1,223
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Hair and Nail-On-Chip for Bioinspired Microfluidic Device Fabrication and Biomarker Detection

, , , & ORCID Icon

References

  • Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. DOI: 10.1042/EBC20150001.
  • Mehrotra, P. Biosensors and Their Applications – A Review. J. Oral Biol. Craniofac. Res. 2016, 6, 153–159. DOI: 10.1016/j.jobcr.2015.12.002.
  • Vigneshvar, S.; Sudhakumari, C. C.; Senthilkumaran, B.; Prakash, H. Recent Advances in Biosensor Technology for Potential Applications – An Overview. Front. Bioeng. Biotechnol. 2016, 4, 11. DOI: 10.3389/fbioe.2016.00011.
  • Holzinger, M.; Goff, A. L.; Cosnier, S. Nanomaterials for Biosensing Applications: A Review. Front. Chem. 2014, 2, 63. DOI: 10.3389/fchem.2014.00063.
  • Kim, J.; Campbell, A. S.; de Ávila, B. E. F.; Wang, J. Wearable Biosensors for Healthcare Monitoring. Nat. Biotechnol. 2019, 37, 389–406. DOI: 10.1038/s41587-019-0045-y.
  • Yang, A.; Yan, F. Flexible Electrochemical Biosensors for Health Monitoring. ACS Appl. Electron. Mater. 2021, 3, 53–67. DOI: 10.1021/acsaelm.0c00534.
  • Haleem, A.; Javaid, M.; Singh, R. P.; Suman, R.; Rab, S. Biosensors Applications in Medical Field: A Brief Review. Sensors Int. 2021, 2, 100100. DOI: 10.1016/j.sintl.2021.100100.
  • Nagraik, R.; Sharma, A.; Kumar, D.; Mukherjee, S.; Sen, F.; Kumar, A. P. Amalgamation of Biosensors and Nanotechnology in Disease Diagnosis: Mini-Review. Sensors Int. 2021, 2, 100089. DOI: 10.1016/j.sintl.2021.100089.
  • Tothill, I. E. Biosensors for Cancer Markers Diagnosis. Semin. Cell Dev. Biol. 2009, 20, 55–62. DOI: 10.1016/j.semcdb.2009.01.015.
  • Thakur, M. S.; Ragavan, K. V. Biosensors in Food Processing. J. Food Sci. Technol. 2013, 50, 625–641. DOI: 10.1007/s13197-012-0783-z.
  • Ge, L.; Liu, Q.; Hao, N.; Kun, W. Recent Developments of Photoelectrochemical Biosensors for Food Analysis. J. Mater. Chem. B 2019, 7, 7283–7300. DOI: 10.1039/c9tb01644a.
  • Yáñez-Sedeño, P.; Agüí, L.; Pingarrón, J. M. Biosensors in Forensic Analysis. In Forensic Science: A Multidisciplinary Approach; Katz, E., Halámek J., Eds.; Wiley-VCH: Germay, 2016, 215–262. DOI: 10.1002/9783527693535.ch11.
  • Selli, G. I.; Bonatto, A. E. T.; Bonatto, F. T.; Anzanello, M. J.; Bergmann, C. P. Nanosensors in Forensic Sciences. Eng. Mater. 2022, 15, 239–253.
  • Raji, H.; Tayyab, M.; Sui, J.; Mahmoodi, S. R.; Javanmard, M. Biosensors and Machine Learning for Enhanced Detection, Stratification, and Classification of Cells: A Review. Biomed. Microdevices 2022, 24, 26. DOI: 10.1007/s10544-022-00627-x.
  • Mohankumar, P.; Ajayan, J.; Mohanraj, T.; Yasodharan, R. Recent Developments in Biosensors for Healthcare and Biomedical Applications: A Review. Meas. J. Int. Meas. Confed. 2021, 167, 108293. DOI: 10.1016/j.measurement.2020.108293.
  • Brekke, I. J.; Puntervoll, L. H.; Pedersen, P. B.; Kellett, J.; Brabrand, M. The Value of Vital Sign Trends in Predicting and Monitoring Clinical Deterioration: A Systematic Review. PLoS One. 2019, 14, e0210875. DOI: 10.1371/journal.pone.0210875.
  • Zhao, M.; Yang, Y.; Guo, Z.; Shao, C.; Sun, H.; Zhang, Y.; Sun, Y.; Liu, Y.; Song, Y.; Zhang, L.; et al. A Comparative Proteomics Analysis of Five Body Fluids: Plasma, Urine, Cerebrospinal Fluid, Amniotic Fluid, and Saliva. Proteomics Clin. Appl. 2018, 12, 1–37.
  • Marra, P.; Colacurcio, V.; Bisogno, A.; de Luca, P.; Calvanese, M.; Petrosino, M.; De Bonis, E.; Troisi, D.; Cassandro, C.; Cavaliere, M.; et al. Evaluation of Discomfort in Nasopharyngeal Swab Specimen Collection for SARS-CoV-2 Diagnosis. Clin. Ter. 2021, 172, 448–452.
  • Pondaven-Letourmy, S.; Alvin, F.; Boumghit, Y.; Simon, F. How to Perform a Nasopharyngeal Swab in Adults and Children in the COVID-19 Era. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2020, 137, 325–327. DOI: 10.1016/j.anorl.2020.06.001.
  • Bora, M.; Manu, M.; Mathew, D. D.; Das, H.; Bora, D. P.; Barman, N. N. Point of Care Diagnostics and Non-Invasive Sampling Strategy: A Review on Major Advances in Veterinary Diagnostics. Acta Vet. Brno 2022, 91, 17–34. DOI: 10.2754/avb202291010017.
  • Pauli, J. N.; Whiteman, J. P.; Riley, M. D.; Middleton, A. D. Defining Noninvasive Approaches for Sampling of Vertebrates: Diversity. Conserv. Biol. 2010, 24, 349–352. DOI: 10.1111/j.1523-1739.2009.01298.x.
  • Schilling, A. K.; Mazzamuto, M. V.; Romeo, C. A Review of Non-Invasive Sampling in Wildlife Disease and Health Research: What’s New? Animals 2022, 12, 1719. DOI: 10.3390/ani12131719.
  • Baumann, R.; Untersmayr, E.; Zissler, U. M.; Eyerich, S.; Adcock, I. M.; Brockow, K.; Biedermann, T.; Ollert, M.; Chaker, A. M.; Pfaar, O.; et al. Noninvasive and minimally invasive techniques for the diagnosis and management of allergic diseases. Allergy 2021, 76, 1010–1023.
  • Kataoka, H.; Saito, K.; Kato, H.; Masuda, K. Noninvasive Analysis of Volatile Biomarkers in Human Emanations for Health and Early Disease Diagnosis. Bioanalysis 2013, 5, 1443–1459. DOI: 10.4155/bio.13.85.
  • Luan, H.; Liu, L.-F.; Tang, Z.; Zhang, M.; Chua, K.-K.; Song, J.-X.; Mok, V. C. T.; Li, M.; Cai, Z. Comprehensive Urinary Metabolomic Profiling and Identification of Potential Noninvasive Marker for Idiopathic Parkinson’s Disease. Sci. Rep. 2015, 5, 13888. DOI: 10.1038/srep13888.
  • Taslimi, Y.; Sadeghipour, P.; Habibzadeh, S.; Mashayekhi, V.; Mortazavi, H.; Müller, I.; Lane, M. E.; Kropf, P.; Rafati, S. A Novel Non-Invasive Diagnostic Sampling Technique for Cutaneous Leishmaniasis. PLoS Negl. Trop. Dis. 2017, 11, e0005750. DOI: 10.1371/journal.pntd.0005750.
  • Chen, X.; Gole, J.; Gore, A.; He, Q.; Lu, M.; Min, J.; Yuan, Z.; Yang, X.; Jiang, Y.; Zhang, T.; et al. Non-Invasive Early Detection of Cancer Four Years before Conventional Diagnosis Using a Blood Test. Nat. Commun. 2020, 11, 3475. DOI: 10.1038/s41467-020-17316-z.
  • Pasomsub, E.; Watcharananan, S. P.; Boonyawat, K.; Janchompoo, P.; Wongtabtim, G.; Suksuwan, W.; Sungkanuparph, S.; Phuphuakrat, A. Saliva Sample as a Non-Invasive Specimen for the Diagnosis of Coronavirus Disease 2019: A Cross-Sectional Study. Clin. Microbiol. Infect. 2021, 27, 285.e1–285.e4. DOI: 10.1016/j.cmi.2020.05.001.
  • Jankovskaja, S.; Morin, M.; Gustafsson, A.; Anderson, C. D.; Lehoczki, B.; Engblom, J.; Björklund, S.; Rezeli, M.; Marko-Varga, G.; Ruzgas, T. Non-Invasive, Topical Sampling of Potential, Low-Molecular Weight, Skin Cancer Biomarkers: A Study on Healthy Volunteers. Anal. Chem. 2022, 94, 5856–5865. DOI: 10.1021/acs.analchem.1c05470.
  • Hol, L.; de Jonge, V.; van Leerdam, M. E.; van Ballegooijen, M.; Looman, C. W. N.; van Vuuren, A. J.; Reijerink, J. C. I. Y.; Habbema, J. D. F.; Essink-Bot, M. L.; Kuipers, E. J. Screening for Colorectal Cancer: Comparison of Perceived Test Burden of Guaiac-Based Faecal Occult Blood Test, Faecal Immunochemical Test and Flexible Sigmoidoscopy. Eur. J. Cancer 2010, 46, 2059–2066. DOI: 10.1016/j.ejca.2010.03.022.
  • Holm, A.; Aabenhus, R. Urine Sampling Techniques in Symptomatic Primary-Care Patients: A Diagnostic Accuracy Review. BMC Fam. Pract. 2016, 17, 72. DOI: 10.1186/s12875-016-0465-4.
  • Herreros Fernández, M. L.; González Merino, N.; Tagarro García, A.; Pérez Seoane, B.; de la Serna Martínez, M.; Contreras Abad, M. T.; García-Pose, A. A New Technique for Fast and Safe Collection of Urine in Newborns. Arch. Dis. Child. 2013, 98, 27–29. DOI: 10.1136/archdischild-2012-301872.
  • Young, G. P.; Sinatra, M. A.; St John, D. J. Influence of Delay in Stool Sampling on Fecal Occult Blood Test Sensitivity. Clin. Chem. 1996, 42, 1107–1108. 10.1093/clinchem/42.7.1107.
  • Harkey, M. R. Anatomy and Physiology of Hair. Forensic Sci. Int. 1993, 63, 9–18. DOI: 10.1016/0379-0738(93)90255-9.
  • Mitruka, M.; Gore, C. R.; Kumar, A.; Sarode, S. C. Undetectable Free Aromatic Amino Acids in Nails of Breast Carcinoma : Biomarker Discovery by a Novel Metabolite Purification VTGE System. Front. Oncol. 2020, 10, 1–11.
  • Mitruka, M.; Gore, C. R.; Kumar, A.; Sarode, S. C.; Sharma, N. K. Novel Approach Reveals Lipid Metabolite Reduction in Nails of Breast Cancer Patients as Potential Biomarker. medRxiv Internet]. 2020 Jan 1; 2020.04.14.20064675. http://medrxiv.org/content/early/2020/04/17/2020.04.14.20064675.abstract.
  • Tegethoff, M.; Raul, J.; Jamey, C.; Ben, M.; Ludes, B.; Meinlschmidt, G. Dehydroepiandrosterone in Nails of Infants : A Potential Biomarker of Intrauterine Responses to Maternal Stress. Biol. Psychol. 2011, 87, 414–420. DOI: 10.1016/j.biopsycho.2011.05.007.
  • Buffoli, B.; Rinaldi, F.; Labanca, M.; Sorbellini, E.; Trink, A.; Guanziroli, E.; Rezzani, R.; Rodella, L. F. The Human Hair : From Anatomy to Physiology. Int. J. Dermatol. 2014, 53, 331–341. DOI: 10.1111/ijd.12362.
  • Henry, P.; Henry, A.; Russello, M. A. A Noninvasive Hair Sampling Technique to Obtain High Quality DNA from Elusive Small Mammals. J. Vis. Exp. 2011, 49, e2791.
  • Savas, M.; Wester, V. L.; de Rijke, Y. B.; Rubinstein, G.; Zopp, S.; Dorst, K.; van den Berg, S. A. A.; Beuschlein, F.; Feelders, R. A.; Reincke, M.; et al. Hair Glucocorticoids as a Biomarker for Endogenous Cushing’s Syndrome: Validation in Two Independent Cohorts. Neuroendocrinology 2019, 109, 171–178. DOI: 10.1159/000498886.
  • Miteva, M.; Tosti, A. Dermatoscopy of Hair Shaft Disorders. J. Am. Acad. Dermatol. 2013, 68, 473–481. DOI: 10.1016/j.jaad.2012.06.041.
  • Itin, P. H.; Fistarol, K. Hair Shaft Abnormalities—Clues to Diagnosis and Treatment. Dermatology 2005, 211, 63–71. DOI: 10.1159/000085582.
  • Poon, S.; Gareri, J.; Walasek, P.; Koren, G. Norcocaine in Human Hair as a Biomarker of Heavy Cocaine Use in a High Risk Population. Forensic Sci. Int. 2014, 241, 150–154. DOI: 10.1016/j.forsciint.2014.05.019.
  • Liu, L.; He, K.; Hites, R. A.; Salamova, A. Hair and Nails as Noninvasive Biomarkers of Human Exposure to Brominated and Organophosphate Flame Retardants. Environ. Sci. Technol. 2016, 50, 3065–3073.
  • Eastman, R. R.; Jursa, T. P.; Benedetti, C.; Lucchini, R. G.; Smith, D. R. Hair as a Biomarker of Environmental Manganese Exposure. Environ. Sci. Technol. 2013, 47, 1629–1637.
  • Jaramillo Ortiz, S.; Howsam, M.; van Aken, E. H.; Delanghe, J. R.; Boulanger, E.; Tessier, F. J. Biomarkers of Disease in Human Nails: A Comprehensive Review. Crit. Rev. Clin. Lab. Sci. 2022, 59, 125–141. DOI: 10.1080/10408363.2021.1991882.
  • Adeola, H. A.; Wyk, J. C.; Van, Adeola, H. A.; Wyk, J. C.; Van. Khumalo, N. P. Hair as a Testing Substrate in the Era of Precision Medicine: Potential Role of ‘Omics-Based Approaches’. In Keratin; Blumenberg M. Ed.; IntechOpen, 2018, 107–126.
  • Hornbeck, P. Enzyme-Linked Immunosorbent Assays. Curr. Protoc. Immunol. 1992, 1, 2.1.1–2.1.22.
  • Winnike, J. H.; Wei, X.; Knagge, K. J.; Colman, S. D.; Gregory, S. G.; Zhang, X. Comparison of GC-MS and GC × GC-MS in the Analysis of Human Serum Samples for Biomarker Discovery. J. Proteome Res. 2015, 14, 1810–1817. DOI: 10.1021/pr5011923.
  • Nge, P. N.; Rogers, C. I.; Woolley, A. T. Advances in Microfluidic Materials, Functions, Integration, and Applications. Chem. Rev. 2013, 113, 2550–2583.
  • Yang, Y.; Chen, Y.; Tang, H.; Zong, N.; Jiang, X. Microfluidics for Biomedical Analysis. Small Methods 2020, 4, 1–30. DOI: 10.1002/smtd.201900451.
  • Ray, R.; Goyal, A.; Prabhu, A.; Parekkh, S.; Maddasani, S.; Mani, N. K. Paper-Based Dots and Smartphone for Detecting Counterfeit Country Eggs. Food Chem. 2023, 403, 134484. DOI: 10.1016/j.foodchem.2022.134484.
  • Ray, R.; Prabhu, A.; Prasad, D.; Garlapati, V. K.; Aminabhavi, T. M.; Mani, N. K.; Simal-Gandara, J. Paper-Based Microfluidic Devices for Food Adulterants : Cost-Effective Technological Monitoring Systems. Food Chem. 2022, 390, 133173. DOI: 10.1016/j.foodchem.2022.133173.
  • Sanjay, S. T.; Fu, G.; Dou, M.; Xu, F.; Liu, R.; Qi, H.; Li, X. Biomarker Detection for Disease Diagnosis Using Cost-Effective Microfluidic Platforms. Analyst 2015, 140, 7062–7081. DOI: 10.1039/C5AN00780A.
  • Jung, W.; Han, J.; Choi, J. W.; Ahn, C. H. Point-of-Care Testing (POCT) Diagnostic Systems Using Microfluidic Lab-on-a-Chip Technologies. Microelectron. Eng. 2015, 132, 46–57. DOI: 10.1016/j.mee.2014.09.024.
  • Kelkar, N.; Prabhu, A.; Prabhu, A.; Giri Nandagopal, M. S.; Mani, N. K. Sensing of Body Fluid Hormones Using Paper-Based Analytical Devices. Microchem. J. 2022, 174, 107069. DOI: 10.1016/j.microc.2021.107069.
  • Ray, R.; Noronha, C.; Prabhu, A.; Mani, N. K. Latex-Based Paper Devices with Super Solvent Resistance for on-the-Spot Detection of Metanil Yellow in Food Samples. Food Anal. Methods 2022, 15, 2664–2674. DOI: 10.1007/s12161-022-02322-2.
  • Singhal, H. R.; Prabhu, A.; Giri Nandagopal, M. S.; Dheivasigamani, T.; Mani, N. K. One-Dollar Microfluidic Paper-Based Analytical Devices: Do-It-Yourself Approaches. Microchem. J. 2021, 165, 106126. DOI: 10.1016/j.microc.2021.106126.
  • Prabhu, A.; Giri Nandagopal, M. S.; Peralam Yegneswaran, P.; Singhal, H. R.; Mani, N. K. Inkjet Printing of Paraffin on Paper Allows Low-Cost Point-of-Care Diagnostics for Pathogenic Fungi. Cellulose 2020, 27, 7691–7701. DOI: 10.1007/s10570-020-03314-3.
  • Prabhu, A.; Nandagopal, M. S. G.; Peralam Yegneswaran, P.; Prabhu, V.; Verma, U.; Mani, N. K. Thread Integrated Smart-Phone Imaging Facilitates Early Turning Point Colorimetric Assay for Microbes. RSC Adv. 2020, 10, 26853–26861. DOI: 10.1039/d0ra05190j.
  • Prabhu, A.; Singhal, H.; Giri Nandagopal, M. S.; Kulal, R.; Peralam Yegneswaran, P.; Mani, N. K. Knitting Thread Devices: Detecting Candida albicans Using Napkins and Tampons. ACS Omega. 2021, 6, 12667–12675. DOI: 10.1021/acsomega.1c00806.
  • Hasandka, A.; Prabhu, A.; Prabhu, A.; Singhal, H. R.; Nandagopal M S, G.; Shenoy, R.; Mani, N. K. “Scratch It out”: Carbon Copy Based Paper Devices for Microbial Assays and Liver Disease Diagnosis. Anal. Methods 2021, 13, 3172–3180. DOI: 10.1039/d1ay00764e.
  • Sudarsan, S.; Prabhu, A.; Prasad, D.; Mani, N. K. DNA Compaction Enhances the Sensitivity of Fluorescence-Based Nucleic Acid Assays: A Game Changer in Point of Care Sensors? Analyst 2023, 148, 2295–2307. DOI: 10.1039/d3an00102d.
  • Sudarsan, S.; Shetty, P.; Chinnappan, R.; Mani, N. K. Tuning Hydrophobicity of Paper Substrates for Effective Colorimetric Detection of Glucose and Nucleic Acids. Anal. Bioanal. Chem. 2023, 415, 6449–6460. DOI: 10.1007/s00216-023-04921-2.
  • Mani, N. K.; Prabhu, A.; Biswas, S. K.; Chakraborty, S. Fabricating Paper Based Devices Using Correction Pens. Sci. Rep. 2019, 9, 1752. DOI: 10.1038/s41598-018-38308-6.
  • Mani, N. K.; Das, S. S.; Dawn, S.; Chakraborty, S. Electro-Kinetically Driven Route for Highly Sensitive Blood Pathology on a Paper-Based Device. Electrophoresis 2020, 41, 615–620. DOI: 10.1002/elps.201900356.
  • Swaminathan, S.; Harris, T.; McClellan, D.; Cui, Y. Bio-Inspired Mammalian Hair-Fabricated Microfluidics. Mater. Lett. 2013, 106, 208–212. DOI: 10.1016/j.matlet.2013.05.006.
  • Swaminathan, S. Bio-Inspired Materials and Micro/Nanostructures Enabled by Peptides and Proteins. 2015. DOI: 10.26076/a256-de8f.
  • Park, S.; Hong, S.; Kim, J.; Son, S. Y.; Lee, H.; Kim, S. J. Eco Friendly Nanofluidic Platforms Using Biodegradable Nanoporous Materials. Sci. Rep. 2021, 11, 3804. DOI: 10.1038/s41598-021-83306-w.
  • Gogolides, E.; Ellinas, K.; Tserepi, A. Hierarchical Micro and Nano Structured, Hydrophilic, Superhydrophobic and Superoleophobic Surfaces Incorporated in Microfluidics, Microarrays and Lab on Chip Microsystems. Microelectron. Eng. 2015, 132, 135–155. DOI: 10.1016/j.mee.2014.10.002.
  • Hanasoge, S.; Ballard, M.; Hesketh, P. J.; Alexeev, A. Asymmetric Motion of Magnetically Actuated Artificial Cilia. Lab Chip. 2017, 17, 3138–3145. DOI: 10.1039/C7LC00556C.
  • Dubin, R. A.; Callegari, G. C.; Kohn, J.; Neimark, A. V. Carbon Nanotube Fibers Are Compatible with Mammalian Cells and Neurons. IEEE Trans. Nanobiosci. 2008, 7, 11–14. DOI: 10.1109/TNB.2008.2000144.
  • Oh, K.; Chung, J. H.; Devasia, S.; Riley, J. J. Bio-Mimetic Silicone Cilia for Microfluidic Manipulation. Lab Chip. 2009, 9, 1561–1566. DOI: 10.1039/b817409a.
  • Devaraj, H.; Travas-Sejdic, J.; Sharma, R.; Aydemir, N.; Williams, D.; Haemmerle, E.; Aw, K. C. Bio-Inspired Flow Sensor from Printed PEDOT:PSS Micro-Hairs. Bioinspir. Biomim. 2015, 10, 016017. DOI: 10.1088/1748-3190/10/1/016017.
  • Wu, Q.; Liu, J.; Wang, X.; Feng, L.; Wu, J.; Zhu, X.; Wen, W.; Gong, X. Organ‑on‑a‑Chip: Recent Breakthroughs and Future Prospects. Biomed. Eng. Online. 2020, 19, 9. DOI: 10.1186/s12938-020-0752-0.
  • Valencia, L.; Canalejas-Tejero, V.; Clemente, M.; Fernaud, I.; Holgado, M.; Jorcano, J. L.; Velasco, D. OPEN a New Microfluidic Method Enabling the Generation of Multi‑Layered Tissues‑on‑Chips Using Skin Cells as a Proof of Concept. Sci. Rep. 2021, 11, 13160. DOI: 10.1038/s41598-021-91875-z.
  • Valencia, L.; Jorcano, J. L.; Velasco, D. Skin-on-a-Chip Models: General Overview and Future Perspectives. APL Bioeng. 2021, 5, 030901.
  • Oliva, A. Skin-on-a-Chip Technology: Microengineering Physiologically Relevant in Vitro Skin Models. Pharmaceutics. 2022, 14, 682.
  • Park, M.; Shin, H. K.; Panthi, G.; Rabbani, M. M.; Alam, A.-M.; Choi, J.; Chung, H.-J.; Hong, S. T.; Kim, H.-Y. Novel Preparation and Characterization of Human Hair-Based Nanofibers Using Electrospinning Process. Int J Biol Macromol. 2015, 76, 45–48. DOI: 10.1016/j.ijbiomac.2015.02.024.
  • Yin, J.; Santos, V. J.; Posner, J. D. Bioinspired Flexible Microfluidic Shear Force Sensor Skin. Sensors Actuators, A Phys. 2017, 264, 289–297. DOI: 10.1016/j.sna.2017.08.001.
  • Vigolo, B.; Pénicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes. Science 2013, 290, 1331–1334. DOI: 10.1126/science.290.5495.1331.
  • Poulin, P.; Vigolo, B.; Launois, P. Films and Fibers of Oriented Single Wall Nanotubes. Carbon 2002, 40, 1741–1749. DOI: 10.1016/S0008-6223(02)00042-8.
  • Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Carbon Nanotubes—The Route toward Applications. Science 2002, 297, 787–792. DOI: 10.1126/science.1060928.
  • Dalton, A. B.; Collins, S.; Razal, J. M.; Howard, V. Super-Tough Carbon-Nanotube Fibres. Nature 2002, 423, 703.
  • Dalton, A. B.; Collins, S.; Razal, J.; Munoz, E.; Ebron, V. H.; Kim, B. G. Continuous Carbon Nanotube Composite Fibers: Properties, Potential Applications, and Problems. J. Mater. Chem. 2004, 14, 1–3.
  • Kozlov, B. M. E.; Capps, R. C.; Sampson, W. M.; Ebron, V. H.; Ferraris, J. P.; Baughman, R. H. Spinning Solid and Hollow Polymer-Free Carbon Nanotube Fibers **. Adv. Mater. 2005, 17, 614–617. DOI: 10.1002/adma.200401130.
  • Islam, T.; Wang, Y.; Aggarwal, I.; Cui, Z.; Amirabadi, E.; Garg, H. Microscopic artificial cilia – a review. Lab Chip. 2022, 22, 1650–1679.
  • Belardi, J.; Schorr, N.; Prucker, O.; Rühe, J. Artificial Cilia: Generation of Magnetic Actuators in Microfluidic Systems. Adv. Funct. Mater. 2011, 21, 3314–3320. DOI: 10.1002/adfm.201100787.
  • Li, J.; Fan, Z.; Chen, J.; Zou, J.; Liu, C. High Yield Micro Fabrication Process for Biomimetic Artificial Haircell Sensors. Proceedings of SPIE, 2002, 4700, 315–322.
  • Okada, J.; Toh, Y. Active Tactile Sensing for Localization of Objects by the Cockroach Antenna. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2006, 192, 715–726. DOI: 10.1007/s00359-006-0106-9.
  • Nation, J. L. Tracheal System and Respiratory Gas Exchange. In Encyclopedia of Entomology; Capinera J. L. Ed.; Springer, 2008, 3835–3841.
  • Walker, M. Vestibular System. Encycl. Neurol. Sci. 2014, 4, 647–656.
  • Wang, Y.; Den, T. J.; Cardinaels, R.; Anderson, P. Lab on a Chip a Continuous Roll-Pulling Approach for the Microfluidic Pumping Capability †. Lab Chip. 2016, 16, 2277–2286. DOI: 10.1039/C6LC00531D.
  • Ji, Z.; Yan, K.; Li, W.; Hu, H.; Zhu, X. Mathematical and Computational Modeling in Complex Biological Systems. Biomed Res. Int. 2017, 2017, 5958321–5958316. DOI: 10.1155/2017/5958321.
  • Branscomb, J.; Alexeev, A. Designing Ciliated Surfaces That Regulate Deposition of Solid Particles. Soft Matter 2010, 6, 4066–4069. DOI: 10.1039/c0sm00185f.
  • Nagrath, S.; Sequist, L. V.; Maheswaran, S.; Bell, D. W.; Irimia, D.; Ulkus, L.; et al. Isolation of Rare Circulating Tumour Cells in Cancer Patients by Microchip Technology. Nature. 2007, 450. 1235–1239.
  • Wang, Y.; Gao, Y.; Wyss, H.; Anderson, P.; den Toonder, J. Out of the Cleanroom, Self-Assembled Magnetic Artificial Cilia. Lab Chip. 2013, 13, 3360–3366. DOI: 10.1039/C3LC50458A.
  • Alfadhel, A.; Li, B.; Zaher, A.; Yassine, O.; Kosel, J. A Magnetic Nanocomposite for Biomimetic Flow Sensing. Lab Chip. 2014, 14, 4362–4369. DOI: 10.1039/c4lc00821a.
  • Fernandez-Carro, E.; Angenent, M.; Gracia-Cazaña, T.; Gilaberte, Y.; Alcaine, C. Modeling an Optimal 3D Skin-on-Chip within Microfluidic Devices for Pharmacological Studies. Pharmaceutics 2022, 14, 1417.
  • Ataç, B.; Wagner, I.; Horland, R.; Lauster, R.; Marx, U.; Tonevitsky, A. G.; Azar, R. P.; Lindner, G. Skin and Hair on-a-Chip: In Vitro Skin Models versus Ex Vivo Tissue Maintenance with Dynamic Perfusion. Lab Chip. 2013, 13, 3555–3561. DOI: 10.1039/c3lc50227a.
  • Sohrabi, S.; Tan, J.; Yunus, D. E.; He, R.; Liu, Y. Label-Free Sorting of Soft Microparticles Using a Bioinspired Synthetic Cilia Array. Biomicrofluidics 2018, 12, 042206. DOI: 10.1063/1.5022500.
  • Zhu, K. Y.; Leung, K. W.; Ting, A. K. L.; Wong, Z. C. F.; Ng, W. Y. Y.; Choi, R. C. Y.; Dong, T. T. X.; Wang, T.; Lau, D. T. W.; Tsim, K. W. K. Microfluidic Chip Based Nano Liquid Chromatography Coupled to Tandem Mass Spectrometry for the Determination of Abused Drugs and Metabolites in Human Hair. Anal. Bioanal. Chem. 2012, 402, 2805–2815. DOI: 10.1007/s00216-012-5711-6.
  • Bencko, V. Use of Human Hair as a Biomarker in the Assessment of Exposure to Pollutants in Occupational and Environmental Settings. Toxicology 1995, 101, 29–39. DOI: 10.1016/0300-483x(95)03018-b.
  • Gutiérrez-González, E.; García-Esquinas, E.; de Larrea-Baz, N. F.; Salcedo-Bellido, I.; Navas-Acien, A.; Lope, V.; Gómez-Ariza, J. L.; Pastor, R.; Pollán, M.; Pérez-Gómez, B. Toenails as Biomarker of Exposure to Essential Trace Metals: A Review. Environ. Res. 2019, 179, 108787. DOI: 10.1016/j.envres.2019.108787.
  • Jang, W.-J.; Choi, J. Y.; Park, B.; Seo, J. H.; Seo, Y. H.; Lee, S.; Jeong, C.-H.; Lee, S. Hair Metabolomics in Animal Studies and Clinical Settings. Molecules 2019, 24, 2195. DOI: 10.3390/molecules24122195.
  • Alonso, A.; Albarran, C.; Martín, P.; García, P.; Capilla, J.; García, O.; de la Rua, C.; Izaguirre, N.; Pereira, F.; Pereira, L.; et al. Usefulness of Microchip Electrophoresis for the Analysis of Mitochondrial DNA in Forensic and Ancient DNA Studies. Electrophoresis 2006, 27, 5101–5109. DOI: 10.1002/elps.200600331.
  • Tran, H. H.; Trinh, K. T. L.; Lee, N. Y. Pressure-Driven One-Step Solid Phase-Based on-Chip Sample Preparation on a Microfabricated Plastic Device and Integration with Flow-through Polymerase Chain Reaction (PCR). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 936, 88–94. DOI: 10.1016/j.jchromb.2013.06.037.
  • Wang, H.; Wu, Z.; Zhang, Y.; Chen, B.; He, M.; Hu, B. Chip-Based Liquid Phase Microextraction Combined with Electrothermal Vaporization-Inductively Coupled Plasma Mass Spectrometry for Trace Metal Determination in Cell Samples. J. Anal. At. Spectrom. 2013, 28, 1660–1665. DOI: 10.1039/C3JA50223.
  • Hamidi, S.; Alipour-Ghorbani, N.; Hamidi, A. Solid Phase Microextraction Techniques in Determination of Biomarkers. Crit. Rev. Anal. Chem. 2018, 48, 239–251. DOI: 10.1080/10408347.2017.1396885.
  • Hamidi, S.; Alipour-Ghorbani, N. Liquid-Phase Microextraction of Biomarkers: A Review on Current Methods. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 853–861. DOI: 10.1080/10826076.2017.1374291.
  • Regiart, M.; Fernández-Baldo, M. A.; Spotorno, V. G.; Bertolino, F. A.; Raba, J. Ultra Sensitive Microfluidic Immunosensor for Determination of Clenbuterol in Bovine Hair Samples Using Electrodeposited Gold Nanoparticles and Magnetic Micro Particles as Bio-Affinity Platform. Biosens. Bioelectron. 2013, 41, 211–217. DOI: 10.1016/j.bios.2012.08.020.
  • Zheng, T.; Gao, Z.; Luo, Y.; Liu, X.; Zhao, W.; Lin, B. Manual-Slide-Engaged Paper Chip for Parallel SERS-Immunoassay Measurement of Clenbuterol from Swine Hair. Electrophoresis 2016, 37, 418–424. DOI: 10.1002/elps.201500324.
  • Dasary, S. S. R.; Singh, A. K.; Senapati, D.; Yu, H.; Ray, P. C. Gold Nanoparticle Based Label-Free SERS Probe for Ultrasensitive and Selective Detection of Trinitrotoluene. J. Am. Chem. Soc. 2009, 131, 13806–13812. DOI: 10.1021/ja905134d.
  • Dou, B.; Luo, Y.; Chen, X.; Shi, B.; Du, Y.; Gao, Z.; Zhao, W.; Lin, B. Direct Measurement of Beta-Agonists in Swine Hair Extract in Multiplexed Mode by Surface-Enhanced Raman Spectroscopy and Microfluidic Paper. Electrophoresis 2015, 36, 485–487. DOI: 10.1002/elps.201400362.
  • Li, W.; Luo, Y.; Yue, X.; Wu, J.; Wu, R.; Qiao, Y.; Peng, Q.; Shi, B.; Lin, B.; Chen, X. A Novel Microfluidic Paper-Based Analytical Device Based on Chemiluminescence for the Determination of β-Agonists in Swine Hair. Anal. Methods 2020, 12, 2317–2322. DOI: 10.1039/c9ay02754h.
  • Gilbert, M. T. P.; Wilson, A. S.; Bunce, M.; Hansen, A. J.; Willerslev, E.; Shapiro, B.; Higham, T. F. G.; Richards, M. P.; O’Connell, T. C.; Tobin, D. J.; et al. Ancient Mitochondrial DNA from Hair. Curr. Biol. 2004, 14, 463–464.
  • Taberlet, P.; Luikart, G.; Waits, L. P. Noninvasive Genetic Sampling: Look before You Leap. Trends Ecol. Evol. 1999, 14, 323–327. DOI: 10.1016/s0169-5347(99)01637-7.
  • Ghatak, S.; Muthukumaran, R. B.; Nachimuthu, S. K. A Simple Method of Genomic DNA Extraction from Human Samples for PCR-RFLP Analysis. J. Biomol. Tech. 2013, 24, 224–231. DOI: 10.7171/jbt.13-2404-001.
  • Kline, M. C.; Vallone, P. M.; Redman, J. W.; Duewer, D. L.; Calloway, C. D.; Butler, J. M. Mitochondrial DNA Typing Screens with Control Region and Coding Region SNPs. J. Forensic Sci. 2005, 50, 377–385.
  • Hassan, S. Microchip Electrophoresis. Encyclopedia 2020, 1, 30–41. DOI: 10.3390/encyclopedia1010006.
  • Lin, X.; Wu, J.; Li, H.; Wang, Z.; Lin, J. M. Determination of Mini-Short Tandem Repeat (miniSTR) Loci by Using the Combination of Polymerase Chain Reaction (PCR) and Microchip Electrophoresis. Talanta 2013, 114, 131–137. DOI: 10.1016/j.talanta.2013.04.012.
  • Van Nguyen, H.; Seo, T. S. High-Throughput Human DNA Purification on a Centrifugal Microfluidic Device for Rapid Forensic Sex-Typing. Biosens. Bioelectron. 2021, 181, 113161. DOI: 10.1016/j.bios.2021.113161.
  • von Thaden, A.; Cocchiararo, B.; Jarausch, A.; Jüngling, H.; Karamanlidis, A. A.; Tiesmeyer, A.; Nowak, C.; Muñoz-Fuentes, V. Assessing SNP Genotyping of Noninvasively Collected Wildlife Samples Using Microfluidic Arrays. Sci. Rep. 2017, 7, 10768. DOI: 10.1038/s41598-017-10647-w.
  • Jiang, W.; Hu, D.; Xu, Y.; Chen, Y.; Zhu, X.; Han, Z.; Ye, X.; Li, X. Loop-Mediated Isothermal Amplification-Microfluidic Chip for the Detection of Trichophyton Infection. Front. Microbiol. 2022, 13, 1031388. DOI: 10.3389/fmicb.2022.1031388.
  • Miyaguchi, H.; Takahashi, H.; Ohashi, T.; Mawatari, K.; Iwata, Y. T.; Inoue, H.; Kitamori, T. Rapid Analysis of Methamphetamine in Hair by Micropulverized Extraction and Microchip-Based Competitive ELISA. Forensic Sci. Int. 2009, 184, 1–5. DOI: 10.1016/j.forsciint.2008.10.024.
  • Xu, Q.; Zhou, Y.; Chen, H.; Tian, Z. Micro-fluidic chip for Raman detection of amphetamine chloride in hair and utilization method thereof. Patent Application Number CN2016-10548521. 2016.
  • He, K. Trace Elements in Nails as Biomarkers in Clinical Research. Eur. J. Clin. Invest. 2011, 41, 98–102. DOI: 10.1111/j.1365-2362.2010.02373.x.
  • Shokoohi, R.; Khazaei, M.; Karami, M.; Seid-Mohammadi, A.; Khazaei, S.; Torkshavand, Z. Application of Fingernail Samples as a Biomarker for Human Exposure to Arsenic—Contaminated Drinking Waters. Sci. Rep. 2022, 12, 4733. DOI: 10.1038/s41598-022-08845-2.
  • Phillips, R.; Kraeuter, A.-K.; McDermott, B.; Lupien, S.; Sarnyai, Z. Human Nail Cortisol as a Retrospective Biomarker of Chronic Stress: A Systematic Review. Psychoneuroendocrinology 2021, 123, 104903. https://www.sciencedirect.com/science/article/pii/S0306453020303267. DOI: 10.1016/j.psyneuen.2020.104903.
  • Min, J. Z.; Yano, H.; Matsumoto, A.; Yu, H.-F.; Shi, Q.; Higashi, T.; Inagaki, S.; Toyo’oka, T. Simultaneous Determination of Polyamines in Human Nail as Flow Chip LC Coupled with Quadrupole Time-of- Flight Tandem Mass Spectrometry. Clin. Chim. Acta. 2011, 412, 98–106. DOI: 10.1016/j.cca.2010.09.018.
  • Graves, P. R.; Haystead, T. A. J. Molecular Biologist’s Guide to Proteomics. Microbiol. Mol. Biol. Rev. 2002, 66, 39–63; table of contents. DOI: 10.1128/MMBR.66.1.39-63.2002.
  • De Mello, A. FOCUS on-Chip Chromatography: The Last Twenty Years. Lab Chip. 2002, 2, 48N–54N. DOI: 10.1039/B207266C.
  • Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64–71. DOI: 10.1126/science.2675315.
  • Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Matrix-Assisted Ultraviolet Laser Desorption of Non-Volatile Compounds. Int. J. Mass Spectrom. Ion Process. 1987, 78, 53–68. https://www.sciencedirect.com/science/article/pii/0168117687870416. DOI: 10.1016/0168-1176(87)87041-6.
  • Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and Polymer Analyses up to m/z 100 000 by Laser Ionization Time-of-Flight Mass Spectrometry. Rapid Comm. Mass Spectr. 1988, 2, 151–153. DOI: 10.1002/rcm.1290020802.
  • Shevchenko, A.; Wilm, M.; Vorm, O.; Mann, M. Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. Anal. Chem. 1996, 68, 850–858. DOI: 10.1021/ac950914h.
  • Srbek, J.; Eickhoff, J.; Effelsberg, U.; Kraiczek, K.; van de Goor, T.; Coufal, P. Chip-Based nano-LC-MS/MS Identification of Proteins in Complex Biological Samples Using a Novel Polymer Microfluidic Device. J. Sep. Sci. 2007, 30, 2046–2052. DOI: 10.1002/jssc.200700053.
  • Chen, X.; Luo, Y.; Shi, B.; Gao, Z.; Du, Y.; Liu, X.; Zhao, W.; Lin, B. Determination of Beta-Agonists in Swine Hair by μFIA and Chemiluminescence. Electrophoresis 2015, 36, 986–993. DOI: 10.1002/elps.201400412.
  • Phatale, V.; Vaiphei, K. K.; Jha, S.; Patil, D.; Agrawal, M.; Alexander, A. Overcoming Skin Barriers through Advanced Transdermal Drug Delivery Approaches. J. Control. Release 2022, 351, 361–380. DOI: 10.1016/j.jconrel.2022.09.025.
  • Bilal, M.; Mehmood, S.; Raza, A.; Hayat, U.; Rasheed, T.; Iqbal, H. M. N. Microneedles in Smart Drug Delivery. Adv. Wound Care (New Rochelle) 2021, 10, 204–219. DOI: 10.1089/wound.2019.1122.
  • Nair, A. B.; Al-Dhubiab, B. E.; Shah, J.; Gorain, B.; Jacob, S.; Attimarad, M.; Sreeharsha, N.; Venugopala, K. N.; Morsy, M. A. Constant Voltage Iontophoresis Technique to Deliver Terbinafine via Transungual Delivery System: Formulation Optimization Using Box–Behnken Design and in Vitro Evaluation. Pharmaceutics 2021, 13, 1692. DOI: 10.3390/pharmaceutics13101692.
  • Morgen, M.; Lu, G. W.; Du, D.; Stehle, R.; Lembke, F.; Cervantes, J.; Ciotti, S.; Haskell, R.; Smithey, D.; Haley, K.; Fan, C. Targeted Delivery of a Poorly Water-Soluble Compound to Hair Follicles Using Polymeric Nanoparticle Suspensions. Int. J. Pharm. 2011, 416, 314–322. DOI: 10.1016/j.ijpharm.2011.06.019.
  • Subbiah, N.; Campagna, J.; Spilman, P.; Alam, M. P.; Sharma, S.; Hokugo, A.; Nishimura, I.; John, V. Deformable Nanovesicles Synthesized through an Adaptable Microfluidic Platform for Enhanced Localized Transdermal Drug Delivery. J. Drug Deliv. 2017, 2017, 4759839–4759812. DOI: 10.1155/2017/4759839.
  • Bharathala, S.; Sharma, P. Biomedical Applications of Nanoparticles. In Nanotechnology in Modern Animal Biotechnology: Concepts and Applications; Maurya, P. K. and Singh, S. Eds. Elsevier: The Netherlands; 2019. p. 113–132. DOI: 10.1016/B978-0-12-818823-1.00008-9.
  • Bandodkar, A. J.; Ghaffari, R.; Rogers, J. A. Don’t Sweat It: The Quest for Wearable Stress Sensors. Matter 2020, 2, 795–797. DOI: 10.1016/j.matt.2020.03.004.
  • Vella, D.; Lukač, M.; Jernejčič, U.; Lukač, N.; Klaneček, Ž.; Milanič, M.; Jezeršek, M.; Measurements of Hair Temperature Avalanche Effect with Alexandrite and Nd:YAG Hair Removal Lasers. Lasers Surg. Med. 2022, 55, 89–98. DOI: 10.1002/lsm.23622.
  • Xu, J.; Zhang, Z.; Gan, S.; Gao, H.; Kong, H.; Song, Z.; Ge, X.; Bao, Y.; Niu, L. Highly Stretchable Fiber-Based Potentiometric Ion Sensors for Multichannel Real-Time Analysis of Human Sweat. ACS Sens. 2020, 5, 2834–2842. DOI: 10.1021/acssensors.0c00960.
  • Awad, E.; Ramji, R.; Cirovic, S.; Rämgård, M.; Kottorp, A.; Shleev, S. Developing and Evaluating Non-Invasive Healthcare Technologies for a Group of Female Participants from a Socioeconomically Disadvantaged Area. Sci. Rep. 2021, 11, 23896. DOI: 10.1038/s41598-021-03262-3.