregation-Induced Emission Effect and Application in Explosive Detection. Front. Chem. 2022, 10, 970033. DOI: 10.3389/fchem.2022.970033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.