207
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Headspace Microextraction. A Comprehensive Review on Method Application to the Analysis of Real Samples (from 2018 till Present)

&

References

  • Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Liquid-Phase Microextraction Approaches Combined with Atomic Detection: A Critical Review. Anal. Chim. Acta. 2010, 669, 1–16. DOI: 10.1016/j.aca.2010.04.050.
  • Jeannot, M. A.; Przyjazny, A.; Kokosa, J. M. Single Drop Microextraction – Development, Applications and Future Trends. J. Chromatogr. A 2010, 1217, 2326–2336. DOI: 10.1016/j.chroma.2009.10.089.
  • Kokosa, J. M. Recent Trends in Using Single-Drop Microextraction and Related Techniques in Green Analytical Methods. TrAC. 2015, 71, 194–204. DOI: 10.1016/j.trac.2015.04.019.
  • Câmara, J. S.; Perestrelo, R.; Olayanju, B.; Berenguer, C. V.; Kabir, A.; Pereira, J. A. M. Overview of Different Modes and Applications of Liquid Phase-Based Microextraction Techniques. Process 2022, 10, 1347. DOI: 10.3390/pr10071347.
  • Li, G.; Row, K. H. Single-Drop Microextraction Technique for the Determination of Antibiotics in Environmental Water. J. Sep. Sci. 2021, 45, 883–895. DOI: 10.1002/jssc.202100682.
  • Paiva, A. C.; Crucello, J.; de Aguiar Porto, N.; Hantao, L. W. Fundamentals of and Recent Advances in Sorbent-Based Headspace Extractions. TrAC. 2021, 139, 116252. DOI: 10.1016/j.trac.2021.116252.
  • Lancioni, C.; Castells, C.; Candal, R.; Tascon, M. Headspace Solid-Phase Microextraction: Fundamentals and Recent Advances. Adv. Sample Prep. 2022, 3, 100035. DOI: 10.1016/j.sampre.2022.100035.
  • Rodinkov, O. V.; Bugaichenko, A. S.; Moskvin, L. N. Static Headspace Analysis and Its Current Status. J. Anal. Chem. 2020, 75, 1–17. DOI: 10.1134/S106193482001013X.
  • Mogaddam, M.; Mohebbi, A.; Pazhohan, A.; Khodadadeian, F.; Farajzadeh, M. A. Headspace Mode of Liquid Phase Microextraction: A Review. TrAC 2019, 110, 8–14. DOI: 10.1016/j.trac.2018.10.021.
  • Psillakis, E. Vacuum-Assisted Headspace Solid-Phase Microextraction: A Tutorial Review. Anal. Chim. Acta. 2017, 986, 12–24. DOI: 10.1016/j.aca.2017.06.033.
  • Alsayadi, Y. M. M. A.; Arora, S. A Review: Total Vaporization Solid-Phase Microextraction Procedure in Different Matrixes. AMECJournal. 2022, 5, 80–102. DOI: 10.24200/amecj.v5.i03.190.
  • Olcer, Y. A.; Tascon, M.; Eroglu, A. E.; Boyacı, E. Thin Film Microextraction: Towards Faster and More Sensitive Microextraction. TrAC. 2019, 113, 93–101. DOI: 10.1016/j.trac.2019.01.022.
  • Xiaoyue, J. Applications of Headspace Solid-Phase Microextraction in Human Biological Matrix Analysis. Rev. Anal. Chem. 2022, 41, 180–188. DOI: 10.1515/revac-2022-0042.
  • Haug, H.; Klein, L.; Sauerwald, T.; Poelke, B.; Beauchamp, J.; Roloff, A. Sampling Volatile Organic Compound Emissions from Consumer Products: A Review. Crit. Rev. Anal. Chem. 2022. DOI: 10.1080/10408347.2022.2136484.
  • Shen, G.; Lee, H. K. Headspace Liquid-Phase Microextraction of Chlorobenzenes in Soil with Gas Chromatography-Electron Capture Detection. Anal. Chem. 2003, 75, 98–103. DOI: 10.1021/ac020428b.
  • Farajzadeh, M. A.; Nassiry, P.; Afshar Mogaddam, M. R.; Alizadeh Nabil, A. Development of Dynamic Headspace-Liquid Phase Microextraction Method Performed in a Home-Made Extraction Vessel for Extraction and Preconcentration of 1,4-Dioxane from Shampoo. J. Iran. Chem. Soc. 2016, 13, 1385–1393. DOI: 10.1007/s13738-016-0853-7.
  • Shen, G.; Lee, H. K. Hollow Fiber-Protected Liquid-Phase Microextraction of Triazine Herbicides. Anal. Chem. 2002, 74, 648–654. DOI: 10.1021/ac010561o.
  • Jiang, X. M.; Basheer, C.; Zhang, J.; Lee, H. K. Dynamic Hollow Fiber-Supported Headspace Liquid-Phase Microextraction. J. Chromatogr. A 2005, 1087, 289–294. DOI: 10.1016/j.chroma.2005.06.010.
  • Sharma, N.; Jain, A.; Singh, V. K.; Verma, K. K. Solid Phase Extraction Combined with Headspace Single Drop Microextraction of Chlorophenols as Their Methyl Ethers and Analysis by High Performance Liquid Chromatography Diode Array Detection. Talanta. 2011, 83, 994–999. DOI: 10.1016/j.talanta.2010.11.003.
  • Batlle, R.; López, P.; Nerín, C.; Crescenzi, C. Active Single Drop Microextraction for the Determination of Gaseous Diisocyanates. J. Chromatogr. A 2008, 1185, 155–160. DOI: 10.1016/j.chroma.2008.01.053.
  • Zaruba, S.; Vishnikin, A. B.; Škrlíková, J.; Andruch, V. Using an Optical Probe as the Microdrop Holder in Headspace Single Drop Microextraction: Determination of Sulfite in Food Samples. Anal. Chem. 2016, 88, 10296–10300. DOI: 10.1021/acs.analchem.6b03129.
  • Skok, A.; Vishnikin, A.; Bazel, Y. A New Approach for Sulfite Determination by Headspace Liquid-Phase Microextraction with an Optical Probe. Anal. Methods 2022, 14, 3299–3306. DOI: 10.1039/D2AY00943A.
  • Tamen, A.; Vishnikin, A. In-Vessel Headspace Liquid-Phase Microextraction. Anal. Chim. Acta. 2021, 1172, 338670. DOI: 10.1016/j.aca.2021.338670.
  • Skok, A.; Bazel, Y.; Vishnikin, A. New Analytical Methods for the Determination of Sulfur Species with Microextraction Techniques: A Review. J. Sulphur Chem. 2022, 43, 443–471. DOI: 10.1080/17415993.2022.2045294.
  • Skok, A.; Vishnikin, A.; Bazel, Y. Online Determination of Sulfide Using an Optical Immersion Probe Combined with Headspace Liquid-Phase Microextraction. RSC Adv. 2022, 12, 17675–17681. DOI: 10.1039/d2ra01010k.
  • Gómez-Ríos, G. A.; Mirabelli, M. F. Solid Phase Microextraction-Mass Spectrometry: Metanoia. TrAC. 2019, 112, 201–211. DOI: 10.1016/j.trac.2018.12.030.
  • Setkova, L.; Risticevic, S.; Linton, C. M.; Ouyang, G.; Bragg, L. M.; Pawliszyn, J. Solid-Phase Microextraction-Gas Chromatography-Time-of-Flight Mass Spectrometry Utilized for the Evaluation of the New-Generation Super Elastic Fiber Assemblies. Anal. Chim. Acta. 2007, 581, 221–231. DOI: 10.1016/j.aca.2006.08.022.
  • Wang, Y. C.; Wang, J. L.; Shu, Y. Y. Purge-Assisted and Temperature-Controlled Headspace Solid-Phase Microextraction Combined with Gas Chromatography-Mass Spectrometry for Determination of Six Common Phthalate Esters in Aqueous Samples. Food Measure. 2020, 14, 1833–1841. DOI: 10.1007/s11694-020-00430-3.
  • Herrington, J. S.; Gómez-Ríos, G. A.; Myers, C.; Stidsen, G.; Bell, D. S. Hunting Molecules in Complex Matrices with SPME Arrows: A Review. Separations 2020, 7, 12. DOI: 10.3390/separations7010012.
  • Trujillo-Rodríguez, M. J.; Pacheco-Fernández, I.; Taima-Mancera, I.; Díaz, J. H. A.; Pino, V. Evolution and Current Advances in Sorbent-Based Microextraction Configurations. J. Chromatogr. A 2020, 1634, 461670. DOI: 10.1016/j.chroma.2020.461670.
  • Laaks, J.; Jochmann, M. A.; Schilling, B.; Schmidt, T. C. In-Tube Extraction of Volatile Organic Compounds from Aqueous Samples: An Economical Alternative to Purge and Trap Enrichment. Anal. Chem. 2010, 82, 7641–7648. DOI: 10.1021/ac101414t.
  • Sajid, M.; Płotka-Wasylka, J. Combined Extraction and Microextraction Techniques: Recent Trends and Future Perspectives. TrAC 2018, 103, 74–86. DOI: 10.1016/j.trac.2018.03.013.
  • Nechaeva, D.; Shishov, A.; Ermakov, S.; Bulatov, A. A Paper-Based Analytical Device for the Determination of Hydrogen Sulfide in Fuel Oils Based on Headspace Liquid-Phase Microextraction and Cyclic Voltammetry. Talanta 2018, 183, 290–296. DOI: 10.1016/j.talanta.2018.02.074.
  • Tang, S.; Qi, T.; Xia, D.; Xu, M.; Xu, M.; Zhu, A.; Shen, W.; Lee, H. K. Smartphone Nanocolorimetric Determination of Hydrogen Sulfide in Biosamples after Silver–Gold Core–Shell Nanoprism-Based Headspace Single-Drop Microextraction. Anal. Chem. 2019, 91, 5888–5895. DOI: 10.1021/acs.analchem.9b00255.
  • Zhou, J.; Lin, X.; Zhao, L.; Huang, K.; Yang, Q.; Yu, H.; Xiong, X. Headspace Single Drop Microextraction Based Visual Colorimetry for Highly Sensitive, Selective and Matrix Interference-Resistant Determination of Sulfur Dioxide in Food Samples. Food Chem. 2023, 426, 136659. DOI: 10.1016/j.foodchem.2023.136659.
  • Constable, M.; Charlton, M.; Jensen, F.; McDonald, K.; Craig, G.; Taylor, K. W. An Ecological Risk Assessment of Ammonia in the Aquatic Environment. HERA 2003, 9, 527–548. DOI: 10.1080/713609921.
  • Skok, A.; Bazel, Y.; Vishnikin, A. A New Miniaturized Microextraction HS‑LPME‑OIP Procedure for Ammonium Determination Based on Nessler’s Method. Chem. Pap. 2023, 77, 7303–7309. DOI: 10.1007/s11696-023-02903-3.
  • Giakisikli, G.; Anthemidis, A. N. Automatic Pressure-Assisted Dual-Headspace Gas-Liquid Microextraction. Lab-in-Syringe Platform for Membraneless Gas Separation of Ammonia Coupled with Fluorimetric Sequential Injection Analysis. Anal. Chim. Acta. 2018, 1033, 73–80. DOI: 10.1016/j.aca.2018.06.034.
  • Fan, Y. Z.; Dong, J. X.; Zhang, Y.; Li, N.; Liu, S. G.; Geng, S.; Ling, Y.; Luo, H. Q.; Li, N. B. A Smartphone-Coalesced Nanoprobe for High Selective Ammonia Sensing Based on the pH-Responsive Biomass Carbon Nanodots and Headspace Single Drop Microextraction. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 219, 382–390. DOI: 10.1016/j.saa.2019.04.073.
  • Jain, A.; Soni, S.; Verma, K. K. Combined Liquid Phase Microextraction and Fiber-Optics-Based Cuvetteless Micro-Spectrophotometry for Sensitive Determination of Ammonia in Water and Food Samples by the Indophenol Reaction. Food Chem. 2021, 340, 128156. DOI: 10.1016/j.foodchem.2020.128156.
  • Bagheri, N.; Saraji, M. Combining Gold Nanoparticle-Based Headspace Single-Drop Microextraction and a Paper-Based Colorimetric Assay for Selenium Determination. Anal. Bioanal. Chem. 2019, 411, 7441–7449. DOI: 10.1007/s00216-019-02106-4.
  • Pena-Pereira, F.; García-Figueroa, A.; Lavilla, I.; Bendicho, C. Ratiometric Detection of Total Bromine in E-Waste Polymers by Colloidal Gold-Based Headspace Single-Drop Microextraction and Microvolume Spectrophotometry. Sens. Actuators B Chem 2018, 261, 481–488. DOI: 10.1016/j.snb.2018.01.107.
  • Abreu, D. C. P.; Botrel, B. M. C.; Bazana, M. J. F.; Rosa, P. V.; Sales, P. F.; Marques, M.; Saczk, A. A. Development and Comparative Analysis of Single-Drop and Solid-Phase Microextraction Techniques in the Residual Determination of 2-Phenoxyethanol in Fish. Food Chem. 2019, 270, 487–493. DOI: 10.1016/j.foodchem.2018.07.136.
  • Bokhon, F.; Daryanavard, S. M.; Gholamshahzadeh, A.; Tezerji, A. K. Application of Experimental Design for Determination of Methanol and Ethanol in Transformer Industrial Oils Using Headspace Single-Drop Microextraction. Anal. Bioanal. Chem. Res 2020, 8, 27–38. DOI: 10.22036/ABCR.2020.233914.1510.
  • Qin, B.; Wang, X.; Tang, L.; Wang, S.; Shi, Y.; Zhao, L.; Jiang, H. Comparative Study of Headspace and Headspace Single Drop Microextraction Combined with GC for the Determination of Methanol in Wine. J. Chromatogr. A 2022, 1673, 463079. DOI: 10.1016/j.chroma.2022.463079.
  • Shahvar, A.; Saraji, M.; Shamsaei, D. Headspace Single Drop Microextraction Combined with Mobile Phone-Based on-Drop Sensing for the Determination of Formaldehyde. Sens. Actuators B Chem. 2018, 273, 1474–1478. DOI: 10.1016/j.snb.2018.07.071.
  • Malinina, Y.; Kamentsev, M. Y.; Timofeeva, I. I.; Moskvin, L. N.; Yakimova, N. M.; Kuchumova, I. D. Determination of Volatile Low-Molecular-Weight Amines in Water by Capillary Electrophoresis after Headspace Microextraction. J. Anal. Chem. 2019, 74, 27–31. DOI: 10.1134/S1061934819070153.
  • Mahdi Abolghasemi, M.; Piryaei, M.; Moghtader Imani, R. Deep Eutectic Solvents as Extraction Phase in Head-Space Single-Drop Microextraction for Determination of Pesticides in Fruit Juice and Vegetable Samples. Microchem. J. 2020, 158, 105041. DOI: 10.1016/j.microc.2020.105041.
  • Rodinkov, O.; Znamenskaya, E.; Spivakovsky, V.; Shilov, R.; Shishov, A. Deep Eutectic Solvents-Based Headspace Single-Drop Microextraction for the Chromatographic Determination of Phenols and Aliphatic Alcohols in Atmospheric Air. Microchem. J. 2022, 182, 107854. DOI: 10.1016/j.microc.2022.107854.
  • Fu, J.; Zhu, Y.; Liu, B.; Tang, J. Fe3O4 Sphere-Assisted Microwave Distillation Coupled with Ionic Liquid-Based HS-SDME Followed by GC-MS for the Rapid Analysis of Essential Oil in Dried Lavender. Anal. Methods 2018, 10, 652–659. DOI: 10.1039/C7AY02682J.
  • Piryaei, M. The Use of the Headspace Single Drop Microextraction and Microwave Distillation for Determination of Essential Oil Components of Salvia Hydrangea DC. Nat. Prod. Res. 2019, 34, 2996–2999. DOI: 10.1080/14786419.2019.1598990.
  • Piryaei, M. Deep Eutectic Solvents as an Efficient Solvent System Determination the Volatile Compounds with Microextraction. Iran. J. Chem. Chem. Eng. 2022, 41, 135–142. DOI: 10.30492/IJCCE.2020.123956.4063.
  • Cunha, S. C.; Senra, L.; Cruz, R.; Casal, S.; Fernandes, J. O. 4-Methylimidazole in Soluble Cofee and Cofee Substitutes. Food Control. 2016, 63, 15–20. DOI: 10.1016/j.foodcont.2015.11.006.
  • Rafiei Jam, M.; Nezhadali, A.; Kaykhaii, M. Application of Gas Fow Headspace Liquid Phase Micro Extraction Coupled with Gas Chromatography-Mass Spectrometry for Determination of 4-Methylimidazole in Food Samples Employing Experimental Design Optimization. BMC Chem. 2022, 16, 29. DOI: 10.1186/s13065-022-00823-z.
  • Fu, H. J.; Chen, Z. J.; Wang, H.; Luo, L.; Wang, Y.; Huang, R. M.; Xu, Z. L.; Hammock, B. Development of a Sensitive Non-Competitive Immunoassay via Immunocomplex Binding Peptide for the Determination of Ethyl Carbamate in Wine Samples. J. Hazard. Mater. 2021, 406, 124288. DOI: 10.1016/j.jhazmat.2020.124288.
  • Ma, Z.; Zhao, T.; Cui, S.; Zhao, X.; Fan, Y.; Song, J. Determination of Ethyl Carbamate in Wine by Matrix Modification-Assisted Headspace Single-Drop Microextraction and Gas Chromatography–Mass Spectrometry Technique. Food Chem. 2022, 373, 131573. DOI: 10.1016/j.foodchem.2021.131573.
  • Li, M.; Gu, C.; Luo, L.; Zhou, J.; Liu, J.; Zheng, F. Determination of Trace Methanesulfonates in Drug Matrix Using Derivatization and Headspace Single Drop Microextraction Followed by High-Performance Liquid Chromatography with Ultraviolet Detection. J. Chromatogr. A 2019, 1591, 131–137. DOI: 10.1016/j.chroma.2019.01.038.
  • Dong, J.; Cai, L.; Wang, S.; Wang, Y.; Chen, X. Determination of Sulfite in Botanical Medicine Using Headspace Thin-Film Microextraction and Surface Enhanced Raman Spectrometry. Anal. Lett. 2018, 52, 1236–1246. DOI: 10.1080/00032719.2018.1529183.
  • Shahvar, A.; Saraji, M.; Gordan, H.; Shamsaei, D. Combination of Paper-Based Thin Film Microextraction with Smartphone-Based Sensing for Sulfite Assay in Food Samples. Talanta 2019, 197, 578–583. DOI: 10.1016/j.talanta.2019.01.071.
  • Zheng, C.; Hu, L.; Hou, X.; He, B.; Jiang, G. Headspace Solid-Phase Microextraction Coupled to Miniaturized Microplasma Optical Emission Spectrometry for Detection of Mercury and Lead. Anal. Chem. 2018, 90, 3683–3691. DOI: 10.1021/acs.analchem.7b04759.
  • Li, J.; He, Q.; Wu, L.; Sun, J.; Zheng, F.; Li, L.; Liu, W.; Liu, J. Ultrasensitive Speciation Analysis of Mercury in Waters by Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Triple Quadrupole Mass Spectrometry. Microchem. J. 2019, 153, 104459. DOI: 10.1016/j.microc.2019.10445.
  • Borowska, M.; Jankowski, K. Photochemical Vapor Generation Combined with Headspace Solid Phase Microextraction for Determining Mercury Species by Microwave-Induced Plasma Optical Emission Spectrometry. Microchem. J. 2022, 172, 106905. DOI: 10.1016/j.microc.2021.106905.
  • Gajdosechova, Z.; Pagliano, E.; Zborowski, A.; Mester, Z. Headspace in-Tube Microextraction and Gc-Icp-Ms Determination of Mercury Species in Petroleum Hydrocarbons. Energy Fuels 2018, 32, 10493–10501. DOI: 10.1021/acs.energyfuels.8b022.
  • d.; Nascimento, H. O.; da Silva, M. Z. F.; Alexandre, J. B.; Vidal, C. B.; Carvalho, T. V.; d.; Nascimento, R. F. New HS-SPME-GC-BID Method for the Determination of Volatile Constituents in Distilled Beverages. Microchem. J. 2022, 181, 107669. DOI: 10.1016/j.microc.2022.107669.
  • Vakinti, M.; Mela, S. M.; Fernández, E.; Psillakis, E. Room Temperature and Sensitive Determination of Haloanisoles in Wine Using Vacuum-Assisted Headspace Solid-Phase Microextraction. J. Chromatogr. A 2019, 1602, 142–149. DOI: 10.1016/j.chroma.2019.03.047.
  • Vilela, A. d O.; Faroni, L. R. D.; Rodrigues, A. A. Z.; Heleno, F. F.; de Queiroz, M. E. L. R.; Moura, E. d S.; Gomes, J. L. Headspace Solid-Phase Microextraction: Validation of the Method and Determination of Allyl Isothiocyanate Persistence in Cowpea Beans. ACS Omega 2020, 5, 21364–21373. DOI: 10.1021/acsomega.0c01385.
  • da Silva Moura, E.; D’Antonino Faroni, L. R.; Rodrigues, A. A. Z.; Heleno, F. F.; de Queiroz, M. E. L. R.; de Oliveira Vilela, A. Evaluation of the Persistence of Linalool and Estragole in Maize Grains via Headspace Solid-Phase Microextraction and Gas Chromatography. Food Anal. Methods 2021, 14, 217–229. DOI: 10.1007/s12161-020-01862-9.
  • Wei, Q.; Cheng, H.; Wu, S.; Chen, C. Determination of Low Molecular Weight Chlorinated Organic Compounds in Polyamideanine Epichlorohydrin Solution. Nord. Pulp Pap. Res. J. 2019, 34, 326–333. DOI: 10.1515/npprj-2018-0084.
  • Tungkijanansin, N.; Alahmad, W.; Nhujak, T.; Varanusupakul, P. Simultaneous Determination of Benzoic Acid, Sorbic Acid, and Propionic Acid in Fermented Food by Headspace Solid-Phase Microextraction Followed by GC-FID. Food Chem. 2020, 329, 127161. DOI: 10.1016/j.foodchem.2020.127161.
  • Feyzi, S.; Varidi, M.; Housaindokht, M. R.; Es’haghi, Z. Innovative Method for Analysis of Safranal under Static and Dynamic Conditions through Combination of HS-SPME-GC Technique with Mathematical Modelling. Phytochem. Anal. 2020, 31, 564–574. DOI: 10.1002/pca.2920.
  • Masite, N. S.; Ncube, S.; Mtunzi, F. M.; Madikizela, L. M.; Pakade, V. E. Determination of Furanic Compounds in Mopane Worms, Corn, and Peanuts Using Headspace Solid-Phase Microextraction with Gas Chromatography-Flame Ionisation Detector. Food Chem. 2022, 369, 130944. DOI: 10.1016/j.foodchem.2021.13094.
  • Batool, Z.; Li, L.; Xu, D.; Wu, M.; Weng, L.; Jiao, W.; Cheng, H.; Roobab, U.; Zhang, X.; Li, X.; et al. Determination of Furan and Its Derivatives in Preserved Dried Fruits and Roasted Nuts Marketed in China Using an Optimized HS-SPME GC/MS Method. Eur. Food Res. Technol. 2020, 246, 2065–2077. DOI: 10.1007/s00217-020-03556-2.
  • Zhu, K.; Liu, Y.; Sun, Q.; Zhao, M.; Huang, L. Determination of Volatile Fuel Oxygenates in Water by Gas Chromatography–Triple Quadrupole Mass Spectrometry: Effect of Automated Sample Preparation Techniques. Water 2020, 12, 2266. DOI: 10.3390/w12082266.
  • Ayala-Cabrera, J. F.; Contreras-Llin, A.; Moyano, E.; Santos, F. J. A Novel Methodology for the Determination of Neutral Perfluoroalkyl and Polyfluoroalkyl Substances in Water by Gas Chromatography-Atmospheric Pressure Photoionisation-High Resolution Mass Spectrometry. Anal. Chim. Acta. 2020, 1100, 97–106. DOI: 10.1016/j.aca.2019.12.004.
  • Lee, J. E.; Lim, H. H.; Shin, H. S. Simultaneous Determination of 15 BTEX Hydroxyl Biomarkers in Urine by Headspace Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry. J. Pharm. Biomed. Anal. 2019, 174, 115–122. DOI: 10.1016/j.jpba.2019.05.033.
  • Mansur, A. R.; Lee, H. J.; Choi, H. K.; Lim, T. G.; Yoo, M.; Jang, H. W.; Nam, T. G. Comparison of Two Commercial Solid‐Phase Microextraction Fibers for the Headspace Analysis of Volatile Compounds in Different Pork and Beef Cuts. J. Food Process. Preserv. 2018, 42, 13746. DOI: 10.1111/jfpp.13746.
  • Saber, A. N.; Zhang, H.; Yang, M. Optimization and Validation of Headspace Solid-Phase Microextraction Method Coupled with Gas Chromatography–Triple Quadrupole Tandem Mass Spectrometry for Simultaneous Determination of Volatile and Semi-Volatile Organic Compounds in Coking Wastewater Treatment Plant. Environ. Monit. Assess. 2019, 191, 411. DOI: 10.1007/s10661-019-7554-5.
  • Bakaikina, N. V.; Kenessov, B.; Ul’yanovskii, N. V.; Kosyakov, D. S. Quantification of Transformation Products of Rocket Fuel Unsymmetrical Dimethylhydrazine in Soils Using SPME and GC-MS. Talanta 2018, 184, 332–337. DOI: 10.1016/j.talanta.2018.02.047.
  • Passos, C. P.; Petronilho, S.; Serôdio, A. F.; Neto, A. C. M.; Torres, D.; Rudnitskaya, A.; Nunes, C.; Kukurová, K.; Ciesarová, Z.; Rocha, S. M.; Coimbra, M. A. HS-SPME Gas Chromatography Approach for Underivatized Acrylamide Determination in Biscuits. Foods 2021, 10, 2183. DOI: 10.3390/foods10092183.
  • Fella, P.; Kaikiti, K.; Stylianou, M.; Agapiou, A. HS-SPME-GC/MS Analysis for Revealing Carob’s Ripening. Metabolites 2022, 12, 656. DOI: 10.3390/metabo12070656.
  • Xu, Y.; Shui, M.; Chen, D.; Ma, X.; Feng, T. Optimization of Jinhua Ham Classification Method Based on Volatile Flavor Substances and Determination of Key Odor Biomarkers. Molecules 2022, 27, 7087. DOI: 10.3390/molecules27207087.
  • Orazbayeva, D.; Kenessov, B.; Psillakis, E.; Nassyrova, D.; Bektassov, M. Determination of Transformation Products of Unsymmetrical Dimethylhydrazine in Water Using Vacuum-Assisted Headspace Solid-Phase Microextraction. J. Chromatogr. A 2018, 1555, 30–36. DOI: 10.1016/j.chroma.2018.04.048.
  • Huang, Y. H.; Kao, T. H.; Inbaraj, B. S.; Chen, B. H. Improved Analytical Method for Determination of Furan and Its Derivatives in Commercial Foods by HS-SPME Arrow Combined with Gas Chromatography–Tandem Mass Spectrometry. J. Agric. Food Chem. 2022, 70, 7762–7772. DOI: 10.1021/acs.jafc.2c01832.
  • Drabińska, N.; Starowicz, M.; Krupa-Kozak, U. Headspace Solid-Phase Microextraction Coupled with Gas Chromatography–Mass Spectrometry for the Determination of Volatile Organic Compounds in Urine.J Anal Chem. 2020, 75, 792–801. DOI: 10.1134/S1061934820060088.
  • Alnajim, I.; Agarwal, M.; Liu, T.; Ren, Y. L. A Novel Method for the Analysis of Volatile Organic Compounds (VOCs) from Red Flour Beetle Tribolium castaneum (H.) Using headspace-SPME Technology. CAC 2020, 16, 404–412. DOI: 10.2174/1573411015666190117125920.
  • Dziekońska-Kubczak, U.; Pielech-Przybylska, K.; Patelski, P.; Balcerek, M. Development of the Method for Determination of Volatile Sulfur Compounds (VSCs) in Fruit Brandy with the Use of HS–SPME/GC–MS. Molecules 2020, 25, 25–1232. DOI: 10.3390/molecules25051232.
  • Manousi, N.; Zachariadis, G. A. Determination of Volatile Compounds in Nut-Based Milk Alternative Beverages by HS-SPME Prior to GC-MS Analysis. Molecules 2019, 24, 3091. DOI: 10.3390/molecules24173091.
  • Borges, T. H.; Ramalhosa, E.; Seiquer, I.; Pereira, J. A. Use of Response Surface Methodology (RSM) for the Identification of the Best Extraction Conditions for Headspace Solid-Phase Micro Extraction (HS-SPME) of the Volatile Profile of Cv. Arbequina Extra-Virgin Olive Oil. Eur. J. Lipid Sci. Tech. 2018, 180, 1700356. DOI: 10.1002/ejlt.201700356.
  • Di Donato, F.; Biancolillo, A.; Mazzulli, D.; Rossi, L.; D'Archivio, A. A. HS-SPME/GC–MS Volatile Fraction Determination and Chemometrics for the Discrimination of Typical Italian Pecorino Cheeses. Microchem. J. 2021, 165, 106133. DOI: 10.1016/j.microc.2021.106133.
  • Gherghel, S.; Morgan, R. M.; Arrebola-Liébanas, J.; Romero-González, R.; Blackman, C. S.; Garrido-Frenich, A.; Parkin, I. P. Development of a HS-SPME/GC–MS Method for the Analysis of Volatile Organic Compounds from Fabrics for Forensic Reconstruction Applications. Forensic Sci. Int. 2018, 290, 207–218. DOI: 10.1016/j.forsciint.2018.07.015.
  • Lim, H. H.; Shin, H. S. In-Solution Derivatization and Detection of Glyoxal and Methylglyoxal in Alcoholic Beverages and Fermented Foods by Headspace Solid-Phase Microextraction and Gas Chromatography–Mass Spectrometry. J. Food Compost. Anal. 2020, 92, 103584. DOI: 10.1016/j.jfca.2020.103584.
  • Vazquez, L.; Celeiro, M.; Sergazina, M.; Dagnac, T.; Llompart, M. Optimization of a Miniaturized Solid-Phase Microextraction Method Followed by Gas Chromatography Mass Spectrometry for the Determination of Twenty Four Volatile and Semivolatile Compounds in Honey from Galicia (NW Spain) and Foreign Countries. Sustain. Chem. Pharm. 2021, 21, 100451. DOI: 10.1016/j.scp.2021.100451.
  • Karabagias, I. K. Headspace Volatile Compounds Fuctuations in Honeydew Honey during Storage at in-House Conditions. Eur. Food Res. Technol. 2022, 248, 715–726. DOI: 10.1007/s00217-021-03921-9.
  • Gokool, V. A.; Holness, H. K.; Furton, K. G. The Influence of Intra-Personal Variations in Human Hand Odor on the Determination of Sample Donor. Forensic Sci. Int. 2022, 334, 111235. DOI: 10.1016/j.forsciint.2022.111235.
  • Mahmoud, E.; Starowicz, M.; Ciska, E.; Topolska, J.; Farouk, A. Determination of Volatiles, Antioxidant Activity, and Polyphenol Content in the Postharvest Waste of Ocimum basilicum L. Food Chem. 2022, 375, 131692. DOI: 10.1016/j.foodchem.2021.131692.
  • Wang, C.; Liu, H.; He, L.; Li, C. Determination of Bacterial Community and Its Correlation to Volatile Compounds in Guizhou Niuganba, a Traditional Chinese Fermented Dry-Cured Beef. Food Sci. Technol. 2022, 161, 113380. DOI: 10.1016/j.lwt.2022.113380.
  • Yi, T. X.; Misran, A.; Whye, C. K.; Daim, L. D. J.; Ding, P.; Dek, M. S. P. Postharvest Quality Indices of Different Durian Clones at Ripening Stage and Their Volatile Organic Compounds. Sci. Hortic. 2020, 264, 109169. DOI: 10.1016/j.scienta.2019.109169.
  • Du, X.; Zhang, W.; Liu, B.; Liu, T.; Xiao, Y.; Taniguchi, M.; Ren, Y. L. Optimization and Validation of HS-SPME-GCMS Method for Determination of Multifumigant Residues in Grain, Oilseeds, Nuts, and Dry Fruit. J. AOAC Int. 2019, 102, 1877–1883. DOI: 10.5740/jaoacint.18-0093.
  • Zhang, X.; Wang, C.; Wang, L.; Chen, S.; Xu, Y. Optimization and Validation of a Head Space Solid-Phase Microextraction-Arrow Gas Chromatography-Mass Spectrometry Method Using Central Composite Design for Determination of Aroma Compounds in Chinese Liquor (Baijiu). J. Chromatogr. A 2020, 1610, 460584. DOI: 10.1016/j.chroma.2019.460584.
  • Guo, R.; Yu, F.; Wang, C.; Jiang, H.; Yu, L.; Zhao, M.; Liu, X. Determination of the Volatiles in Fermented Bamboo Shoots by Head Space – Solid-Phase Micro Extraction (HS-SPME) with Gas Chromatography – Olfactory – Mass Spectrometry (GC-O-MS) and Aroma Extract Dilution Analysis (AEDA). Anal. Lett. 2020, 54, 1162–1179. DOI: 10.1080/00032719.2020.1795667.
  • Piryaei, M.; Abolghasemi, M. M.; Karimi, B. Determination and Analysis of Volatile Components from Thymus Kotschyanus Boiss with a New Solid‐Phase Microextraction Fibre and Microwave‐Assisted Hydrodistillation by Periodic Mesoporous Organosilica Based on Alkylimidazolium Ionic Liquid. Phytochem. Anal. 2018, 30, 193–197. DOI: 10.1002/pca.2804.
  • He, P. Taihu Lake Safety Management and Determination Technologies Based on Odor Test. Chem. Eng. Trans. 2018, 68, 523–528. DOI: 10.3303/cet1868088.
  • Yu, Z.; Yu, R.; Wu, S.; Yu, W.; Song, Q. Preparation of a Novel Solid Phase Microextraction Fiber for Headspace GC-MS Analysis of Hazardous Odorants in Landfill Leachate. Processes 2022, 10, 1045. DOI: 10.3390/pr10061045.
  • Aresta, A.; Damascelli, A.; De Vietro, N.; Zambonin, C. Measurement of Squalene in Olive Oil by Fractional Crystallization or Headspace Solid Phase Microextraction Coupled with Gas Chromatography. Int. J. Food Prop. 2020, 23, 1845–1853. DOI: 10.1080/10942912.2020.1833033.
  • Botrel, B. M. C.; Abreu, D. C. P.; Bazana, M. J. F.; Rosa, P. V.; Saczk, A. A. Development, Optimization, and Validation of the HS-SPME/GC-MS Method for the Residual Determination of Menthol in Fish. Food Anal. Methods 2019, 12, 1390–1398. DOI: 10.1007/s12161-019-01467-x.
  • Muñoz-Redondo, J. M.; Valcárcel-Muñoz, M. J.; Rodríguez Solana, R.; Puertas, B.; Cantos-Villar, E.; Moreno-Rojas, J. M. Development of a Methodology Based on Headspace Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry for the Analysis of Esters in Brandies. J. Food Compost. Anal. 2022, 108, 104458. DOI: 10.1016/j.jfca.2022.104458.
  • Vasconcelos, P. H. M.; Camelo, A. L. M.; de Lima, A. C. A.; d.; Nascimento, H. O.; Vidal, C. B.; d.; Nascimento, R. F.; Lopes, G. S.; Longhinotti, E. Chemometric Tools Applied to Optimize a Fast Solid-Phase Microextraction Method for Analysis of Polycyclic Aromatic Hydrocarbons in Produced Water. Environ. Sci. Pollut. Res. Int. 2021, 28, 8012–8021. DOI: 10.1007/s11356-020-10881-2.
  • He, Y.; Chen, L.; Zheng, L.; Cheng, F.; Deng, Z. Y.; Luo, T.; Li, J. A Comparative Study of Volatile Compounds in Breast Milk and Infant Formula from Diferent Brands, Countries of Origin, and Stages. Eur. Food Res. Technol. 2022, 248, 2679–2694. DOI: 10.1007/s00217-022-04077-w.
  • da Costa, J. R. O.; Dal Bosco, S. M.; de Souza Ramos, R. C.; Machado, I. C. K.; Garavaglia, J.; Villasclaras, S. S. Determination of Volatile Compounds Responsible for Sensory Characteristics from Brazilian Extra Virgin Olive Oil Using HS-SPME/GC-MS Direct Method. J. Food Sci. 2020, 85, 3764–3775. DOI: 10.1111/1750-3841.15467.
  • Huang, B.; Yan, D.; Fang, W.; Wang, X.; Liu, J.; Zhang, D.; Wang, Q.; Ouyang, C.; Han, Q.; Jin, X.; Cao, A. Comparison of Headspace Solid-Phase Microextraction and Solvent Extraction Method for the Simultaneous Analysis of Various Soil Fumigants in Soil or Water by Gas Chromatography–Mass Spectrometry. J. Sep. Sci. 2020, 43, 1499–1513. DOI: 10.1002/jssc.201900767.
  • Saito, K.; Tokorodani, Y.; Sakamoto, C.; Kataoka, H. Headspace Solid-Phase Microextraction/Gas Chromatography–Mass Spectrometry for the Determination of 2-Nonenal and Its Application to Body Odor Analysis. Molecules 2021, 26, 5739. DOI: 10.3390/molecules26195739.
  • Peng, J.; Wei, M.; Hu, Y.; Yang, Y.; Guo, Y.; Zhang, F. Simultaneous Determination of Maltol, Ethyl Maltol, Vanillin, and Ethyl Vanillin in Foods by Isotope Dilution Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry. Food Anal. Methods 2019, 12, 1725–1735. DOI: 10.1007/s12161-019-01518-3.
  • Nešpor, J.; Karabín, M.; Hanko, V.; Dostálek, P. Application of Response Surface Design to Optimise the Chromatographic Analysis of Volatile Compounds in Beer. J. Inst. Brew. 2018, 124, 244–253. DOI: 10.1002/jib.493.
  • Nam, T. G.; Lee, J. Y.; Kim, B. K.; Song, N. E.; Jang, H. W. Analyzing Volatiles in Brown Rice Vinegar by Headspace Solid-Phase Microextraction (SPME)–Arrow: Optimizing the Extraction Conditions and Comparisons with Conventional SPME. Int. J. Food Prop. 2019, 22, 1195–1204. DOI: 10.1080/10942912.2019.1634099.
  • Muñoz-Redondo, J. M.; Ruiz-Moreno, M. J.; Puertas, B.; Cantos-Villar, E.; Moreno-Rojas, J. M. Multivariate Optimization of Headspace Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry for the Analysis of Terpenoids in Sparkling Wines. Talanta 2020, 208, 120483. DOI: 10.1016/j.talanta.2019.120483.
  • Liu, B.; Zheng, X.; Ke, Y.; Cao, X.; Sun, Q.; Wu, H. Automated Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry of Trihalomethane and Typical Nitrogenous Disinfection by-Products in Water. J. Chromatogr. A 2022, 1673, 463068. DOI: 10.1016/j.chroma.2022.463068.
  • Freixo, A. P. A.; Da Silva, A. C. R.; De Castro, M. L. R.; Quitério, S. L.; Raices, R. S. L. Volatile Organic Compounds Present in Jerked Beef, a Traditional Brazilian Meat Product. Food Sci. Technol. 2022, 42, e99521. DOI: 10.1590/fst.99521.
  • Yu, R. P.; Wang, L. P.; Zhao, C. K.; Wu, S. F.; Song, Q. J. Determination of Volatile Metabolites in microcystis aeruginosa Using Headspace-Solid Phase Microextraction Arrow Combined with Gas Chromatography-Mass Spectrometry. Chinese J. Anal. Chem. 2020, 48, 750–756. DOI: 10.1016/S1872-2040(20)60026-3.
  • Tintrop, L. K.; Jochmann, M. A.; Beesley, T.; Küppers, M.; Brunstermann, R.; Schmidt, T. C. Optimization and Automation of Rapid and Selective Analysis of Fatty Acid Methyl Esters from Aqueous Samples by Headspace SPME Arrow Extraction Followed by GC–MS/MS Analysis. Anal. Bioanal. Chem. 2022, 414, 6473–6483. DOI: 10.1007/s00216-022-04204-2.
  • Ji, H.; Jin, Z. Analysis of Six Aromatic Amines in the Mainstream Smoke of Tobacco Products. Anal. Bioanal. Chem. 2022, 414, 4227–4234. DOI: 10.1007/s00216-022-04075-7.
  • Wawrzyniak, R.; Jasiewicz, B. Straightforward and Rapid Determination of Acrylamide in Coffee Beans by Means of HS-SPME/GC-MS. Food Chem. 2019, 301, 125264. DOI: 10.1016/j.foodchem.2019.125264.
  • Zianni, R.; Mentana, A.; Campaniello, M.; Chiappinelli, A.; Tomaiuolo, M.; Chiaravalle, A. E.; Marchesani, G. An Investigation Using a Validated Method Based on HS-SPME-GC-MS Detection for the Determination of 2-Dodecylcyclobutanone and 2-Tetrade-Cylcyclobutanone in X-Ray Irradiated Dairy Products. Food Sci. Technol. 2022, 153, 112466. DOI: 10.1016/j.lwt.2021.112466.
  • Filipowska, W.; Jaskula-Goiris, B.; Ditrych, M.; Schlich, J.; De Rouck, G.; Aerts, G.; De Cooman, L. Determination of Optimal Sample Preparation for Aldehyde Extraction from Pale Malts and Their Quantification via Headspace Solid-Phase Microextraction Followed by Gas Chromatography and Mass Spectrometry. J. Chromatogr. A 2020, 1612, 460647. DOI: 10.1016/j.chroma.2019.460647.
  • Lisanti, M. T.; Laboyrie, J.; Marchand-Marion, S.; de Revel, G.; Moio, L.; Riquier, L.; Franc, C. Minty Aroma Compounds in Red Wine: Development of a Novel Automated HS-SPME-Arrow and Gas Chromatography-Tandem Mass Spectrometry Quantification Method. Food Chem. 2021, 361, 130029. DOI: 10.1016/j.foodchem.2021.130029.
  • dos Santos Garruti, D.; de Sousa Mesquita, W.; Magalhães, H. C. R.; da Silva Araújo, Í. M.; de Cássia Alves Pereira, R. Odor-Contributing Volatile Compounds of a New Brazilian Tabasco Pepper Cultivar Analyzed by HS-SPME-GC-MS and HS-SPME-GC-O/FID. Food Sci. Technol. 2021, 41, 696–701. DOI: 10.1590/fst.18020.
  • Rice, S.; Lutt, N.; Koziel, J. A.; Dharmadhikari, M.; Fennell, A. Determination of Selected Aromas in Marquette and Frontenac Wine Using headspace-SPME Coupled with GC-MS and Simultaneous Olfactometry. Separations 2018, 5, 20. DOI: 10.3390/separations5010020.
  • Peng, J.; Yang, Y.; Zhou, Y.; Hocart, C. H.; Zhao, H.; Hu, Y.; Zhang, F. Headspace Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry with Selected Ion Monitoring for the Determination of Four Food Flavoring Compounds and Its Application in Identifying Artificially Scented Rice. Food Chem. 2020, 313, 126136. DOI: 10.1016/j.foodchem.2019.126136.
  • Lukić, I.; Carlin, S.; Vrhovsek, U. Utility of Comprehensive GC × GC Gas Chromatography in Finding Varietal Markers among Volatile Compounds in Non-Aromatic Red Wines. Agronomy 2022, 12, 2512. DOI: 10.3390/agronomy12102512.
  • Moreira, N.; Araújo, A. M.; Rogerson, F.; Vasconcelos, I.; de Freitas, V.; de Pinho, P.; G. Development and Optimization of a HS-SPME-GC-MS Methodology to Quantify Volatile Carbonyl Compounds in Port Wines. Food Chem. 2019, 270, 518–526. DOI: 10.1016/j.foodchem.2018.07.093.
  • Zhan, N.; Guo, F.; Zhu, S.; Rao, Z. Headspace Solid-Phase Microextraction Coupled to Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry for the Determination of Short-Chain Chlorinated Paraffins in Water Samples. J. Anal. Methods Chem. 2018, 2018, 2768547. DOI: 10.1155/2018/2768547.
  • Ubeda, C.; Cortejosa, D.; Morales, M. L.; Callejón, R. M.; Ríos-Reina, R. Determination of Volatile Compounds for the Differentiation of PDO Fortified Wines with Different Ageing Methods as a Tool for Controlling Their Authenticity. Food Res. Int. 2023, 173, 113320. DOI: 10.1016/j.foodres.2023.113320.
  • Williams, C.; Stander, M. A.; Medvedovici, A.; Buica, A. Volatile Terpenoid Profiling in Gin and Beer – A Targeted Approach. J. Food Compos. Anal. 2023, 118, 105178. DOI: 10.1016/j.jfca.2023.105178.
  • Zheng, S.; Cai, J.; Huang, P.; Wang, Y.; Yang, Z.; Yu, Y. Determination of Volatile Profiles of Woodland Strawberry (Fragaria vesca) during Fruit Maturation by HS-SPME GC–MS. J. Sci. Food Agric. 2023, 103, 7455–7468. DOI: 10.1002/jsfa.12827.
  • Pardina, D.; Santamaria, A.; Alonso, M. L.; Bartolomé, L.; Alonso, R. M.; Maña, J. A.; Bilbao, E.; Lombraña, J. I.; Bartolome, M.; Hernando, L. M. HS-SPME-GC/MS Method for the Simultaneous Determination of Trihalomethanes, Geosmin, and 2-Methylisoborneol in Water Samples. Chemosensors 2023, 11, 84. DOI: 10.3390/chemosensors11020084.
  • Gao, H.; Yang, F.; Zhu, B.; Yin, S.; Fu, Y.; Li, Y.; Liao, Y.; Kang, M.; Zhang, Y.; He, J.; et al. Optimization of HS-SPME-GC-MS for the Determination of Volatile Flavor Compounds in Ningxiang Pork. Foods 2023, 12, 297. DOI: 10.3390/foods12020297.
  • Tavares, A.; Mafra, G.; Carasek, E.; Micke, G. A.; Vitali, L. Determination of Five 3-Alkyl-2-Methoxypyrazines Employing HS-SPME-GC-NPD: Application in Evaluation of off-Flavor of South American Wines. J. Food Compost. Anal. 2022, 105, 104237. DOI: 10.1016/j.jfca.2021.104237.
  • Truskolaska, M.; Jankowski, K. Selective Non-Chromatographic Determination of Tributyltin in Sediments Using EDTA and Diphenylcarbazone as Masking Agent. Int. J. Environ. Anal. Chem. 2018, 98, 295–307. DOI: 10.1080/03067319.2018.1456533.
  • Yang, Y.; Yu, P.; Sun, J.; Jia, Y.; Wan, C.; Zhou, Q.; Huang, F. Investigation of Volatile Thiol Contributions to Rapeseed Oil by Odor Active Value Measurement and Perceptual Interactions. Food Chem. 2022, 373, 131607. DOI: 10.1016/j.foodchem.2021.131607.
  • Darbre, P. D. Endocrine Disruption and Human Health; Academic Press: New York, 2021.
  • Bernardo, F.; González-Hernández, P.; Ratola, N.; Pino, V.; Alves, A.; Homem, V. Using Design of Experiments to Optimize a Screening Analytical Methodology Based on Solid-Phase Microextraction/Gas Chromatography for the Determination of Volatile Methylsiloxanes in Water. Molecules 2021, 26, 3429. DOI: 10.3390/molecules26113429.
  • González-Hernández, P.; Pacheco-Fernández, I.; Bernardo, F.; Homem, V.; Pasán, J.; Ayala, J. H.; Ratola, N.; Pino, V. Headspace Solid-Phase Microextraction Based on the Metal-Organic Framework CIM-80(Al) Coating to Determine Volatile Methylsiloxanes and Musk Fragrances in Water Samples Using Gas Chromatography and Mass Spectrometry. Talanta 2021, 232, 122440. DOI: 10.1016/j.talanta.2021.122440.
  • Cárdenas-Soracá, D. M.; Tucca, F. I.; Mardones-Peña, C. A.; Barra-Ríos, R. O. Development of an Analytical Methodology for the Determination of Organochlorine Pesticides by Ethylene-Vinyl Acetate Passive Samplers in Marine Surface Waters Based on Ultrasound-Assisted Solvent Extraction Followed with Headspace Solid-Phase Microextraction and Gas Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2019, 1605, 360341. DOI: 10.1016/j.chroma.2019.06.062.
  • Nieto-García, A. J.; Domínguez, I.; Romero-González, R.; Arrebola, F. J.; Vidal, J. L. M.; Frenich, A. G. Automated Determination of Xenobiotics (Pesticides, PCBs, PAHs, and PBDEs) in Sediment Samples Applying HS-SPME-GC-HRMS. J. AOAC Int. 2019, 102, 38–45. DOI: 10.5740/jaoacint.18-0295.
  • Orazbayeva, D.; Koziel, J. A.; Trujillo-Rodríguez, M. J.; Anderson, J. L.; Kenessov, B. Polymeric Ionic Liquid Sorbent Coatings in Headspace Solid-Phase Microextraction: A Green Sample Preparation Technique for the Determination of Pesticides in Soil. Microchem. J. 2020, 157, 104996. DOI: 10.1016/j.microc.2020.104996.
  • Anbia, M.; Khataei, N. K.; Salehi, S. Ordered Nanoporous Carbon (CMK-3) Coated Fiber for Solid-Phase Microextraction of Benzene and Chlorobenzenes in Water Samples. Adv. Environ. Technol. 2018, 1, 13–22. DOI: 10.22104/AET.2018.1936.1094.
  • Dognini, J.; Madureira, L. Evaluation of Benzene Derivatives Migration from Solid Residuals by Alternative Leaching Process Using HS‑SPME GC‑MS. J. Braz. Chem. Soc. 2018, 29, 2586–2594. DOI: 10.21577/0103-5053.20180138.
  • Guo, X.; Zhao, F.; Zeng, B. Graphene-Doped Electrochemical Copolymer Coating of 2,2-Bithiophene and 3-Methylthiophene for the Highly Effective Solid-Phase Microextraction of Volatile Benzene Homologues. J. Sep. Sci. 2018, 41, 2197–2206. DOI: 10.1002/jssc.201701330.
  • Afzali, A.; Vahidi, H.; Fakhraie, S. Benzene Extraction in Environmental Samples Based on the Mixture of Nanoactivated Carbon and Ionic Liquid Coated on Fused Silica Fiber before Determination by Headspace Solid-Phase Microextraction-Gas Chromatography. AMEC J. 2021, 4, 68–78. DOI: 10.24200/amecj.v4.i01.134.
  • Kardani, F.; Mirzajani, R. Electrospun Polyacrylonitrile/MIL-53(Al) MOF@ SBA-15/4, 4′ -Bipyridine Nanofibers for Headspace Solid-Phase Microextraction of Benzene Homologues in Environmental Water Samples with GC-FID Detection. Microchem. J. 2022, 180, 107591. DOI: 10.1016/j.microc.2022.107591.
  • Amayreh, M. Determination of N-Nitrosamines in Water by Automated Headspace Solid-Phase Microextraction. Arab. J. Sci. Eng. 2019, 44, 269–278. DOI: 10.1007/s13369-018-3567-6.
  • Roasa, J.; Liu, H.; Shao, S. An Optimised HS-SPME-GC-MS Method for the Detection of Volatile Nitrosamines in Meat Samples. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2019, 36, 396–404. DOI: 10.1080/19440049.2019.1571287.
  • Sun, C.; Wang, R.; Wang, T.; Li, Q. Primary Evaluation of Nine Volatile N-Nitrosamines in Raw Red Meat from Tianjin, China, by HS- SPME-GC-MS. Food Chem. 2020, 310, 125945. DOI: 10.1016/j.foodchem.2019.125945.
  • Song, A.; Wang, J.; Lu, G.; Jia, Z.; Yang, J.; Shi, E. Oxidized Multiwalled Carbon Nanotubes Coated Fibers for Headspace Solid-Phase Microextraction of Amphetamine-Type Stimulants in Human Urine. Forensic Sci. Int. 2018, 290, 49–55. DOI: 10.1016/j.forsciint.2018.06.031.
  • Hajebi, N.; Seidi, S.; Ramezani, M.; Manouchehri, M. Electrospun Polyamide/Graphene Oxide/Polypyrrole Composite Nanofibers: An Efficient Sorbent for Headspace Solid Phase Microextraction of Methamphetamine in Urine Samples Followed by GC-MS Analysis. New J. Chem. 2020, 44, 14429–14437. DOI: 10.1039/D0NJ03240A.
  • Shokrollahi, M.; Seidi, S.; Fotouhi, L. In Situ Electrosynthesis of a Copper-Based Metal–Organic Framework as Nanosorbent for Headspace Solid-Phase Microextraction of Methamphetamine in Urine with GC-FID Analysis. Mikrochim. Acta. 2020, 187, 548. DOI: 10.1007/s00604-020-04535-w.
  • Yavir, K.; Eor, P.; Kloskowski, A.; Anderson, J. L. Polymeric Metal-Containing Ionic Liquid Sorbent Coating for the Determination of Amines Using Headspace Solid-Phase Microextraction. J. Sep. Sci. 2021, 44, 2620–2630. DOI: 10.1002/jssc.202100119.
  • Abedi, H. Solid‐Phase Microextraction of Methadone by Using a Chitosan Nanocomposite Incorporated with Polyoxomolibdate Nanocluster/Graphene Oxide. J. Sep. Sci. 2021, 44, 1969–1977. DOI: 10.1002/jssc.202100095.
  • Nakhodchi, S.; Alizadeh, N. Rapid Simultaneous Determination of Ketamine and Midazolam in Biological Samples Using Ion Mobility Spectrometry Combined by Headspace Solid-Phase Microextraction. J. Chromatogr. A 2021, 1658, 462609. DOI: 10.1016/j.chroma.2021.462609.
  • Fiori, J.; Turroni, S.; Candela, M.; Brigidi, P.; Gotti, R. Simultaneous HS-SPME GC-MS Determination of Short Chain Fatty Acids, Trimethylamine and Trimethylamine N-Oxide for Gut Microbiota Metabolic Profile. Talanta 2018, 189, 573–578. DOI: 10.1016/j.talanta.2018.07.051.
  • Cree, C. H. L.; Airs, R.; Archer, S. D.; Fitzsimons, M. F. Measurement of Methylamines in Seawater Using Solid Phase Microextraction and Gas Chromatography. Limnol. Ocean. Methods 2018, 16, 411–420. DOI: 10.1002/lom3.10255.
  • Freitas, J.; Silva, P.; Vaz-Pires, P.; Câmara, J. S. A Systematic AQbD Approach for Optimization of the Most Influential Experimental Parameters on Analysis of Fish Spoilage-Related Volatile Amines. Foods 2020, 9, 1321. DOI: 10.3390/foods9091321.
  • Kumari, N.; Singh, B.; Saini, G.; Chaudhary, A.; Verma, K.; Vyas, M. Quality by Design: A Systematic Approach for the Analytical Method Validation. J. Drug Deliv. Ther. 2019, 9, 1006–1012. DOI: 10.22270/jddt.v9i3-s.3114.
  • Jin, X.; Wu, S.; Yu, W.; Xu, X.; Huang, M.; Tang, Y.; Yang, Z. Wine Authentication Using Integration Assay of MIR, NIR, E-Tongue, HS-SPME-GC-MS, and Multivariate Analyses: A Case Study for a Typical Cabernet Sauvignon Wine. J. AOAC Int. 2019, 102, 1174–1180. DOI: 10.5740/jaoacint.18-0327.
  • Chang, M.; Zhao, P.; Zhang, T.; Wang, Y.; Guo, X.; Liu, R.; Jin, Q.; Wang, X. Characteristic Volatiles Fingerprints and Profiles Determination in Different Grades of Coconut Oil by HS-GC-IMS and HS-SPME-GC-MS. Int. J. Food Sci. Tech. 2020, 55, 3670–3679. DOI: 10.1111/ijfs.14664.
  • Balseiro-Romero, M.; Monterroso, C. Diesel-Range Organics Extraction and Determination in Environmental Samples by Gas Chromatography–Mass Spectrometry: Headspace Solid Phase Microextraction Vs. solvent Extraction. J. Anal. Chem. 2018, 73, 292–301. DOI: 10.1134/S1061934818030085.
  • Omondi, V. O.; Bosire, G. O.; Onyari, J. M.; Getahun, M. N. A Comparative Investigation of Volatile Organic Compounds of Cattle Rumen Metabolites Using HS-SPME and PoraPak-Q Odor Trapping Methods. Anal. Chem. Lett. 2022, 12, 451–459. DOI: 10.1080/22297928.2022.2100276.
  • De Vietro, N.; Aresta, A. M.; Picciariello, A.; Rotelli, M. T.; Zambonin, C. Determination of VOCs in Surgical Resected Tissues from Colorectal Cancer Patients by Solid Phase Microextraction Coupled to Gas Chromatography–Mass Spectrometry. Appl. Sci. 2021, 11, 6910. DOI: 10.3390/app11156910.
  • Guzowska, M.; Wasiak, W.; Wawrzyniak, R. Comparison of Extraction Techniques for the Determination of Volatile Organic Compounds in Liverwort Samples. Molecules 2022, 27, 2911. DOI: 10.3390/molecules27092911.
  • Radman, S.; Cikoš, A. M.; Babić, S.; Čižmek, L.; Čož-Rakovac, R.; Jokić, S.; Jerković, I. In Vivo and In Vitro Antioxidant Activity of Less Polar Fractions of Dasycladus Vermicularis (Scopoli) Krasser 1898 and the Chemical Composition of Fractions and Macroalga Volatilome. Pharmaceuticals 2022, 15, 743. DOI: 10.3390/ph15060743.
  • Song, N. E.; Lee, J. Y.; Lee, Y. Y.; Park, J. D.; Jang, H. W. Comparison of Headspace–SPME and SPME-Arrow–GC–MS Methods for the Determination of Volatile Compounds in Korean Salt–Fermented Fish Sauce. Appl. Biol. Chem. 2019, 62, 8. DOI: 10.1186/s13765-019-0424-6.
  • Triaux, Z.; Petitjean, H.; Marchioni, E.; Steyer, D.; Marcic, C. Optimization by Experimental Design of Headspace Sorptive Extraction and Solid-Phase Microextraction for the Determination of Terpenes in Spices. Food Anal. Methods 2019, 12, 2764–2776. DOI: 10.1007/s12161-019-01622-4.
  • Kraševec, I.; Nemeček, N.; Lozar Štamcar, M.; Kralj Cigić, I.; Prosen, H. Non-Destructive Detection of Pentachlorophenol Residues in Historical Wooden Objects. Polymers 2021, 13, 1052. DOI: 10.3390/polym13071052.
  • Kuś, P. M.; Jerković, I.; Marijanović, Z.; Kranjac, M.; Tuberoso, C. I. Unlocking Phacelia tanacetifolia Benth. Honey Characterization through Melissopalynological Analysis, Color Determination and Volatiles Chemical Profiling. Food Res. Int. 2018, 106, 243–253. DOI: 10.1016/j.foodres.2017.12.065.
  • Karabagias, I. K.; Karabagias, V. K.; Nayik, G. A.; Gatzias, I.; Badeka, A. V. A Targeted Chemometric Evaluation of the Volatile Compounds of Quercus ilex Honey in Relation to Its Provenance. LWT 2022, 154, 112588. DOI: 10.1016/j.lwt.2021.112588.
  • Majid, J.; Hazandy, A. H.; Paridah, M. T.; Nor Azah, M. A.; Mailina, J.; Saidatul Husni, S.; Sahrim, L. Determination of Agarwood Volatile Compounds from Selected Aquilaria Species Plantation Extracted by Headspace-Solid Phase Microextraction (HS-SPME) Method. IOP Conf. Ser: Mater. Sci. Eng. 2018, 368, 012023. DOI: 10.1088/1757-899X/368/1/012023.
  • Kondrotienė, K.; Kašėtienė, N.; Kaškonienė, V.; Stankevičius, M.; Kaškonas, P.; Šernienė, L.; Bimbiraitė-Survilienė, K.; Malakauskas, M.; Maruška, A. Evaluation of Fresh Cheese Quality Prepared with Newly Isolated Nisin z-Producing lactococcus lactis Bacteria. Probiotics Antimicrob. Proteins. 2019, 11, 713–722. DOI: 10.1007/s12602-018-9450-7.
  • Erdem, P.; Tağaç, A. A.; Bozkurt, S. S.; Merdivan, M. Chitosan and Dicationic Ionic Liquid Intercalated Clay-Coated Solid-Phase Microextraction Fiber for Determination of Sixteen Polycyclic Aromatic Hydrocarbons in Coffee and Tea Samples. Talanta 2021, 235, 122764. DOI: 10.1016/j.talanta.2021.122764.
  • Trujillo-Rodríguez, M. J.; Nan, H.; Anderson, J. L. Expanding the Use of Polymeric Ionic Liquids in Headspace Solid-Phase Microextraction: Determination of Ultraviolet Filters in Water Samples. J. Chromatogr. A 2018, 1540, 11–20. DOI: 10.1016/j.chroma.2018.01.048.
  • García-Díaz, E.; Trejo, R.; Tafoya, F.; Aragón-García, A.; Elizalde-González, M. P. Profile of Terpenoid Compounds Mediating a Plant-Herbivore Interaction: Screening by Static Headspace Solid-Phase Microextraction-Gas Chromatography/Q-ToF Mass Spectrometry. Chem. Biodivers. 2020, 17, e2000564. DOI: 10.1002/cbdv.202000564.
  • Tsai, F. J.; Liu, H. J.; Lee, M. Y.; Lin, C. C. Determination of Volatile Components from Live Water Lily Flowers by an Orthogonal-Array-Design-Assisted Trapping Cell. Appl. Sci. 2019, 9, 1269. DOI: 10.3390/app9071269.
  • Thomas, C. F.; Zeh, E.; Dörfel, S.; Zhang, Y.; Hinrichs, J. Studying Dynamic Aroma Release by Headspace-Solid Phase Microextraction-Gas Chromatography-Ion Mobility Spectrometry (HS-SPME-GC-IMS): Method Optimization, Validation, and Application. Anal. Bioanal. Chem. 2021, 413, 2577–2586. DOI: 10.1007/s00216-021-03222-w.
  • Yan, Y.; Chen, S.; Nie, Y.; Xu, Y. Characterization of Volatile Sulfur Compounds in Soy Sauce Aroma Type Baijiu and Changes during Fermentation by GC × GC-TOFMS, Organoleptic Impact Evaluation, and Multivariate Data Analysis. Food Res. Int. 2020, 131, 109043. DOI: 10.1016/j.foodres.2020.109043.
  • Saha, B.; Longo, R.; Torley, P.; Saliba, A.; Schmidtke, L. SPME Method Optimized by Box-Behnken Design for Impact Odorants in Reduced Alcohol Wines. Foods 2018, 7, 127. DOI: 10.3390/foods7080127.
  • Baky, M. H.; Farag, M. A.; Rasheed, D. M. Metabolome-Based Analysis of Herbal Cough Preparations via Headspace Solid-Phase Microextraction GC/MS and Multivariate Data Analyses: A Prospect for Its Essential Oil Equivalency. ACS Omega 2020, 5, 31370–31380. DOI: 10.1021/acsomega.0c04923.
  • Araujo, F. M.; Azevedo, G. C.; da Silva Nogueira, F.; Matos, R. C.; Matos, M. A.; C. Eco-Friendly Method for the Determination of Polycyclic Aromatic Hydrocarbons in Sediments by HS-SPME-GC/MS. Chromatographia 2020, 83, 261–271. DOI: 10.1007/s10337-019-03825-7.
  • Hernandes, K. C.; Souza-Silva, É. A.; Assumpção, C. F.; Zini, C. A.; Welke, J. E. Matrix-Compatible Solid Phase Microextraction Coating Improves Quantitative Analysis of Volatile Profile throughout Brewing Stages. Food Res. Int. 2019, 123, 75–87. DOI: 10.1016/j.foodres.2019.04.048.
  • Ghiasvand, A.; Zarghami, F.; Beiranvand, M. Ultrasensitive Direct Determination of BTEX in Polluted Soils Using a Simple and Novel Pressure-Controlled Solid-Phase Microextraction Setup. J. Iran. Chem. Soc. 2018, 15, 1051–1059. DOI: 10.1007/s13738-018-1302-6.
  • Beiranvand, M.; Ghiasvand, A. Design and Optimization of the VA-TV-SPME Method for Ultrasensitive Determination of the PAHs in Polluted Water. Talanta 2020, 212, 120809. DOI: 10.1016/j.talanta.2020.120809.
  • Xu, S.; Li, H.; Wu, H.; Xiao, L.; Dong, P.; Feng, S.; Fan, J. A Facile Cooling-Assisted Solid-Phase Microextraction Device for Solvent-Free Sampling of Polycyclic Aromatic Hydrocarbons from Soil Based on Matrix Solid-Phase Dispersion Technique. Anal. Chim. Acta. 2020, 1115, 7–15. DOI: 10.1016/j.aca.2020.04.019.
  • Serenjeh, F. N.; Hashemi, P.; Ghiasvand, A. R.; Rasolzadeh, F.; Heydari, N.; Badiei, A. Cooling Assisted Headspace Microextraction by Packed Sorbent Coupled to HPLC for the Determination of Volatile Polycyclic Aromatic Hydrocarbons in Soil. Anal. Chim. Acta. 2020, 1125, 128–134. DOI: 10.1016/j.aca.2020.05.067.
  • Najafabadi, M. E.; Bagheri, H.; Rostami, A. Amine/Phenyl Gradient Derived Base Layer as a Comprehensive Extractive Phase for Headspace Cooled In–Tube Microextraction of Volatile Organic Compounds in Saliva. J. Pharm. Biomed. Anal. 2020, 191, 113599. DOI: 10.1016/j.jpba.2020.113599.
  • Capetti, F.; Rubiolo, P.; Mastellone, G.; Marengo, A.; Sgorbini, B.; Cagliero, C. A Sustainable Approach for the Reliable and Simultaneous Determination of Terpenoids and Cannabinoids in Hemp Inflorescences by Vacuum Assisted Headspace Solid-Phase Microextraction. Adv. Sample Prep. 2022, 2, 100014. DOI: 10.1016/j.sampre.2022.100014.
  • Maleki, S.; Hashemi, P.; Adeli, M. A Simple and Portable Vacuum Assisted Headspace Solid Phase Microextraction Device Coupled to Gas Chromatography Based on Covalent Organic Framework/Metal Organic Framework Hybrid for Simultaneous Analysis of Volatile and Semi-Volatile Compounds in Soil. J. Chromatogr. A 2023, 1705, 464195. DOI: 10.1016/j.chroma.2023.464195.
  • Hao, W.; Cardin, D. B. Full Evaporative Vacuum Extraction - A Quantitative and Green Approach for Analysis of Semivolatile Organic Compounds in Drinking Water and Surface Water Using GC − MS. Anal. Chem. 2023, 95, 3959–3967. DOI: 10.1021/acs.analchem.2c03414.
  • Lee, S.; Yoon, J.; Bae, S.; Lee, D. In-Needle Microextraction Coupled with Gas Chromatography/Mass Spectrometry for the Analysis of Phthalates Generating from Food Containers. Food Anal. Methods 2018, 11, 2767–2777. DOI: 10.1007/s12161-018-1254-6.
  • Ueta, I.; Komatsu, T.; Fujimura, K.; Saito, Y. Porous Membrane-Assisted Purge and Trap Sampling for Determination of VOCs in Gas Chromatography with Needle-Type Extraction Device. Chromatographia 2022, 85, 7–12. DOI: 10.1007/s10337-021-04103-1.
  • Alonso, M. L.; San Román, I.; Bartolomé, L.; Monfort, N.; Alonso, R. M.; Ventura, R. Multiple Headspace Solid-Phase Microextraction (MHS-SPME) Methodology Applied to the Determination of Volatile Metabolites of Plasticizers in Human Urine. Microchem. J. 2022, 180, 107567. DOI: 10.1016/j.microc.2022.107567.
  • Caratti, A.; Squara, S.; Stilo, F.; Battaglino, S.; Liberto, E.; Cincera, I.; Genova, G.; Spigolon, N.; Bicchi, C.; Cordero, C. Integrated Strategy for Informative Profiling and Accurate Quantification of Key-Volatiles in Dried Fruits and Nuts: An Industrial Quality Control Perspective. Foods 2022, 11, 3111. DOI: 10.3390/foods11193111.
  • Placer, L.; Lavilla, I.; Pena-Pereira, F.; Bendicho, C. Bromine Speciation by a Paper-Based Sensor Integrated with a Citric Acid/Cysteamine Fluorescent Probe and Smartphone Detection. Sens. Actuators B Chem. 2022, 358, 131499. DOI: 10.1016/j.snb.2022.131499.
  • Oberenko, A. V.; Kachin, S. V.; Sagalakov, S. A. Device and Method of Sample Preparation for Gas Chromatographic Determination of Volatile Organic Compounds in Complex Matrices. J. Sib. Fed. Univ. Chem. 2021, 14, 82–90. DOI: 10.17516/1998-2836-0218.
  • Timofeeva, I.; Alikina, M.; Osmolowsky, M.; Osmolovskaya, O.; Bulatov, A. Magnetic Headspace Adsorptive Microextraction Using Fe3O4@Cr(OH)3 Nanoparticles for Effective Determination of Volatile Phenols. New J. Chem. 2020, 44, 8778–8783. DOI: 10.1039/D0NJ00854K.
  • Azorín, C.; López-Juan, A. L.; Aparisi, F.; Benedé, J. L.; Chisvert, A. Determination of Hexanal and Heptanal in Saliva Samples by an Adapted Magnetic Headspace Adsorptive Microextraction for Diagnosis of Lung Cancer. Anal. Chim. Acta. 2023, 1271, 341435. DOI: 10.1016/j.aca.2023.341435.
  • Yang, Y. Q.; Yin, H. X.; Yuan, H. B.; Jiang, Y. W.; Dong, C. W.; Deng, Y. L. Characterization of the Volatile Components in Green Tea by IRAE-HS-SPME/GC-MS Combined with Multivariate Analysis. PLoS One 2018, 13, e0193393. DOI: 10.1371/journal.pone.0193393.
  • Zhou, W.; Chen, Y.; Deng, C.; Qi, H.; Zhang, H. Salt Crust-Assisted Thermal Decomposition Method for Direct and Simultaneous Quantification of Polypropylene Microplastics and Organic Contaminants in High Organic Matter Soils. Anal. Chim. Acta. 2022, 1194, 338801. DOI: 10.1016/j.aca.2021.338801.
  • Sánchez-Duque, G.; Lozada-Castro, J. J.; Hara, E. L. Y.; Grassi, M. T.; Rosero-Moreano, M.; Ríos-Acevedo, J. J. Alternative Ecosorbent for the Determination of Trihalomethanes in Aqueous Samples in SPME Mode. Molecules 2022, 27, 8653. DOI: 10.3390/molecules27248653.
  • Liu, X.; Fu, J.; Wang, L.; Wang, C. Polydimethylsiloxane/ZIF-8@GO Sponge Headspace Solid-Phase Extraction Followed by GC-MS for the Analysis of Lavender Essential Oil. Anal. Biochem. 2021, 622, 114167. DOI: 10.1016/j.ab.2021.114167.
  • Giovannoni, S.; Critto, E. F.; Lancioni, C.; Ronco, N.; Castells, C. Determination of Gas-Polydimethylsiloxane Distribution Constants of Major Cannabis Terpenes and Terpenoids by Capillary Gas-Liquid Chromatography. J. Chromatogr. A 2023, 1699, 463998. DOI: 10.1016/j.chroma.2023.463998.
  • Wilde, A. S.; Hansen, A. S.; Fromberg, A.; Frandsen, H. L.; Smedsgaard, J. Determination of δ13C of Vanillin in Complex Food Matrices by HS-SPME-GC-C-IRMS. Flavour Fragrance J. 2020, 35, 387–393. DOI: 10.1002/ffj.3573.
  • Luo, X.; Wang, X.; Du, M.; Xu, X. Dispersive Liquid-Liquid Microextraction Followed by HS-SPME for the Determination of Flavor Enhancers in Seafood Using GC-MS. Foods 2022, 11, 1507. DOI: 10.3390/foods11101507.
  • Li, S.; Li, J.; Feng, S.; Bian, L.; Liu, Z.; Ping, Y.; Wang, X.; Schepdael, A. V. Headspace Solid-Phase Microextraction and on-Fiber Derivatization for the Determination of 3-/2-MCPDE and GE in Breast Milk and Infant Formula by Gas Chromatography Tandem Mass Spectrometry. Food Sci. Technol. 2022, 154, 112575. DOI: 10.1016/j.lwt.2021.112575.
  • Silva, M.; Bjørnstad, T. Determination of Phase-Partitioning Tracer Candidates in Production Waters from Oilfields Based on Solid-Phase Microextraction Followed by Gas Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2020, 1629, 461508. DOI: 10.1016/j.chroma.2020.461508.
  • Esfandiarnejad, R.; Sereshti, H. Designing an Absolutely Solvent-Free Binary Extraction System as a Green Strategy for Ultra-Trace Analysis of Chlorophenols. Microchem. J. 2019, 146, 701–707. DOI: 10.1016/j.microc.2019.01.072.
  • Feng, M.; Li, C.; Wang, C.; Zhu, G.; Lu, J.; Chen, Y.; Xiao, D.; Guo, X. Determination of Terpenoids in Baijiu Using Solid-Phase Extraction Combined with Headspace Solid-Phase Microextraction. Int. J. Food Prop. 2022, 25, 2445–2456. DOI: 10.1080/10942912.2022.2143523.
  • Armada, D.; Celeiro, M.; Dagnac, T.; Llompart, M. Green Methodology Based on Active Air Sampling Followed by Solid Phase Microextraction and Gas Chromatography-Tandem Mass Spectrometry Analysis to Determine Hazardous Substances in Different Environments Related to Tire Rubber. J. Chromatogr. A 2022, 1668, 462911. DOI: 10.1016/j.chroma.2022.462911.
  • Złoch, M.; Rogowska, A.; Pomastowski, P.; Railean-Plugaru, V.; Walczak-Skierska, J.; Rudnicka, J.; Buszewski, B. Use of Lactobacillus paracasei Strain for Zearalenone Binding and Metabolization. Toxicon 2020, 181, 9–18. DOI: 10.1016/j.toxicon.2020.03.011.
  • Starowicz, M.; Koutsidis, G.; Zieliński, H. Determination of Antioxidant Capacity, Phenolics and Volatile Maillard Reaction Products in Rye-Buckwheat Biscuits Supplemented with 3β-d-Rutinoside. Molecules 2019, 24, 982. DOI: 10.3390/molecules24050982.
  • Jerković, I.; Cikoš, A.-M.; Babić, S.; Čižmek, L.; Bojanić, K.; Aladić, K.; Ul’yanovskii, N. V.; Kosyakov, D. S.; Lebedev, A. T.; Čož-Rakovac, R.; et al. Bioprospecting of Less-Polar Constituents from Endemic Brown Macroalga Fucus virsoides J. agardh from the Adriatic Sea and Targeted Antioxidant Effects In Vitro and In Vivo (Zebrafish Model). Mar. Drugs. 2021, 19, 235. DOI: 10.3390/md19050235.
  • Torabi, E.; Mirzaei, M.; Bazargan, M.; Amiri, A. A Critical Review of Covalent Organic Frameworks-Based Sorbents in Extraction Methods. Anal. Chim. Acta. 2022, 1224, 340207. DOI: 10.1016/j.aca.2022.340207.
  • Jian, Y.; Deng, J.; Zhou, H.; Cheng, J. Fabrication of Graphene Oxide Incorporated Polymer Monolithic Fiber as Solid Phase Microextraction Device for Determination of Organophosphate Esters in Soil Samples. J. Chromatogr. A 2019, 1588, 17–24. DOI: 10.1016/j.chroma.2018.12.034.
  • Wang, F.; Zheng, Y.; Qiu, J.; Liu, S.; Tong, Y.; Zhu, F.; Ouyang, G. Graphene-Based Metal and Nitrogen-Doped Carbon Composites as Adsorbents for Highly Sensitive Solid Phase Microextraction of Polycyclic Aromatic Hydrocarbons. Nanoscale 2018, 10, 10073–10078. DOI: 10.1039/c8nr01910j.
  • Barati, E.; Alizadeh, N. Simultaneous Determination of Sertraline, Imipramine and Alprazolam in Human Plasma Samples Using Headspace Solid Phase Microextraction Based on a Nanostructured Polypyrrole Fiber Coupled to Ion Mobility Spectrometry. Anal. Methods 2020, 12, 930–937. DOI: 10.1039/C9AY02001B.
  • Baheri, T.; Yamini, Y.; Shamsayei, M.; Tabibpour, M. Application of HKUST-1 Metal-Organic Framework as Coating for Headspace Solid-Phase Microextraction of Some Addictive Drugs. J. Sep. Sci. 2021, 44, 2814–2823. DOI: 10.1002/jssc.202100070.
  • Dziedzic, D.; Nawała, J.; Gordon, D.; Dawidziuk, B.; Popiel, S. Nanostructured Polyaniline SPME Fiber Coating for Chemical Warfare Agents Analysis. Anal. Chim. Acta. 2022, 1202, 339649. DOI: 10.1016/j.aca.2022.339649.
  • Hendi, R.; Piriyaei, M.; Babashpour Asl, M.; Abolghasemi, M. M. Nanoporous Silica-Polypyrrole/SBA-15 as Fiber Coated in the Solid-Phase Microextraction for Determination of Salvia Hydrangea DC. essential Oil. Pharm. Sci. 2018, 24, 235–239. DOI: 10.15171/PS.2018.34.
  • Hagghi, A.; Dalali, N.; Abolghasemi, M. M. Synthesis of Graphitic Carbon Nitride on 3D Porous Anodized Aluminum Wire as New Fiber for Microextraction of Polycyclic Aromatic Hydrocarbons in Water and Wastewater Samples. Sep. Sci. Technol. 2020, 56, 2398–2406. DOI: 10.1080/01496395.2020.1830293.
  • Huang, L.; Li, L.; Shuai, Q.; Hu, S. Solvent-Free Synthesis of Phenolic Hydroxyl Enriched Ordered Mesoporous Polymer as an Efficient Solid-Phase Microextraction Coating for the Determination of Trace Phenols in Food Samples. Food Anal. Methods 2021, 14, 1875–1884. DOI: 10.1007/s12161-021-02018-z.
  • Li, L.; Huang, L.; Sun, S.; Yan, Q.; Shuai, Q.; Hu, S. An Amino-Functionalized Ordered Mesoporous Polymer as a Fiber Coating for Solid Phase Microextraction of Phenols Prior to GC-MS Analysis. Mikrochim. Acta. 2019, 186, 665. DOI: 10.1007/s00604-019-3777-y.
  • Pacheco-Fernández, I.; Rentero, M.; Ayala, J. H.; Pasán, J.; Pino, V. Green Solid-Phase Microextraction Fiber Coating Based on the Metal-Organic Framework CIM-80(Al): Analytical Performance Evaluation in Direct Immersion and Headspace Using Gas Chromatography and Mass Spectrometry for the Analysis of Water, Urine and Brewed Coffee. Anal. Chim. Acta. 2020, 1133, 137–149. DOI: 10.1016/j.aca.2020.08.009.
  • Pan, J.; Li, S.; Dang, F.; Zhang, Z.; Zhang, J. Fabrication of a Porous b-Cyclodextrin-Polymer Coated Solid-Phase Microextraction Fiber for the Simultaneous Determination of Five Contaminants in Water Using Gas Chromatography-Mass Spectrometry. RSC Adv. 2018, 8, 22422–22428. DOI: 10.1039/c8ra04394a.
  • Peng, Y.; Huang, M.; Hu, Y.; Li, G.; Xia, L. Microwave-Assisted Synthesis of Porphyrin Conjugated Microporous Polymers for Microextraction of Volatile Organic Acids in Tobaccos. J. Chromatogr. A 2019, 1594, 45–53. DOI: 10.1016/j.chroma.2019.02.038.
  • Tafazoli, Z.; Azar, P. A.; Tehrani, M. S.; Husain, S. W. Facile Preparation of Multifunctional Carbon Nanotube/Magnetite/Polyaniline Nanocomposite Offering a Strong Option for Efficient Solid-Phase Microextraction Coupled with GC-MS for the Analysis of Phenolic Compounds. J. Sep. Sci. 2018, 41, 2736–2742. DOI: 10.1002/jssc.201800062.
  • Wu, T.; Zang, X.; Wang, M.; Chang, Q.; Wang, C.; Wu, Q.; Wang, Z. Covalent Organic Framework as Fiber Coating for Solid-Phase Microextraction of Chlorophenols Followed by Quantification with Gas Chromatography-Mass Spectrometry. J. Agric. Food Chem. 2018, 66, 11158–11165. DOI: 10.1021/acs.jafc.8b01643.
  • Yan, Q.; Huang, L.; Guo, W.; Ouyang, L.; Shuai, Q. Metal Organic Framework Derived Zn/N Co-Doped Hydrophilic Porous Carbon for Efcient Solid Phase Microextraction of Polar Phenols. Mikrochim. Acta. 2021, 188, 400. DOI: 10.1007/s00604-021-05060-0.
  • Yue, Q.; Huang, Y. Y.; Shen, X. F.; Yang, C.; Pang, Y. H. In Situ Growth of Covalent Organic Framework on Titanium Fiber for Headspace Solid-Phase Microextraction of 11 Phthalate Esters in Vegetables. Food Chem. 2020, 318, 126507. DOI: 10.1016/j.foodchem.2020.126507.
  • Mohammadiazar, S.; Roostaie, A.; Maghsoodi, M.; Maham, M. Chemically Deposited Sol–Gel Film on Porous TiO2 Nanotube Arrays as an Efcient and Unbreakable Solid-Phase Microextraction Fiber. Chromatographia 2018, 81, 639–647. DOI: 10.1007/s10337-018-3484-6.
  • Piryaei, M.; Babashpour-Asl, M. Carbon Nanotube/Layered Double Hydroxide Nanocomposite as a Fibre Coating for Determination the Essential Oils of Achillea Eriophora DC with the Headspace Solid-Phase Microextraction. Nat. Prod. Res. 2019, 35, 1217–1220. DOI: 10.1080/14786419.2019.1643856.
  • Zali, S.; Es-Haghi, A.; Shamsipur, M.; Jalali, F. Electrospun Nanofibers as a New Solid Phase Microextraction Coating for Determination of Volatile Organic Impurities in Biological Products. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1153, 122279. DOI: 10.1016/j.jchromb.2020.122279.
  • Li, J. H.; Chen, N.; Tian, Y. P.; Xu, H. Solid-Phase Microextraction of Volatile Organic Compounds in Headspace of PM-Induced MRC-5 Cell Lines. Talanta 2018, 185, 23–29. DOI: 10.1016/j.talanta.2018.03.041.
  • Yuan, Y.; Lin, X.; Li, T.; Pang, T.; Dong, Y.; Zhuo, R.; Wang, Q.; Cao, Y.; Gan, N. A Solid Phase Microextraction Arrow with Zirconium Metal–Organic Framework/Molybdenum Disulfide Coating Coupled with Gas Chromatography–Mass Spectrometer for the Determination of Polycyclic Aromatic Hydrocarbons in Fish Samples. J. Chromatogr. A 2019, 1592, 9–18. DOI: 10.1016/j.chroma.2019.01.066.
  • Piryaei, M.; Abolghasemi, M. M.; Karimi, B. Determination of the Volatile Components of Stachys lavandulifolia with Periodic Mesoporous Organosilica as the Fiber Coating for Headspace Solid Phase Microextraction. Anal. Bioanal. Chem. Res. 2020, 8, 129–137. DOI: 10.22036/abcr.2020.234359.1513.
  • Moradi, E.; Ebrahimzadeh, H.; Mehrani, Z. Electrospun Acrylonitrile Butadiene Styrene Nanofiber Film as an Efficient Nanosorbent for Head Space Thin Film Microextraction of Polycyclic Aromatic Hydrocarbons from Water and Urine Samples. Talanta 2019, 205, 120080. DOI: 10.1016/j.talanta.2019.06.080.
  • Kim, S.; Bae, S. In Vitro and In Vivo Human Body Odor Analysis Method Using GO:PANI/ZNRs/ZIF − 8 Adsorbent Followed by GC/MS. Molecules 2022, 27, 4795. DOI: 10.3390/molecules27154795.
  • Fei, Z.; Wang, Y.; Cao, S.; Lou, D.; Wang, X.; Lian, L. Oxygen-Doped Graphite Carbon Nitride as a Fiber Coating Material for Headspace Solid-Phase Microextraction of Organic Phosphate Esters. Microchem. J. 2023, 193, 109032. DOI: 10.1016/j.microc.2023.109032.
  • Wu, X.; Yang, H.; Lyu, H.; Chen, H.; Dang, X.; Liu, X. A Zn-Based Metal Coordination Cluster Zn5 Used for Solid Phase Microextraction of Ten Phenolic Compounds from Water and Soil. J. Hazard. Mater. 2023, 453, 131382. DOI: 10.1016/j.jhazmat.2023.131382.
  • Piryaei, M.; Abolghasemi, M. A Sandwich-Type Three-Dimensional Layered Double Hydroxide Nanosheet Array as a Novel Fiber Coating for Headspace Solid-Phase Microextraction of Phenols from Water Samples. Nanochem. Res. 2023, 8, 87–94. DOI: 10.22036/NCR.2023.02.001.
  • Khodayari, A.; Sohrabnezhad, S.; Moinfar, S.; Pourahmad, A. GNP/Al‑MOF Nanocomposite as an Efcient Fber Coating of Headspace Solid‑Phase Micro‑Extraction for the Determination of Organophosphorus Pesticides in Food Samples. Mikrochim. Acta. 2022, 189, 45. DOI: 10.1007/s00604-021-05101-8.
  • Vaziri Dozein, S.; Masrournia, M.; Es’haghi, Z.; Bozorgmehr, M. R. Determination of Benzene, Toluene, Ethylbenzene, and p-Xylene with Headspace-Hollow Fber Solid-Phase Microextraction-Gas Chromatography in Wastewater and Buxus Leaves, Employing a Chemometric Approach. Chem. Pap. 2021, 75, 4305–4316. DOI: 10.1007/s11696-021-01663-2.
  • Dowlatshah, S.; Ghiasvand, A.; Barkhordari, A.; Jalili, V. Layer-by-Layer Coating of Graphene Oxide on Fused Silica Fibers for Headspace Sampling of Nicotine in Hair Samples. Anal. Bioanal. Chem. Res. 2020, 8, 15–25. DOI: 10.22036/abcr.2020.232339.1499.
  • Dehghani, M.; Ansari, M.; Shahidi, M.; Kazemipour, M. Electrochemical Fabrication of Polypyrrole/Hazelnut Shells Modified Carbon Nanocomposite Sorbent for Determination of Polycyclic Aromatic Hydrocarbons Using Headspace Solid-Phase Microextraction-Gas Chromatography. Green Chem. Lett. Rev. 2021, 14, 551–562. DOI: 10.1080/17518253.2021.1970243.
  • Ghaedrahmati, L.; Ghiasvand, A.; Heidari, N. Headspace Solid-Phase Microextraction Sampling of Endogenous Aldehydes in Biological Fluids Using a Magnetic Metal-Organic Framework/Polyaniline Nanocomposite. J. Sep. Sci. 2021, 44, 1130–1139. DOI: 10.1002/jssc.202000401.
  • Ghiasvand, A.; Heidari, N.; Abdolhosseini, S. Iron Oxide/Silica/Polypyrrole Nanocomposite Sorbent for Comparison Study of Direct-Immersion and Headspace Solid-Phase Microextraction of Aldehyde Biomarkers in Human Urine. J. Pharm. Biomed. Anal. 2018, 159, 37–44. DOI: 10.1016/j.jpba.2018.06.052.
  • Ghiasvand, A.; Koonani, S.; Yazdankhah, F.; Farhadi, S. A Comparison Study on a Sulfonated Graphene-Polyaniline Nanocomposite Coated Fiber for Analysis of Nicotine in Solid Samples through the Traditional and Vacuum-Assisted HS-SPME. J. Pharm. Biomed. Anal. 2018, 149, 271–277. DOI: 10.1016/j.jpba.2017.11.020.
  • Kazemi, M.; Niazi, A.; Yazdanipour, A. Solid-Phase Microextraction of Phthalate Esters from Aqueous Media by Functionalized Carbon Nanotubes (Graphene Oxide Nanoribbons) and Determination by GC–FID. Chromatographia 2021, 84, 559–569. DOI: 10.1007/s10337-021-04032-z.
  • Liu, M.; Liu, J.; Guo, C.; Li, Y. Metal Azolate Framework-66-Coated Fiber for Headspace Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons. J. Chromatogr. A 2019, 1584, 57–63. DOI: 10.1016/j.chroma.2018.11.043.
  • Ma, X.; Huang, P.; Dang, X.; Ai, Y.; Zheng, D.; Chen, H. MWCNTs/MnO2 Nanocomposite-Based Polythiophene Coating for Solid-Phase Microextraction and Determination of Polycyclic Aromatic Hydrocarbons in Soil. Microchem. J. 2019, 146, 1026–1032. DOI: 10.1016/j.microc.2019.02.031.
  • Yarazavi, M.; Noroozian, E. A Novel Sorbent Based on Carbon Nanotube/Amino-Functionalized Sol-Gel for the Headspace Solid-Phase Microextraction of α-Bisabolol from Medicinal Plant Samples Using Experimental Design. J. Sep. Sci. 2018, 41, 2229–2236. DOI: 10.1002/jssc.201700993.
  • Ramezani, Z.; Saeedi, I.; Hashemi, P. Dendrimer Grafted Nanoporous Silica Fiber for Headspace Solid Phase Microextraction Coupled to Gas Chromatography Determination of Solvents Residues in Edible Oil. Anal. Methods 2018, 10, 1379–1384. DOI: 10.1039/C7AY02842C.
  • Salimikia, I.; Heydari, R.; Yazdankhah, F. Polyaniline/Graphene Oxide Nanocomposite as a Sorbent for Extraction and Determination of Nicotine Using Headspace Solid-Phase Microextraction and Gas Chromatography–Fame Ionization Detector. J. Iran. Chem. Soc. 2018, 15, 1593–1601. DOI: 10.1007/s13738-018-1357-4.
  • Yu, C.; Wu, F.; Luo, X.; Zhang, J. Porphyrin-Based Covalent Organic Framework Coated Stainless Steel Fiber for Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons in Water and Soil Samples. Microchem. J. 2021, 168, 106364. DOI: 10.1016/j.microc.2021.106364.
  • Zakerian, R.; Bahar, S. Electrochemical Exfoliation of Pencil Graphite for Preparation of Graphene Coating as a New Versatile SPME Fiber for Determination of Polycyclic Aromatic Hydrocarbons by Gas Chromatography. Mikrochim. Acta. 2019, 186, 861. DOI: 10.1007/s00604-019-3851-5.
  • Zhang, J.; Ma, X.; Dang, X.; Chen, H.; Hu, Y. Adsorption Mechanism of Polycyclic Aromatic Hydrocarbons on Polythiophene-Graphene Covalent Complex and Its Analytical Application in Food Contact Materials. Microchem. J. 2021, 171, 106767. DOI: 10.1016/j.microc.2021.106767.
  • Delińska, K.; Yavir, K.; Kloskowski, A. Head-Space SPME for the Analysis of Organophosphorus Insecticides by Novel Silica IL-Based Fibers in Real Samples. Molecules 2022, 27, 4688. DOI: 10.3390/molecules27154688.
  • Yavir, K.; Kloskowski, A. Ionogel Sorbent Coatings for Determining Organophosphorus and Pyrethroid Insecticides in Water and Fresh Juice Samples by Headspace-Solid Phase Microextraction. J. Food Compost. Anal. 2021, 102, 104076. DOI: 10.1016/j.jfca.2021.104076.
  • Hamdi, A.; Dalvand, K.; Ghiasvand, A.; Heidari, N. In-Situ Intercalating of Silica Nanospheres into Polypyrrole during Its Electropolymerization to Prepare a Sorbent for Headspace Microextraction of Aldehydes in Edible Oils. Acta Chim. Slov. 2022, 69, 322–330. DOI: 10.17344/acsi.2021.7178.
  • Yu, C.; Zhang, J.; Luo, X.; Zhang, J. Metal Organic Framework/Covalent Organic Framework Composite for Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons in Milk Samples. Microchem. J. 2023, 187, 108388. DOI: 10.1016/j.microc.2023.108388.
  • Xu, L.; Hu, W.; Wu, F.; Zhang, J. In Situ Growth of Porous Organic Framework on Iron Wire for Microextraction of Polycyclic Aromatic Hydrocarbons. Talanta 2023, 264, 124732. DOI: 10.1016/j.talanta.2023.124732.
  • Akbarian, M.; Gholamalizadeh, A.; Ahmar, H.; Banitaba, M. H. Application of Poly 3,4-Ethylenedioxythiophene and Gold Nanoparticles Composite on a Gold Wire as a Coating for Determination of Nitroaromatics in Soil Using Cold Fiber Solid Phase Microextraction Combined with Gas Chromatography. Environ. Nanotechnol. Monit. 2023, 20, 100804. DOI: 10.1016/j.enmm.2023.100804.
  • Najarzadegan, H.; Roostaie, A.; Ehteshami, S. Electrospun Polyethylene Terephthalate/Graphene Nanocomposite as a New Solid-Phase Microextraction Fiber Coating for Enhanced Determination of Organochlorine Compounds. Chromatographia 2018, 81, 1413–1420. DOI: 10.1007/s10337-018-3583-4.
  • Eskandarpour, N.; Sereshti, H. Electrospun Polyurethane Fibers Doped with Manganese Oxide Nanoparticles as an Effective Adsorbent for Determination of Priority Pollutant Mononitrophenols in Water Samples. J. Environ. Chem. Eng. 2019, 7, 102926. DOI: 10.1016/j.jece.2019.102926.
  • Najarzadekan, H.; Sereshti, H.; Ahmad, I.; Shahabuddin, S.; Rashidi Nodeh, H.; Sridewi, N. Superhydrophobic Nanosilica Decorated Electrospun Polyethylene Terephthalate Nanofibers for Headspace Solid Phase Microextraction of 16 Organochlorine Pesticides in Environmental Water Samples. Polymers 2022, 14, 3682. DOI: 10.3390/polym14173682.
  • Najarzadekan, H.; Kamboh, M. A.; Sereshti, H.; Ahmad, I.; Sridewi, N.; Shahabuddin, S.; Rashidi Nodeh, H. Headspace Extraction of Chlorobenzenes from Water Using Electrospun Nanofibers Fabricated with Calix[4]Arene-Doped Polyurethane–Polysulfone. Polymers 2022, 14, 3760. DOI: 10.3390/polym14183760.
  • Romero, V.; Sant’Anna, C.; Lavilla, I.; Bendicho, C. Fluorescent Paper-Based Sensor Integrated with Headspace Thin-Film Microextraction for the Detection of Acyclic N-Nitrosamines following In Situ Photocatalytic Decomposition. Anal. Chim. Acta. 2023, 1239, 340729. DOI: 10.1016/j.aca.2022.340729.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.