451
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The Latest Sensor Detection Methods for per- and Polyfluoroalkyl Substances

, , , , , ORCID Icon & show all

References

  • Evich, M. G.; Davis, M. J. B.; McCord, J. P.; Acrey, B.; Awkerman, J. A.; Knappe, D. R. U.; Lindstrom, A. B.; Speth, T. F.; Tebes-Stevens, C.; Strynar, M. J.; et al. Per- and Polyfluoroalkyl Substances in the Environment. Science 2022, 375, eabg9065. DOI: 10.1126/science.abg9065.
  • Vecitis, C. D.; Wang, Y. J.; Cheng, J.; Park, H.; Mader, B. T.; Hoffmann, M. R. Sonochemical Degradation of Perfluorooctanesulfonate in Aqueous Film-Forming Foams. Environ. Sci. Technol. 2010, 44, 432–438. DOI: 10.1021/es902444r.
  • Barzen-Hanson, K. A.; Roberts, S. C.; Choyke, S.; Oetjen, K.; McAlees, A.; Riddell, N.; McCrindle, R.; Ferguson, P. L.; Higgins, C. P.; Field, J. A. Discovery of 40 Classes of per- and Polyfluoroalkyl Substances in Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater. Environ. Sci. Technol. 2017, 51, 2047–2057. DOI: 10.1021/acs.est.6b05843.
  • Ahrens, L.; Shoeib, M.; Harner, T.; Lee, S. C.; Guo, R.; Reiner, E. J. Wastewater Treatment Plant and Landfills as Sources of Polyfluoroalkyl Compounds to the Atmosphere. Environ. Sci. Technol. 2011, 45, 8098–8105. DOI: 10.1021/es1036173.
  • Busch, J.; Ahrens, L.; Sturm, R.; Ebinghaus, R. Polyfluoroalkyl Compounds in Landfill Leachates. Environ. Pollut. 2010, 158, 1467–1471. DOI: 10.1016/j.envpol.2009.12.031.
  • Davis, K. L.; Aucoin, M. D.; Larsen, B. S.; Kaiser, M. A.; Hartten, A. S. Transport of Ammonium Perfluorooctanoate in Environmental Media near a Fluoropolymer Manufacturing Facility. Chemosphere 2007, 67, 2011–2019. DOI: 10.1016/j.chemosphere.2006.11.049.
  • Sunderland, E. M.; Hu, X. C.; Dassuncao, C.; Tokranov, A. K.; Wagner, C. C.; Allen, J. G. A Review of the Pathways of Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) and Present Understanding of Health Effects. J. Expo. Sci. Environ. Epidemiol. 2018, 29, 131–147. DOI: 10.1038/s41370-018-0094-1.
  • Dickman, R. A.; Aga, D. S. A Review of Recent Studies on Toxicity, Sequestration, and Degradation of per- and Polyfluoroalkyl Substances (PFAS). J. Hazard. Mater. 2022, 436, 129120. DOI: 10.1016/j.jhazmat.2022.129120.
  • Giesy, J. P.; Kannan, K. Global Distribution of Perfluorooctane Sulfonate in Wildlife. Environ. Sci. Technol. 2001, 35, 1339–1342. DOI: 10.1021/es001834k.
  • Kim, U. J.; Wang, Y.; Li, W. H.; Kannan, K. Occurrence of and Human Exposure to Organophosphate Flame Retardants/Plasticizers in Indoor Air and Dust from Various Microenvironments in the United States. Environ. Int. 2019, 125, 342–349. DOI: 10.1016/j.envint.2019.01.065.
  • Gilliland, F. D.; Mandel, J. S. Mortality among Employees of a Perfluorooctanoic Acid Production Plant. J. Occup. Med. 1993, 35, 950–954. DOI: 10.1097/00043764-199309000-00020.
  • Eriksen, K. T.; Sørensen, M.; McLaughlin, J. K.; Lipworth, L.; Tjønneland, A.; Overvad, K.; Raaschou-Nielsen, O. Perfluorooctanoate and Perfluorooctanesulfonate Plasma Levels and Risk of Cancer in the General Danish Population. J. Natl. Cancer. Inst. 2009, 101, 605–609. DOI: 10.1093/jnci/djp041.
  • Vieira, V. M.; Hoffman, K.; Shin, H.-M.; Weinberg, J. M.; Webster, T. F.; Fletcher, T. Perfluorooctanoic Acid Exposure and Cancer Outcomes in a Contaminated Community: A Geographic Analysis. Environ. Health Perspect. 2013, 121, 318–323. DOI: 10.1289/ehp.1205829.
  • Bonefeld-Jørgensen, E. C.; Long, M.; Fredslund, S. O.; Bossi, R.; Olsen, J. Breast Cancer Risk after Exposure to Perfluorinated Compounds in Danish Women: A Case–Control Study Nested in the Danish National Birth Cohort. Cancer Causes Control 2014, 25, 1439–1448. DOI: 10.1007/s10552-014-0446-7.
  • Olsen, G. W.; Ehresman, D. J.; Buehrer, B. D.; Gibson, B. A.; Butenhoff, J. L.; Zobel, L. R. Longitudinal Assessment of Lipid and Hepatic Clinical Parameters in Workers Involved with the Demolition of Perfluoroalkyl Manufacturing Facilities. J. Occup. Environ. Med. 2012, 54, 974–983. DOI: 10.1097/JOM.0b013e31825461d2.
  • Maisonet, M.; Näyhä, S.; Lawlor, D. A.; Marcus, M. Prenatal Exposures to Perfluoroalkyl Acids and Serum Lipids at Ages 7 and 15 in Females. Environ. Int. 2015, 82, 49–60. DOI: 10.1016/j.envint.2015.05.001.
  • Grandjean, P.; Andersen, E. W.; Budtz-Jørgensen, E.; Nielsen, F.; Mølbak, K.; Weihe, P.; Heilmann, C. Serum Vaccine Antibody Concentrations in Children Exposed to Perfluorinated Compounds. JAMA 2012, 307, 391–397. DOI: 10.1001/jama.2011.2034.
  • Buser, M. C.; Scinicariello, F. Perfluoroalkyl Substances and Food Allergies in Adolescents. Environ. Int. 2016, 88, 74–79. DOI: 10.1016/j.envint.2015.12.020.
  • Johansson, N.; Fredriksson, A.; Eriksson, P. Neonatal Exposure to Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) Causes Neurobehavioural Defects in Adult Mice. NeuroToxicology 2008, 29, 160–169. DOI: 10.1016/j.neuro.2007.10.008.
  • Liew, Z. Y.; Goudarzi, H.; Oulhote, Y. Developmental Exposures to Perfluoroalkyl Substances (PFASs): An Update of Associated Health Outcomes. Curr. Environ. Health. Rep. 2018, 5, 1–19. DOI: 10.1007/s40572-018-0173-4.
  • United States Environmental Protection Agency. Method 533: Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry. https://www.epa.gov/dwanalyticalmethods/method-533-determination-and-polyfluoroalkyl-substances-drinking-water-isotope (accessed October 5, 2023).
  • United States Environmental Protection Agency. Method 537.1 Determination of Selected Per- and Polyflourinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=348508&Lab=CESER&simpleSearch=0&showCriteria=2&searchAll=537.1&TIMSType=&dateBeginPublishedPresented=03/24/2018 (accessed October 5, 2023).
  • United States Environmental Protection Agency. Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=198984&simpleSearch=1&searchAll=EPA/600/R-08/092+ (accessed October 5, 2023).
  • Jahnke, A.; Berger, U. Trace Analysis of per- and Polyfluorinated Alkyl Substances in Various Matrices—How Do Current Methods Perform? J. Chromatogr. A 2009, 1216, 410–421. DOI: 10.1016/j.chroma.2008.08.098.
  • Langlois, I.; Berger, U.; Zencak, Z.; Oehme, M. Mass Spectral Studies of Perfluorooctane Sulfonate Derivatives Separated by High‐Resolution Gas Chromatography. Rapid Commun. Mass Spectrom. 2007, 21, 3547–3553. DOI: 10.1002/rcm.3241.
  • Jia, S. L.; Santos, M. M. D.; Li, C. X.; Snyder, S. A. Recent Advances in Mass Spectrometry Analytical Techniques for per- and Polyfluoroalkyl Substances (PFAS). Anal. Bioanal. Chem. 2022, 414, 2795–2807. DOI: 10.1007/s00216-022-03905-y.
  • Garg, S.; Kumar, P.; Greene, G. W.; Mishra, V.; Avisar, D.; Sharma, R. S.; Dumée, L. F. Nano-Enabled Sensing of per-/Poly-Fluoroalkyl Substances (PFAS) from Aqueous Systems – A Review. J. Environ. Manage. 2022, 308, 114655–114683. DOI: 10.1016/j.jenvman.2022.114655.
  • Takayose, M.; Akamatsu, K.; Nawafune, H.; Murashima, T.; Matsui, J. Colorimetric Detection of Perfluorooctanoic Acid (PFOA) Utilizing Polystyrene-Modified Gold Nanoparticles. Anal. Lett. 2012, 45, 2856–2864. DOI: 10.1080/00032719.2012.696225.
  • Wang, Y. F.; Zhu, H. Y. Detection of PFOS and Copper(ii) Ions Based on Complexation Induced Fluorescence Quenching of Porphyrin Molecules. Anal. Methods 2014, 6, 2379–2383. DOI: 10.1039/C3AY41902A.
  • Chen, L. D.; Lai, C.-Z.; Granda, L. P.; Fierke, M. A.; Mandal, D.; Stein, A.; Gladysz, J. A.; Bühlmann, P. Fluorous Membrane Ion-Selective Electrodes for Perfluorinated Surfactants: Trace-Level Detection and In Situ Monitoring of Adsorption. Anal. Chem. 2013, 85, 7471–7477. DOI: 10.1021/ac401424j.
  • Liu, Q.; Huang, A. Z.; Wang, N.; Zheng, G.; Zhu, L. H. Rapid Fluorometric Determination of Perfluorooctanoic Acid by Its Quenching Effect on the Fluorescence of Quantum Dots. J. Lumin. 2015, 161, 374–381. DOI: 10.1016/j.jlumin.2015.01.045.
  • Garada, M. B.; Kabagambe, B.; Kim, Y. S.; Amemiya, S. Ion-Transfer Voltammetry of Perfluoroalkanesulfonates and Perfluoroalkanecarboxylates: Picomolar Detection Limit and High Lipophilicity. Anal. Chem. 2014, 86, 11230–11237. DOI: 10.1021/ac5027836.
  • Gong, J. M.; Fang, T.; Peng, D. H.; Li, A. M.; Zhang, L. Z. A Highly Sensitive Photoelectrochemical Detection of Perfluorooctanic Acid with Molecularly Imprined Polymer-Functionalized Nanoarchitectured Hybrid of AgI–BiOI Composite. Biosens. Bioelectron. 2015, 73, 256–263. DOI: 10.1016/j.bios.2015.06.008.
  • Menger, R. F.; Funk, E.; Henry, C. S.; Borch, T. Sensors for Detecting per- and Polyfluoroalkyl Substances (PFAS): A Critical Review of Development Challenges, Current Sensors, and Commercialization Obstacles. Chem. Eng. J. 2021, 417, 129133. DOI: 10.1016/j.cej.2021.129133.
  • Wang, Y. Q.; Darling, S. B.; Chen, J. H. Selectivity of Per- and Polyfluoroalkyl Substance Sensors and Sorbents in Water. ACS Appl. Mater. Interfaces 2021, 13, 60789–60814. DOI: 10.1021/acsami.1c16517.
  • Rodriguez, K. L.; Hwang, J.-H.; Esfahani, A. R.; Sadmani, A. H. M. A.; Lee, W. H. Recent Developments of PFAS-Detecting Sensors and Future Direction: A Review. Micromachines 2020, 11, 667–689. DOI: 10.3390/mi11070667.
  • Jalili, V.; Barkhordari, A.; Paull, B.; Ghiasvand, A. Microextraction and Determination of Poly- and Perfluoroalkyl Substances, Challenges, and Future Trends. Crit. Rev. Anal. Chem. 2023, 53, 463–482. DOI: 10.1080/10408347.2021.1964345.
  • Trettnak, W. Optical Sensors Based on Fluorescence Quenching. In Fluorescence Spectroscopy: New Methods and Applications, 7th ed.; Wolfbeis, O. S., Ed.; Springer: Berlin, 1993; pp 79–89.
  • Menger, R. F.; Beck, J. J.; Borch, T.; Henry, C. S. Colorimetric Paper-Based Analytical Device for Perfluorooctanesulfonate Detection. ACS Est. Water 2022, 2, 565–572. DOI: 10.1021/acsestwater.1c00356.
  • Liu, J.; Wang, X.; Ma, F. Y.; Yang, X. C.; Liu, Y. J.; Zhang, X. Y.; Guo, S. E.; Wang, Z. P.; Yang, S. H.; Zhao, R. S. Atomic Copper(I)-Carbon Nitride as a Peroxidase-Mimic Catalyst for High Selective Detection of Perfluorooctane Sulfonate. Chem. Eng. J. 2022, 435, 134966. DOI: 10.1016/j.cej.2022.134966.
  • Li, Y.; Lu, Y. W.; Zhang, X. D.; Cao, H. Y.; Huang, Y. M. Cobalt-Embedded Nitrogen-Doped Carbon Nanosheets with Enhanced Oxidase-Like Activity for Detecting Perfluorooctane Sulfonate. Microchem. J. 2022, 181, 107814. DOI: 10.1016/j.microc.2022.107814.
  • He, J. C.; Qiu, P. P.; Song, J. Y.; Zhang, S. Y.; Bai, Y. A Resonance Rayleigh Scattering and Colorimetric Dual-Channel Sensor for Sensitive Detection of Perfluorooctane Sulfonate Based on Toluidine Blue. Anal. Bioanal. Chem. 2020, 412, 5329–5339. DOI: 10.1007/s00216-020-02748-9.
  • Liang, J. M.; Deng, X. Y.; Tan, K. J. An Eosin Y-Based “Turn-on” Fluorescent Sensor for Detection of Perfluorooctane Sulfonate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 150, 772–777. DOI: 10.1016/j.saa.2015.05.069.
  • Hong, Y. S.; Chen, X. P.; Zhang, Y.; Zhu, Y. L.; Sun, J. F.; Swihart, M. T.; Tan, K. J.; Dong, L. One-Pot Hydrothermal Synthesis of High Quantum Yield Orange-Emitting Carbon Quantum Dots for Sensitive Detection of Perfluorinated Compounds. New J. Chem. 2022, 46, 19658–19666. DOI: 10.1039/D2NJ02907C.
  • Park, J.; Yang, K. A.; Choi, Y.; Choe, J. K. Novel ssDNA Aptamer-Based Fluorescence Sensor for Perfluorooctanoic Acid Detection in Water. Environ. Int. 2022, 158, 107000. DOI: 10.1016/j.envint.2021.107000.
  • Sunantha, G.; Vasudevan, N. A Method for Detecting Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Water Samples Using Genetically Engineered Bacterial Biosensor. Sci. Total Environ. 2021, 759, 143544. DOI: 10.1016/j.scitotenv.2020.143544.
  • Chen, Q.; Zhu, P. P.; Xiong, J.; Gao, L. X.; Tan, K. J. A New Dual-Recognition Strategy for Hybrid Ratiometric and Ratiometric Sensing Perfluorooctane Sulfonic Acid Based on High Fluorescent Carbon Dots with Ethidium Bromide. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 224, 117362. DOI: 10.1016/j.saa.2019.117362.
  • Chen, X. Y.; Hussain, S.; Tang, Y. H.; Chen, X.; Zhang, S. J.; Wang, Y.; Zhang, P.; Gao, R. X.; Wang, S. C.; Hao, Y. Two-in-One Platform Based on Conjugated Polymer for Ultrasensitive Ratiometric Detection and Efficient Removal of Perfluoroalkyl Substances from Environmental Water. Sci. Total. Environ. 2022, 860, 160467. DOI: 10.1016/j.scitotenv.2022.160467.
  • Mann, M. M.; Tang, J. D.; Berger, B. W. Engineering Human Liver Fatty Acid Binding Protein for Detection of Poly- and Perfluoroalkyl Substances. Biotechnol. Bioeng. 2021, 119, 513–522. DOI: 10.1002/bit.27981.
  • Trinh, V.; Malloy, C. S.; Durkin, T. J.; Gadh, A.; Savagatrup, S. Detection of PFAS and Fluorinated Surfactants Using Differential Behaviors at Interfaces of Complex Droplets. ACS Sens. 2022, 7, 1514–1523. DOI: 10.1021/acssensors.2c00257.
  • Morbioli, G. G.; Mazzu-Nascimento, T.; Stockton, A. M.; Carrilho, E. Technical Aspects and Challenges of Colorimetric Detection with Microfluidic Paper-Based Analytical Devices (μPADs) - A Review. Anal. Chim. Acta 2017, 970, 1–22. DOI: 10.1016/j.aca.2017.03.037.
  • Fan, M.; Andrade, G. F. S.; Brolo, A. G. A Review on Recent Advances in the Applications of Surface-Enhanced Raman Scattering in Analytical Chemistry. Anal. Chim. Acta 2020, 1097, 1–29. DOI: 10.1016/j.aca.2019.11.049.
  • Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2019, 14, 28–117. DOI: 10.1021/acsnano.9b04224.
  • Bai, S.; Hu, A. M.; Hu, Y. J.; Ma, Y.; Obata, K.; Sugioka, K. Plasmonic Superstructure Arrays Fabricated by Laser near-Field Reduction for Wide-Range SERS Analysis of Fluorescent Materials. Nanomaterials 2022, 12, 970. DOI: 10.3390/nano12060970.
  • McDonnell, C.; Albarghouthi, F. M.; Selhorst, R.; Kelley-Loughnane, N.; Franklin, A. D.; Rao, R. Aerosol Jet Printed Surface-Enhanced Raman Substrates: Application for High-Sensitivity Detection of Perfluoroalkyl Substances. ACS Omega 2023, 8, 1597–1605. DOI: 10.1021/acsomega.2c07134.
  • Pasternack, R. F.; Bustamante, C.; Collings, P. J.; Giannetto, A.; Gibbs, E. J. Porphyrin Assemblies on DNA as Studied by a Resonance Light-Scattering Technique. J. Am. Chem. Soc. 1993, 115, 5393–5399. DOI: 10.1021/ja00066a006.
  • Pasternack, R. F.; Schaefer, K. F.; Hambright, P. Resonance Light-Scattering Studies of Porphyrin Diacid Aggregates. Inorg. Chem. 1994, 33, 2062–2065. DOI: 10.1021/ic00087a053.
  • de Paula, J. C.; Robblee, J. H.; Pasternack, R. F. Aggregation of Chlorophyll a Probed by Resonance Light Scattering Spectroscopy. Biophys. J. 1995, 68, 335–341. DOI: 10.1016/S0006-3495(95)80192-X.
  • Pasternack, R. F.; Collings, P. J. Resonance Light Scattering: A New Technique for Studying Chromophore Aggregation. Science 1995, 269, 935–939. DOI: 10.1126/science.7638615.
  • Ling, J.; Huang, C. Z.; Li, Y. F.; Long, Y. F.; Liao, Q. G. Recent Developments of the Resonance Light Scattering Technique: Technical Evolution, New Probes and Applications. Appl. Spectrosc. Rev. 2007, 42, 177–201. DOI: 10.1080/05704920601184291.
  • Zhang, F.; Liang, J. M.; Liu, Y.; Zhou, Q. J.; Hong, Y. S.; Chen, X. P.; Tan, K. J. A Highly Sensitive Dual-Readout Assay for Perfluorinated Compounds Based CdTe Quantum Dots. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 269, 120753. DOI: 10.1016/j.saa.2021.120753.
  • Jiao, Z.; Li, J. W.; Mo, L. J.; Liang, J. M.; Fan, H. B. A Molecularly Imprinted Chitosan Doped with Carbon Quantum Dots for Fluorometric Determination of Perfluorooctane Sulfonate. Mikrochim. Acta 2018, 185, 473–481. DOI: 10.1007/s00604-018-2996-y.
  • Li, J.; Zhang, C. Y.; Yin, M. Y.; Zhang, Z.; Chen, Y. J.; Deng, Q. L.; Wang, S. Surfactant-Sensitized Covalent Organic Frameworks-Functionalized Lanthanide-Doped Nanocrystals: An Ultrasensitive Sensing Platform for Perfluorooctane Sulfonate. ACS Omega 2019, 4, 15947–15955. DOI: 10.1021/acsomega.9b01996.
  • Cho, S.; Kim, Y. J‐Aggregate‐Triggering BODIPYs: An Ultrasensitive Chromogenic and Fluorogenic Sensing Platform for Perfluorooctanesulfonate. Chemistry 2023, 29, e202302897. DOI: 10.1002/chem.202302897.
  • Mann, M. M.; Berger, B. W. A Genetically-Encoded Biosensor for Direct Detection of Perfluorooctanoic Acid. Sci. Rep. 2023, 13, 15186–15194. DOI: 10.1038/s41598-023-41953-1.
  • Harrison, E. E.; Waters, M. L. Detection and Differentiation of per- and Polyfluoroalkyl Substances (PFAS) in Water Using a Fluorescent Imprint-and-Report Sensor Array. Chem. Sci. 2023, 14, 928–936. DOI: 10.1039/d2sc05685b.
  • Feng, Y. T.; Dai, J. X.; Wang, C. Y.; Zhou, H. Y.; Li, J. H.; Ni, G.; Zhang, M. F.; Huang, Y. J. Ag Nanoparticle/Au@Ag Nanorod Sandwich Structures for SERS-Based Detection of Perfluoroalkyl Substances. ACS Appl. Nano Mater. 2023, 6, 13974–13983. DOI: 10.1021/acsanm.3c01815.
  • Hanrahan, G.; Patil, D. G.; Wang, J. Electrochemical Sensors for Environmental Monitoring: Design, Development and Applications. J. Environ. Monit. 2004, 6, 657–664. DOI: 10.1039/b403975k.
  • Chillawar, R. R.; Tadi, K. K.; Motghare, R. V. Voltammetric Techniques at Chemically Modified Electrodes. J. Anal. Chem. 2015, 70, 399–418. DOI: 10.1134/S1061934815040152.
  • Clark, R. B.; Dick, J. E. Towards Deployable Electrochemical Sensors for per- and Polyfluoroalkyl Substances (PFAS). Chem. Commun. 2021, 57, 8121–8130. DOI: 10.1039/d1cc02641k.
  • Clark, R. B.; Dick, J. E. Electrochemical Sensing of Perfluorooctanesulfonate (PFOS) Using Ambient Oxygen in River Water. ACS Sens. 2020, 5, 3591–3598. DOI: 10.1021/acssensors.0c01894.
  • Kazemi, R.; Potts, E. I.; Dick, J. E. Quantifying Interferent Effects on Molecularly Imprinted Polymer Sensors for Per- and Polyfluoroalkyl Substances (PFAS). Anal. Chem. 2020, 92, 10597–10605. DOI: 10.1021/acs.analchem.0c01565.
  • Lu, D. N.; Zhu, D. Z.; Gan, H. H.; Yao, Z. Y.; Luo, J. Y.; Yu, S. R.; Kurup, P. An Ultra-Sensitive Molecularly Imprinted Polymer (MIP) and Gold Nanostars (AuNS) Modified Voltammetric Sensor for Facile Detection of Perfluorooctance Sulfonate (PFOS) in Drinking Water. Sens. Actuat. B 2022, 352, 131055. DOI: 10.1016/j.snb.2021.131055.
  • Gao, Y. M.; Gou, W. L.; Zeng, W. P.; Chen, W.; Jiang, J. L.; Lu, J. Determination of Perfluorooctanesulfonic Acid in Water by Polydopamine Molecularly Imprinted/Gold Nanoparticles Sensor. Microchem. J. 2023, 187, 108378. DOI: 10.1016/j.microc.2022.108378.
  • Viada, B. N.; Yudi, L. M.; Arrigan, D. W. M. Detection of Perfluorooctane Sulfonate by Ion-Transfer Stripping Voltammetry at an Array of Microinterfaces between Two Immiscible Electrolyte Solutions. Analyst 2020, 145, 5776–5786. DOI: 10.1039/d0an00884b.
  • Shanbhag, M. M.; Shetti, N. P.; Kalanur, S. S.; Pollet, B. G.; Nadagouda, M. N.; Aminabhavi, T. M. Hafnium Doped Tungsten Oxide Intercalated Carbon Matrix for Electrochemical Detection of Perfluorooctanoic Acid. Chem. Eng. J. 2022, 434, 134700. DOI: 10.1016/j.cej.2022.134700.
  • Katz, E.; Willner, I. Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors. Electroanalysis 2003, 15, 913–947. DOI: 10.1002/elan.200390114.
  • Patolsky, F.; Zayats, M.; Katz, E.; Willner, I. Precipitation of an Insoluble Product on Enzyme Monolayer Electrodes for Biosensor Applications: Characterization by Faradaic Impedance Spectroscopy, Cyclic Voltammetry, and Microgravimetric Quartz Crystal Microbalance Analyses. Anal. Chem. 1999, 71, 3171–3180. DOI: 10.1021/ac9901541.
  • Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors-Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. DOI: 10.3390/s80314000.
  • Gumyusenge, A.; Quill, T. J.; Chen, G.; Gong, H. X.; Bao, Z. N.; Salleo, A. Copper-Based 2D Conductive Metal Organic Framework Thin Films for Ultrasensitive Detection of Perfluoroalkyls in Drinking Water. ChemRxiv. DOI: 10.26434/chemrxiv-2022-tlkgq.
  • Cheng, Y. H.; Barpaga, D.; Soltis, J. A.; Shutthanandan, V.; Kargupta, R.; Han, K. S.; McGrail, B. P.; Motkuri, R. K.; Basuray, S.; Chatterjee, S. Metal-Organic Framework-Based Microfluidic Impedance Sensor Platform for Ultrasensitive Detection of Perfluorooctanesulfonate. ACS Appl. Mater. Interfaces 2020, 12, 10503–10514. DOI: 10.1021/acsami.9b22445.
  • He, C. X.; Xie, M. S.; Hong, F.; Chai, X. Y.; Mi, H. W.; Zhou, X. C.; Fan, L. D.; Zhang, Q. L.; Ngai, T.; Liu, J. H. A Highly Sensitive Glucose Biosensor Based on Gold Nanoparticles/Bovine Serum Albumin/Fe3O4 Biocomposite Nanoparticles. Electrochim. Acta 2016, 222, 1709–1715. DOI: 10.1016/j.electacta.2016.11.162.
  • Tang, Z. X.; Fu, Y. Y.; Ma, Z. F. Bovine Serum Albumin as an Effective Sensitivity Enhancer for Peptide-Based Amperometric Biosensor for Ultrasensitive Detection of Prostate Specific Antigen. Biosens. Bioelectron. 2017, 94, 394–399. DOI: 10.1016/j.bios.2017.03.030.
  • Moro, G.; Bottari, F.; Liberi, S.; Covaceuszach, S.; Cassetta, A.; Angelini, A.; De Wael, K.; Moretto, L. M. Covalent Immobilization of Delipidated Human Serum Albumin on Poly(Pyrrole-2-Carboxylic) Acid Film for the Impedimetric Detection of Perfluorooctanoic Acid. Bioelectrochemistry 2020, 134, 107540. DOI: 10.1016/j.bioelechem.2020.107540.
  • Foschini, M.; Silva, H. S.; Silva, R. A.; Marletta, A.; Gonçalves, D. Theoretical and Experimental Studies on the Electronic, Optical, and Structural Properties of Poly-Pyrrole-2-Carboxylic Acid Films. Chem. Phys. 2013, 425, 91–95. DOI: 10.1016/j.chemphys.2013.08.006.
  • Gogoi, P.; Yao, Y.; Li, Y. C. Understanding PFOS Adsorption on a Pt Electrode for Electrochemical Sensing Applications. ChemElectroChem 2022, 10, e202201006. DOI: 10.1002/celc.202201006.
  • Li, X.; Wang, X. L.; Fang, T.; Zhang, L. Z.; Gong, J. M. Disposable Photoelectrochemical Sensing Strip for Highly Sensitive Determination of Perfluorooctane Sulfonyl Fluoride on Functionalized Screen-Printed Carbon Electrode. Talanta 2018, 181, 147–153. DOI: 10.1016/j.talanta.2018.01.005.
  • Zang, Y.; Lei, J. P.; Ju, H. X. Principles and Applications of Photoelectrochemical Sensing Strategies Based on Biofunctionalized Nanostructures. Biosens. Bioelectron. 2017, 96, 8–16. DOI: 10.1016/j.bios.2017.04.030.
  • Pierpaoli, M.; Szopińska, M.; Olejnik, A.; Ryl, J.; Fudala-Ksiażek, S.; Łuczkiewicz, A.; Bogdanowicz, R. Engineering Boron and Nitrogen Codoped Carbon Nanoarchitectures to Tailor Molecularly Imprinted Polymers for PFOS Determination. J. Hazard. Mater. 2023, 458, 131873–131886. DOI: 10.1016/j.jhazmat.2023.131873.
  • Breshears, L. E.; Mata-Robles, S.; Tang, Y.; Baker, J. C.; Reynolds, K. A.; Yoon, J. Y. Rapid, Sensitive Detection of PFOA with Smartphone-Based Flow Rate Analysis Utilizing Competitive Molecular Interactions during Capillary Action. J. Hazard. Mater. 2023, 446, 130699. DOI: 10.1016/j.jhazmat.2022.130699.
  • Tabar, F. A.; Lowdon, J. W.; Caldara, M.; Cleij, T. J.; Wagner, P.; Diliën, H.; Eersels, K.; van Grinsven, B. Thermal Determination of Perfluoroalkyl Substances in Environmental Samples Employing a Molecularly Imprinted Polyacrylamide as a Receptor Layer. Environ. Technol. Innov. 2023, 29, 103021. DOI: 10.1016/j.eti.2023.103021.
  • Canfarotta, F.; Czulak, J.; Betlem, K.; Sachdeva, A.; Eersels, K.; van Grinsven, B.; Cleij, T. J.; Peeters, M. A Novel Thermal Detection Method Based on Molecularly Imprinted Nanoparticles as Recognition Elements. Nanoscale 2018, 10, 2081–2089. DOI: 10.1039/c7nr07785h.
  • Crapnell, R. D.; Canfarotta, F.; Czulak, J.; Johnson, R.; Betlem, K.; Mecozzi, F.; Down, M. P.; Eersels, K.; van Grinsven, B.; Cleij, T. J.; et al. Thermal Detection of Cardiac Biomarkers Heart-Fatty Acid Binding Protein and ST2 Using a Molecularly Imprinted Nanoparticle-Based Multiplex Sensor Platform. ACS Sens. 2019, 4, 2838–2845. DOI: 10.1021/acssensors.9b01666.
  • Williams, R. J.; Crapnell, R. D.; Dempsey, N. C.; Peeters, M.; Banks, C. E. Nano-Molecularly Imprinted Polymers for Serum Creatinine Sensing Using the Heat Transfer Method. Talanta Open 2022, 5, 100087–100095. DOI: 10.1016/j.talo.2022.100087.
  • Motkuri, R. K.; Chatterjee, S.; Barpaga, D.; McGrail, B. P. Composition and Method for Capture and Degradation of PFAS. US 2021/0089418 A1, March 23, 2023.
  • Chatterjee, S.; Motkuri, R. K.; Basuray, S.; Cheng, Y. H. Fluidic Impedance Platform for In-Situ Detection and Quantification of PFAS in Groundwater. US 2022/0252536 A1, August 11, 2022.
  • Ugo, P.; Karimian, N.; Stortini, A. M.; Moretto, L. M. New Molecularly-Imprinted Electrochemical Sensors for Perfluorooctansulfonate and Analytical Methods Based Thereon. WO 2018/162611 A1, September 13, 2018.
  • Wei, X.; Liu, P.; Bai, D.; Zhang, L.; Mao, H.; Zhang, W.; Chen, T.; Yin, D.; Sun, T.; Zhang, Y.; Zhang, W. Industrializable and pH-Tolerant Electropositive Imidazolium Chloride Polymer for High-Efficiency Removal of Perfluoroalkyl Carboxylic Acids from Aqueous Solution. J. Hazard. Mater. 2024, 465, 133095–133105. DOI: 10.1016/j.jhazmat.2023.133095.
  • Pandey, N. K.; Li, H. B.; Chudal, L.; Bui, B.; Amador, E.; Zhang, M. b.; Yu, H. M.; Chen, M. L.; Luo, X.; Chen, W. Exploration of Copper-Cysteamine Nanoparticles as an Efficient Heterogeneous Fenton-like Catalyst for Wastewater Treatment. Mater. Today Phys. 2022, 22, 100587. DOI: 10.1016/j.mtphys.2021.100587.
  • Xu, Y.; Yu, H. M.; Chudal, L.; Pandey, N. K.; Amador, H. E.; Bui, B.; Wang, L. Y.; Ma, X. D.; Deng, S. P.; Zhu, X. H.; et al. Striking Luminescence Phenomena of Carbon Dots and Their Applications as a Double Ratiometric Fluorescence Probes for H2S Detection. Mater. Today Phys. 2021, 17, 100328. DOI: 10.1016/j.mtphys.2020.100328.
  • Huang, Z. Z.; Song, W. Z.; Li, Y.; Wang, L. Y.; Pandey, H. N.; Chudal, L.; Wang, M.; Li, Y. C.; Zhao, L. L.; Yin, W. Z.; Chen, W. The Exploration of Novel Fluorescent Copper-Cysteamine Nanosheets for Sequential Detection of Fe3+ and Dopamine and Fabrication of Molecular Logic Circuit. J. Mater. Chem. C 2020, 8, 12935–12942. DOI: 10.1039/D0TC02843F.
  • Zhan, M. H.; Jia, H. M.; Fan, J. Y.; Yu, H. M.; Amador, E.; Chen, W. Two D-π-a Schiff Based Functionalized Silica Gel Adsorbents for Preconcentration of Copper Ions in Foods and Water for Detection. Anal. Chem. 2019, 91, 6103–6110. DOI: 10.1021/acs.analchem.9b00647.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.