266
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Molecularly Imprinted Polymer-Based Sensors Integrated with Transition Metal Dichalcogenides (TMDs) and MXenes: A Review

, , & ORCID Icon

References

  • Dong, C.; Shi, H.; Han, Y.; Yang, Y.; Wang, R.; Men, J. Molecularly Imprinted Polymers by the Surface Imprinting Technique. Eur. Polym. J. 2021, 145, 110231. DOI: 10.1016/j.eurpolymj.2020.110231.
  • Haupt, K.; Medina Rangel, P. X.; Bui, B. T. S. Molecularly Imprinted Polymers: Antibody Mimics for Bioimaging and Therapy. Chem. Rev. 2020, 120, 9554–9582. DOI: 10.1021/acs.chemrev.0c00428.
  • Shah, N. S.; Thotathil, V.; Zaidi, S. A.; Sheikh, H.; Mohamed, M.; Qureshi, A.; Sadasivuni, K. K. Picomolar or beyond Limit of Detection Using Molecularly Imprinted Polymer-Based Electrochemical Sensors: A Review. Biosensors (Basel) 2022, 12, 1107. DOI: 10.3390/bios12121107.
  • Piletsky, S.; Canfarotta, F.; Poma, A.; Bossi, A. M.; Piletsky, S. Molecularly Imprinted Polymers for Cell Recognition. Trends Biotechnol. 2020, 38, 368–387. DOI: 10.1016/j.tibtech.2019.10.002.
  • Xu, S.; Wang, L.; Liu, Z. Molecularly Imprinted Polymer Nanoparticles: An Emerging Versatile Platform for Cancer Therapy. Angew. Chem. Int. Ed. Engl. 2021, 60, 3858–3869. DOI: 10.1002/anie.202005309.
  • Wang, S.; Zhang, L.; Zeng, J.; Hu, X.; Wang, X.; Yu, L.; Wang, D.; Cheng, L.; Ahmed, R.; Romanovski, V.; et al. Multi-Templates Molecularly Imprinted Polymers for Simultaneous Recognition of Multiple Targets: From Academy to Application. TrAC Trends Anal. Chem. 2023, 166, 117173. DOI: 10.1016/j.trac.2023.117173.
  • Hussain, S.; Zaidi, S. A.; Vikraman, D.; Kim, H. S.; Jung, J. Facile Preparation of Molybdenum Carbide (Mo(2)C) Nanoparticles and Its Effective Utilization in Electrochemical Sensing of Folic Acid via Imprinting. Biosens. Bioelectron. 2019, 140, 111330. DOI: 10.1016/j.bios.2019.111330.
  • Hasanah, A. N.; Safitri, N.; Zulfa, A.; Neli, N.; Rahayu, D. Factors Affecting Preparation of Molecularly Imprinted Polymer and Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials. Molecules 2021, 26, 5612. DOI: 10.3390/molecules26185612.
  • Zhang, W.; Zhang, Y.; Wang, R.; Zhang, P.; Zhang, Y.; Randell, E.; Zhang, M.; Jia, Q. A Review: Development and Application of Surface Molecularly Imprinted Polymers toward Amino Acids, Peptides, and Proteins. Anal. Chim. Acta. 2022, 1234, 340319. DOI: 10.1016/j.aca.2022.340319.
  • Leibl, N.; Haupt, K.; Gonzato, C.; Duma, L. Molecularly Imprinted Polymers for Chemical Sensing: A Tutorial Review. Chemosensors 2021, 9, 123. DOI: 10.3390/chemosensors9060123.
  • Moreira Gonçalves, L. Electropolymerized Molecularly Imprinted Polymers: Perceptions Based on Recent Literature for Soon-to-Be World-Class Scientists. Curr. Opin. Electrochem. 2021, 25, 100640. DOI: 10.1016/j.coelec.2020.09.007.
  • Zaidi, S. A. An Overview of Bio-Inspired Intelligent Imprinted Polymers for Virus Determination. Biosensors (Basel) 2021, 11, 89. DOI: 10.3390/bios11030089.
  • Li, G.; Wu, J.; Qi, X.; Wan, X.; Liu, Y.; Chen, Y.; Xu, L. Molecularly Imprinted Polypyrrole Film-Coated Poly(3,4-Ethylenedioxythiophene):Polystyrene Sulfonate-Functionalized Black Phosphorene for the Selective and Robust Detection of Norfloxacin. Mater. Today Chem. 2022, 26, 101043. DOI: 10.1016/j.mtchem.2022.101043.
  • Li, G.; Qi, X.; Wu, J.; Xu, L.; Wan, X.; Liu, Y.; Chen, Y.; Li, Q. Ultrasensitive, Label-Free Voltammetric Determination of Norfloxacin Based on Molecularly Imprinted Polymers and Au Nanoparticle-Functionalized Black Phosphorus Nanosheet Nanocomposite. J. Hazard. Mater. 2022, 436, 129107. DOI: 10.1016/j.jhazmat.2022.129107.
  • Wu, Y.; Li, G.; Tian, Y.; Feng, J.; Xiao, J.; Liu, J.; Liu, X.; He, Q. Electropolymerization of Molecularly Imprinted Polypyrrole Film on Multiwalled Carbon Nanotube Surface for Highly Selective and Stable Determination of Carcinogenic Amaranth. Electroanal. Chem. 2021, 895, 115494. DOI: 10.1016/j.jelechem.2021.115494.
  • Zaidi, S. A. Effective Imprinting of an Anticancer Drug, 6-Thioguanine, via Mussel-Inspired Self-Polymerization of Dopamine over Reduced Graphene Oxide. Analyst 2019, 144, 2345–2352. DOI: 10.1039/c8an02348d.
  • Wang, M.; Pu, J.; Hu, Y.; Zi, Y.; Wu, Z.-G.; Huang, W. Functional Graphdiyne for Emerging Applications: Recent Advances and Future Challenges. Adv. Funct. Mater. 2023, 2308601.
  • Wang, M.; Hu, Y.; Pu, J.; Zi, Y.; Huang, W. Emerging Xene-Based Single-Atom Catalysts: Theory, Synthesis, and Catalytic Applications. Adv. Mater. 2023, 2303492.
  • Pan, H.; Chu, H.; Li, Y.; Pan, Z.; Zhao, J.; Zhao, S.; Huang, W.; Li, D. Bismuthene Quantum Dots Integrated D-Shaped Fiber as Saturable Absorber for Multi-Type Soliton Fiber Lasers. J. Materiomics 2023, 9, 183–190. DOI: 10.1016/j.jmat.2022.08.002.
  • Hu, Y.; Wang, M.; Hu, L.; Hu, Y.; Guo, J.; Xie, Z.; Wei, S.; Wang, Y.; Zi, Y.; Zhang, H.; et al. Recent Advances in Two-Dimensional Graphdiyne for Nanophotonic Applications. Chem. Eng. J. 2022, 450, 138228. DOI: 10.1016/j.cej.2022.138228.
  • Huang, W.; Zhu, J.; Wang, M.; Hu, L.; Tang, Y.; Shu, Y.; Xie, Z.; Zhang, H. Emerging Mono-Elemental Bismuth Nanostructures: Controlled Synthesis and Their Versatile Applications. Adv. Funct. Materials 2021, 31, 2007584. DOI: 10.1002/adfm.202007584.
  • Huang, W.; Wang, M.; Hu, L.; Wang, C.; Xie, Z.; Zhang, H. Recent Advances in Semiconducting Monoelemental Selenium Nanostructures for Device Applications. Adv. Funct. Materials 2020, 30, 2003301. DOI: 10.1002/adfm.202003301.
  • Huang, W.; Zhang, Y.; You, Q.; Huang, P.; Wang, Y.; Huang, Z. N.; Ge, Y.; Wu, L.; Dong, Z.; Dai, X.; et al. Enhanced Photodetection Properties of Tellurium@Selenium Roll-to-Roll Nanotube Heterojunctions. Small 2019, 15, 1900902. DOI: 10.1002/smll.201900902.
  • Li, Q.; Wu, J. T.; Liu, Y.; Qi, X. M.; Jin, H. G.; Yang, C.; Liu, J.; Li, G. L.; He, Q. G. Recent Advances in Black Phosphorus-Based Electrochemical Sensors: A Review. Anal. Chim. Acta. 2021, 1170, 338480. DOI: 10.1016/j.aca.2021.338480.
  • Li, G.; Qi, X.; Wu, J.; Wan, X.; Wang, T.; Liu, Y.; Chen, Y.; Xia, Y. Highly Stable Electrochemical Sensing Platform for the Selective Determination of Pefloxacin in Food Samples Based on a Molecularly Imprinted-Polymer-Coated Gold Nanoparticle/Black Phosphorus Nanocomposite. Food Chem. 2024, 436, 137753. DOI: 10.1016/j.foodchem.2023.137753.
  • Li, X.; Huang, Z.; Shuck, C. E.; Liang, G.; Gogotsi, Y.; Zhi, C. MXene Chemistry, Electrochemistry and Energy Storage Applications. Nat. Rev. Chem. 2022, 6, 389–404. DOI: 10.1038/s41570-022-00384-8.
  • Qureshi, A.; Abdelhay, A. H.; Zaidi, S. A.; Tariq, H.; Sadasivuni, K. K.; Sheikh, H.; Mohamed, M. Emerging Trends in Niobium, Vanadium, and Molybdenum Based MXenes Applications. Crit. Rev. Solid State Mater. Sci. 2022. DOI: 10.1080/10408436.2022.2150124.
  • Zahra, Q. u A.; Ullah, S.; Shahzad, F.; Qiu, B.; Fang, X.; Ammar, A.; Luo, Z.; Abbas Zaidi, S. MXene-Based Aptasensors: Advances, Challenges, and Prospects. Prog. Mater. Sci. 2022, 129, 100967. DOI: 10.1016/j.pmatsci.2022.100967.
  • Shahzad, F.; Zaidi, S. A.; Naqvi, R. A. 2D Transition Metal Carbides (MXene) for Electrochemical Sensing: A Review. Crit. Rev. Anal. Chem. 2022, 52, 848–864. DOI: 10.1080/10408347.2020.1836470.
  • Yang, M.; Wang, L.; Lu, H.; Dong, Q. Advances in MXene-Based Electrochemical (Bio)Sensors for Neurotransmitter Detection. Micromachines (Basel) 2023, 14, 1088. DOI: 10.3390/mi14051088.
  • Bisen, O. Y.; Atif, S.; Mallya, A.; Nanda, K. K. Self-Assembled TMD Nanoparticles on N-Doped Carbon Nanostructures for Oxygen Reduction Reaction and Electrochemical Oxygen Sensing Thereof. ACS Appl. Mater. Interfaces. 2022, 14, 5134–5148. DOI: 10.1021/acsami.1c11300.
  • Adepu, V.; Kamath, K.; Siddhartha, S.; Mattela, V.; Sahatiya, P. MXene/TMD Nanohybrid for the Development of Smart Electronic Textiles Based on Physical Electromechanical Sensors. Adv. Materials Inter. 2021, 9, 2101687. DOI: 10.1002/admi.202101687.
  • Yilmaz, E.; Yavuz, E. Use of Transition Metal Dichalcogenides (TMDs) in Analytical Sample Preparation Applications. Talanta 2024, 266, 125086. DOI: 10.1016/j.talanta.2023.125086.
  • Huang, W.; Hu, L.; Tang, Y.; Xie, Z.; Zhang, H. Recent Advances in Functional 2D MXene-Based Nanostructures for Next-Generation Devices. Adv. Funct. Materials 2020, 30, 2005223. DOI: 10.1002/adfm.202005223.
  • Huang, W.; Ma, C.; Li, C.; Zhang, Y.; Hu, L.; Chen, T.; Tang, Y.; Ju, J.; Zhang, H. Highly Stable MXene (V2CTx)-Based Harmonic Pulse Generation. Nanophotonics 2020, 9, 2577–2585. DOI: 10.1515/nanoph-2020-0134.
  • Hu, Y.; Xu, Z.; Pu, J.; Hu, L.; Zi, Y.; Wang, M.; Feng, X.; Huang, W. 2D MXene Ti(3)C(2)T (x) Nanosheets in the Development of a Mechanically Enhanced and Efficient Antibacterial Dental Resin Composite. Front. Chem. 2022, 10, 1090905. DOI: 10.3389/fchem.2022.1090905.
  • Zhu, J.; Wei, S.; Tang, J.; Hu, Y.; Dai, X.; Zi, Y.; Wang, M.; Xiang, Y.; Huang, W. MXene V2CTx Nanosheet/Bismuth Quantum Dot-Based Heterostructures for Enhanced Flexible Photodetection and Nonlinear Photonics. ACS Appl. Nano Mater. 2023, 6, 13629–13636. DOI: 10.1021/acsanm.3c02317.
  • Adepu, V.; Tathacharya, M.; C S, R.; Sahatiya, P. MXene (Ti3C2Tx)/TMD (ReSe2) Nanohybrid-Based Flexible Electromechanical Sensors for Cervical Collar Strain and Shoulder Load Detection Applications. J. Micromech. Microeng. 2023, 33, 115007. DOI: 10.1088/1361-6439/acfc52.
  • Shahzad, F.; Iqbal, A.; Zaidi, S. A.; Hwang, S.-W.; Koo, C. M. Nafion-Stabilized Two-Dimensional Transition Metal Carbide (Ti3C2Tx MXene) as a High-Performance Electrochemical Sensor for Neurotransmitter. J. Ind. Eng. Chem. 2019, 79, 338–344. DOI: 10.1016/j.jiec.2019.03.061.
  • Singhal, A.; Yadav, S.; Sadique, M. A.; Khan, R.; Kaushik, A. K.; Sathish, N.; Srivastava, A. K. MXene-Modified Molecularly Imprinted Polymers as an Artificial Bio-Recognition Platform for Efficient Electrochemical Sensing: Progress and Perspectives. Phys. Chem. Chem. Phys. 2022, 24, 19164–19176. DOI: 10.1039/d2cp02330j.
  • Wang, H.; Li, C.; Fang, P.; Zhang, Z.; Zhang, J. Z. Synthesis, Properties, and Optoelectronic Applications of Two-Dimensional MoS(2) and MoS(2)-Based Heterostructures. Chem. Soc. Rev. 2018, 47, 6101–6127. DOI: 10.1039/c8cs00314a.
  • Castellanos-Gomez, A.; Agraït, N.; Rubio-Bollinger, G. Optical Identification of Atomically Thin Dichalcogenide Crystals. Applied Physics Letters 2010, 96, 213116. DOI: 10.1063/1.3442495.
  • Magda, G. Z.; Pető, J.; Dobrik, G.; Hwang, C.; Biró, L. P.; Tapasztó, L. Exfoliation of Large-Area Transition Metal Chalcogenide Single Layers. Sci. Rep. 2015, 5, 14714. DOI: 10.1038/srep14714.
  • Mansukhani, N. D.; Guiney, L. M.; Kim, P. J.; Zhao, Y.; Alducin, D.; Ponce, A.; Larios, E.; Yacaman, M. J.; Hersam, M. C. High-Concentration Aqueous Dispersions of Nanoscale 2D Materials Using Nonionic, Biocompatible Block Copolymers. Small 2016, 12, 294–300. DOI: 10.1002/smll.201503082.
  • Dular, M.; Stoffel, B.; Širok, B. Development of a Cavitation Erosion Model. Wear 2006, 261, 642–655. DOI: 10.1016/j.wear.2006.01.020.
  • Biccai, S.; Barwich, S.; Boland, D.; Harvey, A.; Hanlon, D.; McEvoy, N.; Coleman, J. N. Exfoliation of 2D Materials by High Shear Mixing. 2D Mater. 2018, 6, 015008. DOI: 10.1088/2053-1583/aae7e3.
  • Dines, M. B. Lithium Intercalation via n-Butyllithium of the Layered Transition Metal Dichalcogenides. Mat. Res. Bull. 1975, 10, 287–291. DOI: 10.1016/0025-5408(75)90115-4.
  • Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568–571. DOI: 10.1126/science.1194975.
  • Mondal, A.; Vomiero, A. 2D Transition Metal Dichalcogenides‐Based Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2022, 32, 2208994. DOI: 10.1002/adfm.202208994.
  • Rani, S.; Sharma, M.; Verma, D.; Ghanghass, A.; Bhatia, R.; Sameera, I. Two-Dimensional Transition Metal Dichalcogenides and Their Heterostructures: Role of Process Parameters in Top-down and Bottom-up Synthesis Approaches. Mater. Sci. Semicond. Process. 2022, 139, 106313. DOI: 10.1016/j.mssp.2021.106313.
  • Coogan, Á.; Gun’ko, Y. K. Solution-Based “Bottom-up” Synthesis of Group VI Transition Metal Dichalcogenides and Their Applications. Mater. Adv. 2021, 2, 146–164. DOI: 10.1039/D0MA00697A.
  • Gao, L.; Li, C.; Huang, W.; Mei, S.; Lin, H.; Ou, Q.; Zhang, Y.; Guo, J.; Zhang, F.; Xu, S.; Zhang, H. MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. Chem. Mater. 2020, 32, 1703–1747. DOI: 10.1021/acs.chemmater.9b04408.
  • Wang, C.; Pan, Z.; Chen, H.; Pu, X.; Chen, Z. MXene-Based Materials for Multivalent Metal-Ion Batteries. Batteries 2023, 9, 174. DOI: 10.3390/batteries9030174.
  • Ronchi, R. M.; Arantes, J. T.; Santos, S. F. Synthesis, Structure, Properties and Applications of MXenes: Current Status and Perspectives. Ceram. Int. 2019, 45, 18167–18188. DOI: 10.1016/j.ceramint.2019.06.114.
  • Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3 AlC2. Adv. Mater. 2011, 23, 4248–4253. DOI: 10.1002/adma.201102306.
  • Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum†, M. W. Two-Dimensional Transition Metal Carbides. ACS Nano. 2012, 6, 1322–1331. DOI: 10.1021/nn204153h.
  • Xiao, Y.; Hwang, J.-Y.; Sun, Y.-K. Transition Metal Carbide-Based Materials: Synthesis and Applications in Electrochemical Energy Storage. J. Mater. Chem. A 2016, 4, 10379–10393. DOI: 10.1039/C6TA03832H.
  • Wang, X.; Kajiyama, S.; Iinuma, H.; Hosono, E.; Oro, S.; Moriguchi, I.; Okubo, M.; Yamada, A. Pseudocapacitance of MXene Nanosheets for High-Power Sodium-Ion Hybrid Capacitors. Nat. Commun. 2015, 6, 6544. DOI: 10.1038/ncomms7544.
  • Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive Two-Dimensional Titanium Carbide 'Clay’ with High Volumetric Capacitance. Nature 2014, 516, 78–81. DOI: 10.1038/nature13970.
  • Liu, F.; Zhou, J.; Wang, S.; Wang, B.; Shen, C.; Wang, L.; Hu, Q.; Huang, Q.; Zhou, A. Preparation of High-Purity V2C MXene and Electrochemical Properties as Li-Ion Batteries. J. Electrochem. Soc. 2017, 164, A709–A713. DOI: 10.1149/2.0641704jes.
  • Mashtalir, O.; Naguib, M.; Dyatkin, B.; Gogotsi, Y.; Barsoum, M. W. Kinetics of Aluminum Extraction from Ti3AlC2 in Hydrofluoric Acid. Mater. Chem. Phys. 2013, 139, 147–152. DOI: 10.1016/j.matchemphys.2013.01.008.
  • Feng, A.; Yu, Y.; Wang, Y.; Jiang, F.; Yu, Y.; Mi, L.; Song, L. Two-Dimensional MXene Ti3C2 Produced by Exfoliation of Ti3AlC2. Mater. Design 2017, 114, 161–166. DOI: 10.1016/j.matdes.2016.10.053.
  • Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D.; Kota, S.; Walsh, P. L.; Zhao, M.; Shenoy, V. B.; Barsoum, M. W.; Gogotsi, Y. Synthesis of Two-Dimensional Titanium Nitride Ti4N3 (MXene). Nanoscale 2016, 8, 11385–11391. DOI: 10.1039/c6nr02253g.
  • Wang, L.; Zhang, H.; Wang, B.; Shen, C.; Zhang, C.; Hu, Q.; Zhou, A.; Liu, B. Synthesis and Electrochemical Performance of Ti3C2Tx with Hydrothermal Process. Electron. Mater. Lett. 2016, 12, 702–710. DOI: 10.1007/s13391-016-6088-z.
  • Yang, S.; Zhang, P.; Wang, F.; Ricciardulli, A. G.; Lohe, M. R.; Blom, P. W. M.; Feng, X. Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using a Binary Aqueous System. Angew. Chem. Int. Ed. Engl. 2018, 57, 15491–15495. DOI: 10.1002/anie.201809662.
  • Kamysbayev, V.; Filatov, A. S.; Hu, H.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R. F.; Talapin, D. V. Covalent Surface Modifications and Superconductivity of Two-Dimensional Metal Carbide MXenes. Science 2020, 369, 979–983. DOI: 10.1126/science.aba8311.
  • Sun, Z.; Yuan, M.; Lin, L.; Yang, H.; Nan, C.; Li, H.; Sun, G.; Yang, X. Selective Lithiation–Expansion–Microexplosion Synthesis of Two-Dimensional Fluoride-Free Mxene. ACS Materials Lett. 2019, 1, 628–632. DOI: 10.1021/acsmaterialslett.9b00390.
  • Lukatskaya, M. R.; Kota, S.; Lin, Z.; Zhao, M.-Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P.-L.; Barsoum, M. W.; Simon, P.; Gogotsi, Y. Ultra-High-Rate Pseudocapacitive Energy Storage in Two-Dimensional Transition Metal Carbides. Nat. Energy 2017, 2, 17105. DOI: 10.1038/nenergy.2017.105.
  • Karlsson, L. H.; Birch, J.; Halim, J.; Barsoum, M. W.; Persson, P. O. Atomically Resolved Structural and Chemical Investigation of Single MXene Sheets. Nano Lett. 2015, 15, 4955–4960. DOI: 10.1021/acs.nanolett.5b00737.
  • Peng, C.; Wei, P.; Chen, X.; Zhang, Y.; Zhu, F.; Cao, Y.; Wang, H.; Yu, H.; Peng, F. A Hydrothermal Etching Route to Synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced Exfoliation and Improved Adsorption Performance. Ceram. Int. 2018, 44, 18886–18893. DOI: 10.1016/j.ceramint.2018.07.124.
  • Zhang, C.; Ma, Y.; Zhang, X.; Abdolhosseinzadeh, S.; Sheng, H.; Lan, W.; Pakdel, A.; Heier, J.; Nüesch, F. Two‐Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties, and Electrochemical Energy Storage Applications. Energy Environ. Mater. 2019, 3, 29–55. DOI: 10.1002/eem2.12058.
  • Chaitoglou, S.; Tsipas, P.; Speliotis, T.; Kordas, G.; Vavouliotis, A.; Dimoulas, A. Insight and Control of the Chemical Vapor Deposition Growth Parameters and Morphological Characteristics of Graphene/Mo 2 C Heterostructures over Liquid Catalyst. J. Cryst. Growth 2018, 495, 46–53. DOI: 10.1016/j.jcrysgro.2018.05.015.
  • Zhao, H.; Cai, K.; Ma, Z.; Cheng, Z.; Jia, T.; Kimura, H.; Fu, Q.; Tao, H.; Xiong, L. Synthesis of Molybdenum Carbide Superconducting Compounds by Microwave-Plasma Chemical Vapor Deposition. J. Appl. Phys. 2018, 123, 053301. DOI: 10.1063/1.5010101.
  • Xu, B.; Zhang, B.; Yang, L.; Zhao, F.; Zeng, B. Electrochemical Determination of Luteolin Using Molecularly Imprinted Poly-Carbazole on MoS2/Graphene-Carbon Nanotubes Nanocomposite Modified Electrode. Electrochim. Acta 2017, 258, 1413–1420. DOI: 10.1016/j.electacta.2017.12.004.
  • Lu, X.; Li, Y.; Duan, X.; Zhu, Y.; Xue, T.; Rao, L.; Wen, Y.; Tian, Q.; Cai, Y.; Xu, Q.; Xu, J. A Novel Nanozyme Comprised of Electro-Synthesized Molecularly Imprinted Conducting PEDOT Nanocomposite with Graphene-like MoS2 for Electrochemical Sensing of Luteolin. Microchem. J. 2021, 168, 106418. DOI: 10.1016/j.microc.2021.106418.
  • Zhang, W.; Zong, L.; Geng, G.; Li, Y.; Zhang, Y. Enhancing Determination of Quercetin in Honey Samples through Electrochemical Sensors Based on Highly Porous Polypyrrole Coupled with Nanohybrid Modified GCE. Sens. Actuators B 2018, 257, 1099–1109. DOI: 10.1016/j.snb.2017.11.059.
  • Yang, Y.; Fang, G.; Wang, X.; Zhang, F.; Liu, J.; Zheng, W.; Wang, S. Electrochemiluminescent Graphene Quantum Dots Enhanced by MoS2 as Sensing Platform: A Novel Molecularly Imprinted Electrochemiluminescence Sensor for 2-Methyl-4-Chlorophenoxyacetic Acid Assay. Electrochim. Acta 2017, 228, 107–113. DOI: 10.1016/j.electacta.2017.01.043.
  • Usha, S. P.; Gupta, B. D. Urinary p-Cresol Diagnosis Using Nanocomposite of ZnO/MoS(2) and Molecular Imprinted Polymer on Optical Fiber Based Lossy Mode Resonance Sensor. Biosens. Bioelectron. 2018, 101, 135–145. DOI: 10.1016/j.bios.2017.10.029.
  • Sun, Y.; Xu, L.; Waterhouse, G. I. N.; Wang, M.; Qiao, X.; Xu, Z. Novel Three-Dimensional Electrochemical Sensor with Dual Signal Amplification Based on MoS2 Nanosheets and High-Conductive NH2-MWCNT@COF for Sulfamerazine Determination. Sens. Actuators B 2019, 281, 107–114. DOI: 10.1016/j.snb.2018.10.055.
  • Ren, S.; Cui, W.; Liu, Y.; Cheng, S.; Wang, Q.; Feng, R.; Zheng, Z. Molecularly Imprinted Sensor Based on 1T/2H MoS2 and MWCNTs for Voltammetric Detection of Acetaminophen. Sens. Actuators A 2022, 345, 113772. DOI: 10.1016/j.sna.2022.113772.
  • Wang, S.; Wang, C.; Xin, Y.; Li, Q.; Liu, W. Core-Shell Nanocomposite of Flower-like Molybdenum Disulfide Nanospheres and Molecularly Imprinted Polymers for Electrochemical Detection of anti COVID-19 Drug Favipiravir in Biological Samples. Mikrochim. Acta. 2022, 189, 125. DOI: 10.1007/s00604-022-05213-9.
  • He, Y.; Sun, J.; Yao, W.; Lu, K.; Liu, D.; Xie, H.; Huang, C.; Jia, N. A Self-Powered Photoelectrochemical Molecular Imprinted Sensor for Chloroquine Phosphate with Enhanced Cathodic Photocurrent via Stepped Energy Band Alignment Engineering. Chem. Eng. J. 2023, 451, 138748. DOI: 10.1016/j.cej.2022.138748.
  • Mehmandoust, M.; Erk, N.; Karaman, C.; Karaman, O. An Electrochemical Molecularly Imprinted Sensor Based on CuBi(2)O(4)/rGO@MoS(2) Nanocomposite and Its Utilization for Highly Selective and Sensitive for Linagliptin Assay. Chemosphere 2022, 291, 132807. DOI: 10.1016/j.chemosphere.2021.132807.
  • Lee, M.-H.; Lin, C.-C.; Kutner, W.; Thomas, J. L.; Lin, C.-Y.; Iskierko, Z.; Ku, Y.-S.; Lin, C.-Y.; Borowicz, P.; Sharma, P. S.; et al. Peptide-Imprinted Conductive Polymer on Continuous Monolayer Molybdenum Disulfide Transferred Electrodes for Electrochemical Sensing of Matrix Metalloproteinase-1 in Lung Cancer Culture Medium. Biosens. Bioelectron. 2023, 13, 100258. DOI: 10.1016/j.biosx.2022.100258.
  • Lee, M.-H.; Lin, C.-C.; Kutner, W.; Thomas, J. L.; Lin, C.-Y.; Iskierko, Z.; Lin, C.-Y.; Sharma, P. S.; Lin, H.-Y. MoS2 Nanosheet-Doped Peptide-Imprinted Polymer-Coated Electrodes for Electrochemical Determination of CRISPR/dCas9-Activated Protein Expression. ACS Appl. Nano Mater. 2023, 6, 17369–17375. DOI: 10.1021/acsanm.3c04130.
  • Wang, C.; Wang, Y.; Zhang, H.; Deng, H.; Xiong, X.; Li, C.; Li, W. Molecularly Imprinted Photoelectrochemical Sensor for Carcinoembryonic Antigen Based on Polymerized Ionic Liquid Hydrogel and Hollow Gold Nanoballs/MoSe(2) Nanosheets. Anal. Chim. Acta. 2019, 1090, 64–71. DOI: 10.1016/j.aca.2019.09.029.
  • Zang, Y-j.; Nie, J.; He, B.; Yin, W.; Zheng, J.; Hou, C-j.; Huo, D-q.; Yang, M.; Liu, F-m.; Sun, Q-q.; et al. Fabrication of S-MoSe2/NSG/Au/MIPs Imprinted Composites for Electrochemical Detection of Dopamine Based on Synergistic Effect. Microchem. J. 2020, 156, 104845. DOI: 10.1016/j.microc.2020.104845.
  • Zhang, Y.; Cui, Y.; Sun, M.; Wang, T.; Liu, T.; Dai, X.; Zou, P.; Zhao, Y.; Wang, X.; Wang, Y.; et al. Deep Learning-Assisted Smartphone-Based Molecularly Imprinted Electrochemiluminescence Detection Sensing Platform: Protable Device and Visual Monitoring Furosemide. Biosens. Bioelectron. 2022, 209, 114262. DOI: 10.1016/j.bios.2022.114262.
  • Zhang, Z.; Xu, J.; Wen, Y.; Wang, T. A Highly-Sensitive VB(2) Electrochemical Sensor Based on One-Step co-Electrodeposited Molecularly Imprinted WS(2)-PEDOT Film Supported on Graphene oxide-SWCNTs Nanocomposite. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 92, 77–87. DOI: 10.1016/j.msec.2018.06.029.
  • Lee, M. H.; Thomas, J. L.; Su, Z. L.; Zhang, Z. X.; Lin, C. Y.; Huang, Y. S.; Yang, C. H.; Lin, H. Y. Doping of Transition Metal Dichalcogenides in Molecularly Imprinted Conductive Polymers for the Ultrasensitive Determination of 17beta-Estradiol in Eel Serum. Biosens. Bioelectron. 2020, 150, 111901. DOI: 10.1016/j.bios.2019.111901.
  • Lee, M. H.; Thomas, J. L.; Su, Z. L.; Yeh, W. K.; Monzel, A. S.; Bolognin, S.; Schwamborn, J. C.; Yang, C. H.; Lin, H. Y. Transition Metal Dichalcogenides to Optimize the Performance of Peptide-Imprinted Conductive Polymers as Electrochemical Sensors. Mikrochim Acta 2021, 188, 203.
  • Hussain, S.; Abbas Zaidi, S.; Vikraman, D.; Kim, H.-S.; Jung, J. Facile Preparation of Tungsten Carbide Nanoparticles for an Efficient Oxalic Acid Sensor via Imprinting. Microchem. J. 2020, 159, 105404. DOI: 10.1016/j.microc.2020.105404.
  • Dalal, N.; Dhiman, T. K.; Lakshmi, G. B. V. S.; Singh, A. K.; Singh, R.; Solanki, P. R.; Kumar, A. MIP-Based Sensor for the Detection of Gut Microbiota-Derived Indoxyl Sulphate Using PANI-graphene-NiS2. Mater. Today Chem. 2022, 26, 101157. DOI: 10.1016/j.mtchem.2022.101157.
  • Khosropour, H.; Saboohi, M.; Keramat, M.; Rezaei, B.; Ensafi, A. A. Electrochemical Molecularly Imprinted Polymer Sensor for Ultrasensitive Indoxacarb Detection by Tin Disulfide Quantum Dots/Carbon Nitride/Multiwalled Carbon Nanotubes as a Nanocomposite. Sens. Actuators, B 2023, 385, 133652. DOI: 10.1016/j.snb.2023.133652.
  • Wang, O.; Jia, X.; Liu, J.; Sun, M.; Wu, J. Rapid and Simple Preparation of an MXene/Polypyrrole-Based Bacteria Imprinted Sensor for Ultrasensitive Salmonella Detection. Electroanal. Chem. 2022, 918, 116513. DOI: 10.1016/j.jelechem.2022.116513.
  • Jiang, X.; Lv, Z.; Ding, W.; Zhang, Y.; Lin, F. Pathogen-Imprinted Polymer Film Integrated Probe/Ti3C2Tx MXenes Electrochemical Sensor for Highly Sensitive Determination of Listeria Monocytogenes. J. Electrochem. Sci. Technol. 2022, 13, 431–437. DOI: 10.33961/jecst.2022.00269.
  • Ma, X.; Kang, J.; Wu, Y.; Pang, C.; Li, S.; Li, J.; Xiong, Y.; Luo, J.; Wang, M.; Xu, Z. A Bifunctional Polycentric-Affinity MOF/MXene Heterojunction-Based Molecularly Imprinted Photoelectrochemical Organophosphorus-Sensing Platform. Chem. Eng. J. 2023, 469, 143888. DOI: 10.1016/j.cej.2023.143888.
  • Wang, Q.; Xiao, X.; Hu, X.; Huang, L.; Li, T.; Yang, M. Molecularly Imprinted Electrochemical Sensor for Ascorbic Acid Determination Based on MXene Modified Electrode. Mater. Lett. 2021, 285, 129158. DOI: 10.1016/j.matlet.2020.129158.
  • Shao, Y.; Zhu, Y.; Zheng, R.; Wang, P.; Zhao, Z.; An, J. Highly Sensitive and Selective Surface Molecularly Imprinted Polymer Electrochemical Sensor Prepared by Au and MXene Modified Glassy Carbon Electrode for Efficient Detection of Tetrabromobisphenol a in Water. Adv. Compos. Hybrid Mater. 2022, 5, 3104–3116. DOI: 10.1007/s42114-022-00562-8.
  • Zhang, B.; Chen, Q.; Liu, D.; Fang, F.; Mu, M.; Xie, Y.; Kuang, Y.; Wang, J.; Fang, G. Heterogeneous Sensitization from Nanoporous Gold and Titanium Carbide (MXene) Combining with Molecularly Imprinted Polymers for Highly Sensitive and Specific Sensing Detection of Thiabendazole. Sens. Actuators, B 2022, 367, 132159. DOI: 10.1016/j.snb.2022.132159.
  • Lu, Z.; Wei, K.; Ma, H.; Duan, R.; Sun, M.; Zou, P.; Yin, J.; Wang, X.; Wang, Y.; Wu, C.; et al. Bimetallic MOF Synergy Molecularly Imprinted Ratiometric Electrochemical Sensor Based on MXene Decorated with Polythionine for Ultra-Sensitive Sensing of Catechol. Anal. Chim. Acta. 2023, 1251, 340983. DOI: 10.1016/j.aca.2023.340983.
  • Özcan, N.; Medetalibeyoglu, H.; Akyıldırım, O.; Atar, N.; Yola, M. L. Electrochemical Detection of Amyloid-β Protein by Delaminated Titanium Carbide MXene/Multi-Walled Carbon Nanotubes Composite with Molecularly Imprinted Polymer. Mater. Today Commun. 2020, 23, 101097. DOI: 10.1016/j.mtcomm.2020.101097.
  • Lee, M. H.; Liu, K. H.; Thomas, J. L.; Chen, C. Y.; Chen, C. Y.; Yang, C. H.; Lin, H. Y. Doping of MXenes Enhances the Electrochemical Response of Peptide-Imprinted Conductive Polymers for the Recognition of C-Reactive Protein. Biosens. Bioelectron. 2022, 200, 113930. DOI: 10.1016/j.bios.2021.113930.
  • Ma, X.; Tu, X.; Gao, F.; Xie, Y.; Huang, X.; Fernandez, C.; Qu, F.; Liu, G.; Lu, L.; Yu, Y. Hierarchical Porous MXene/Amino Carbon Nanotubes-Based Molecular Imprinting Sensor for Highly Sensitive and Selective Sensing of Fisetin. Sens. Actuators B 2020, 309, 127815. DOI: 10.1016/j.snb.2020.127815.
  • Kadirsoy, S.; Atar, N.; Yola, M. L. Molecularly Imprinted QCM Sensor Based on Delaminated MXene for Chlorpyrifos Detection and QCM Sensor Validation. New J. Chem. 2020, 44, 6524–6532. DOI: 10.1039/D0NJ00951B.
  • Bai, H.; Wen, G.; Liang, A.; Jiang, Z. Recognition and Nanocatalytic Amplification of Binary MXene Carbon Dot Surface Molecularly Imprinted Nanoprobe for Determination of Thiamethoxam by Molecular Spectroscopy. Sens. Actuators B 2023, 390, 134032. DOI: 10.1016/j.snb.2023.134032.
  • Shi, Z.; Wang, Z.; Li, K.; Wang, Y.; Li, Z.; Zhu, Z. MXene Fibers-Based Molecularly Imprinted Disposable Electrochemical Sensor for Sensitive and Selective Detection of Hydrocortisone. Talanta 2024, 266, 125100. DOI: 10.1016/j.talanta.2023.125100.
  • Panneer Selvam, S.; Cho, S. Silver Chalcogenide Loaded V2CTx MXene-Molecularly Imprinted Polymer-Based Novel Ratiometric Sensor for the Early Predictive Cancer Marker: L-Fucose. Chem. Eng. J. 2023, 469, 144016. DOI: 10.1016/j.cej.2023.144016.
  • Qiu, Z.; Fan, D.; Xue, X.; Guo, S.; Lin, Y.; Chen, Y.; Tang, D. Molecularly Imprinted Polymer Functionalized Bi2S3/Ti3C2TX MXene Nanocomposites for Photoelectrochemical/Electrochemical Dual-Mode Sensing of Chlorogenic Acid. Chemosensors 2022, 10, 252. DOI: 10.3390/chemosensors10070252.
  • Li, H.; Lu, G.; Wang, Y.; Yin, Z.; Cong, C.; He, Q.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical Exfoliation and Characterization of Single- and Few-Layer Nanosheets of WSe(2), TaS(2), and TaSe(2). Small 2013, 9, 1974–1981. DOI: 10.1002/smll.201202919.
  • Tao, H.; Zhang, Y.; Gao, Y.; Sun, Z.; Yan, C.; Texter, J. Scalable Exfoliation and Dispersion of Two-Dimensional Materials - an Update. Phys. Chem. Chem. Phys. 2017, 19, 921–960. DOI: 10.1039/c6cp06813h.
  • Radhakrishnan, J.; Ratna, S.; Biswas, K. Metal Oxide/2D Layered TMDs Composites for H2 Evolution Reaction via Photocatalytic Water Splitting – a Mini Review. Inorg. Chem. Commun. 2022, 145, 109971. DOI: 10.1016/j.inoche.2022.109971.
  • Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T Phase MoS2 Nanosheets as Supercapacitor Electrode Materials. Nat. Nanotechnol. 2015, 10, 313–318. DOI: 10.1038/nnano.2015.40.
  • Lin, L.; Lei, W.; Zhang, S.; Liu, Y.; Wallace, G. G.; Chen, J. Two-Dimensional Transition Metal Dichalcogenides in Supercapacitors and Secondary Batteries. Energy Storage Mater. 2019, 19, 408–423. DOI: 10.1016/j.ensm.2019.02.023.
  • Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. S.; Ho, C. H.; Yan, J.; et al. Monolayer Behaviour in Bulk ReS2 Due to Electronic and Vibrational Decoupling. Nat. Commun. 2014, 5, 3252. DOI: 10.1038/ncomms4252.
  • Chen, K.; Pan, J.; Yin, W.; Ma, C.; Wang, L. Flexible Electronics Based on One-Dimensional Inorganic Semiconductor Nanowires and Two-Dimensional Transition Metal Dichalcogenides. Chin. Chem. Lett. 2023, 34, 108226. DOI: 10.1016/j.cclet.2023.108226.
  • Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2017, 2, 16098. DOI: 10.1038/natrevmats.2016.98.
  • Uçar, A.; Aydoğdu Tığ, G.; Er, E. Recent Advances in Two Dimensional Nanomaterial-Based Electrochemical (Bio)Sensing Platforms for Trace-Level Detection of Amino Acids and Pharmaceuticals. TrAC, Trends Anal. Chem. 2023, 162, 117027. DOI: 10.1016/j.trac.2023.117027.
  • Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes. Adv. Elect. Mater. 2016, 2, 1600255. DOI: 10.1002/aelm.201600255.
  • Shein, I. R.; Ivanovskii, A. L. Graphene-like Titanium Carbides and Nitrides Tin + 1Cn, Tin + 1Nn (n = 1, 2, and 3) from de-Intercalated MAX Phases: First-Principles Probing of Their Structural, Electronic Properties and Relative Stability. Comput. Mater. Sci. 2012, 65, 104–114. DOI: 10.1016/j.commatsci.2012.07.011.
  • Papadopoulou, K. A.; Chroneos, A.; Parfitt, D.; Christopoulos, S.-R. G. A Perspective on MXenes: Their Synthesis, Properties, and Recent Applications. J. Appl. Phys. 2020, 128, 170902. DOI: 10.1063/5.0021485.
  • Geng, D.; Zhao, X.; Chen, Z.; Sun, W.; Fu, W.; Chen, J.; Liu, W.; Zhou, W.; Loh, K. P. Direct Synthesis of Large-Area 2D Mo(2) C on in Situ Grown Graphene. Adv. Mater. 2017, 29, 1700072.
  • Wang, H.; Wu, Y.; Zhang, J.; Li, G.; Huang, H.; Zhang, X.; Jiang, Q. Enhancement of the Electrical Properties of MXene Ti3C2 Nanosheets by Post-Treatments of Alkalization and Calcination. Mater. Lett. 2015, 160, 537–540. DOI: 10.1016/j.matlet.2015.08.046.
  • Lee, Y.; Kim, S. J.; Kim, Y.-J.; Lim, Y.; Chae, Y.; Lee, B.-J.; Kim, Y.-T.; Han, H.; Gogotsi, Y.; Ahn, C. W. Oxidation-Resistant Titanium Carbide MXene Films. J. Mater. Chem. A 2020, 8, 573–581. DOI: 10.1039/C9TA07036B.
  • Rasool, K.; Mahmoud, K. A.; Johnson, D. J.; Helal, M.; Berdiyorov, G. R.; Gogotsi, Y. Efficient Antibacterial Membrane Based on Two-Dimensional Ti(3)C(2)T(x) (MXene) Nanosheets. Sci. Rep. 2017, 7, 1598. DOI: 10.1038/s41598-017-01714-3.
  • Arabi Shamsabadi, A.; Sharifian Gh, M.; Anasori, B.; Soroush, M. Antimicrobial Mode-of-Action of Colloidal Ti3C2Tx MXene Nanosheets. ACS Sustainable Chem. Eng. 2018, 6, 16586–16596. DOI: 10.1021/acssuschemeng.8b03823.
  • Lee, Y.; Cho, S. B.; Chung, Y. C. Tunable Indirect to Direct Band Gap Transition of Monolayer Sc(2)CO(2) by the Strain Effect. ACS Appl. Mater. Interfaces. 2014, 6, 14724–14728. DOI: 10.1021/am504233d.
  • Berdiyorov, G. R.; Madjet, M. E. Structural, Electronic Transport and Optical Properties of Functionalized Quasi-2D TiC2 from First-Principles Calculations. Appl. Surf. Sci. 2016, 390, 1009–1014. DOI: 10.1016/j.apsusc.2016.08.179.
  • Urbankowski, P.; Anasori, B.; Hantanasirisakul, K.; Yang, L.; Zhang, L.; Haines, B.; May, S. J.; Billinge, S. J. L.; Gogotsi, Y. 2D Molybdenum and Vanadium Nitrides Synthesized by Ammoniation of 2D Transition Metal Carbides (MXenes). Nanoscale 2017, 9, 17722–17730. DOI: 10.1039/c7nr06721f.
  • George, S.; Kandasubramanian, B. Advancements in MXene-Polymer Composites for Various Biomedical Applications. Ceram. Int. 2019, 46, 8522–8535. DOI: 10.1016/j.ceramint.2019.12.257.
  • Crapnell, R. D.; Dempsey-Hibbert, N. C.; Peeters, M.; Tridente, A.; Banks, C. E. Molecularly Imprinted Polymer Based Electrochemical Biosensors: Overcoming the Challenges of Detecting Vital Biomarkers and Speeding up Diagnosis. Talanta Open 2020, 2, 100018. DOI: 10.1016/j.talo.2020.100018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.