204
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The Effect of Polymerization Techniques on the Creation of Molecularly Imprinted Polymer Sensors and Their Application on Pharmaceutical Compounds

, ORCID Icon, ORCID Icon, &

References

  • Ramanaviciene, A.; Ramanavicius, A. Application of Polypyrrole for the Creation of Immunosensors. Crit. Rev. Anal. Chem. 2002, 32, 245–252. DOI: 10.1080/10408340290765542.
  • Roberts, J. A.; Norris, R.; Paterson, D. L.; Martin, J. H. Therapeutic Drug Monitoring of Antimicrobials. Br. J. Clin. Pharmacol. 2012, 73, 27–36. DOI: 10.1111/j.1365-2125.2011.04080.x.
  • Kidd, J. M.; Asempa, T. E.; Abdelraouf, K. Therapeutic Drug Monitoring. In Remington: The Science and Practice of Pharmacy; Elsevier: Philadelphia, 2020; pp 243–262. DOI: 10.1016/B978-0-12-820007-0.00013-1.
  • Kang, J. S.; Lee, M. H. Overview of Therapeutic Drug Monitoring. Korean J. Intern. Med. 2009, 24, 1–10. DOI: 10.3904/kjim.2009.24.1.1.
  • Burns, E. E.; Carter, L. J.; Snape, J.; Thomas-Oates, J.; Boxall, A. B. A. Application of Prioritization Approaches to Optimize Environmental Monitoring and Testing of Pharmaceuticals. J. Toxicol. Environ. Health B Crit. Rev. 2018, 21, 115–141. DOI: 10.1080/10937404.2018.1465873.
  • Tuzimski, T.; Petruczynik, A. Review of Chromatographic Methods Coupled with Modern Detection Techniques Applied in the Therapeutic Drugs Monitoring (TDM). Molecules 2020, 25, 4026. MDPI AG September 1, DOI: 10.3390/molecules25174026.
  • Banan, K.; Ghorbani-Bidkorbeh, F.; Afsharara, H.; Hatamabadi, D.; Landi, B.; Keçili, R.; Sellergren, B. Nano-Sized Magnetic Core-Shell and Bulk Molecularly Imprinted Polymers for Selective Extraction of Amiodarone from Human Plasma. Anal. Chim. Acta 2022, 1198, 339548. DOI: 10.1016/j.aca.2022.339548.
  • Taylor, P. J. Therapeutic Drug Monitoring of Immunosuppressant Drugs by High-Performance Liquid Chromatography-Mass Spectrometry. Ther. Drug. Monit. 2004, 26, 215–219. DOI: 10.1097/00007691-200404000-00023.
  • Lin, S.; Yu, W.; Wang, B.; Zhao, Y.; En, K.; Zhu, J.; Cheng, X.; Zhou, C.; Lin, H.; Wang, Z.; et al. Noninvasive Wearable Electroactive Pharmaceutical Monitoring for Personalized Therapeutics. Proc. Natl. Acad. Sci. 2020, 117, 19017–19025. DOI: 10.1073/pnas.2009979117.
  • Zanfrognini, B.; Pigani, L.; Zanardi, C. Recent Advances in the Direct Electrochemical Detection of Drugs of Abuse. J Solid State Electrochem. 2019, 24, 2603–2616. DOI: 10.1007/s10008-020-04686-z/Published.
  • Hassanpour, S.; Behnam, B.; Baradaran, B.; Hashemzaei, M.; Oroojalian, F.; Mokhtarzadeh, A.; de la Guardia, M. Carbon Based Nanomaterials for the Detection of Narrow Therapeutic Index Pharmaceuticals. Talanta 2021, 221, 121610. DOI: 10.1016/j.talanta.2020.121610.
  • Mostafiz, B.; Bigdeli, S. A.; Banan, K.; Afsharara, H.; Hatamabadi, D.; Mousavi, P.; Hussain, C. M.; Keçili, R.; Ghorbani-Bidkorbeh, F. Molecularly Imprinted Polymer-Carbon Paste Electrode (MIP-CPE)-Based Sensors for the Sensitive Detection of Organic and Inorganic Environmental Pollutants: A Review. Trends Environ. Anal. Chem. 2021, 32, e00144. DOI: 10.1016/j.teac.2021.e00144.
  • Hu, Y.; Pan, J.; Zhang, K.; Lian, H.; Li, G. Novel Applications of Molecularly-Imprinted Polymers in Sample Preparation. TrAC - Trends Anal. Chem. 2013, 43, 37–52. DOI: 10.1016/j.trac.2012.08.014.
  • Mostafiz, B.; Bigdeli, S. A.; Banan, K.; Afsharara, H.; Hatamabadi, D.; Mousavi, P.; Hussain, C. M.; Keçili, R.; Ghorbani-Bidkorbeh, F. Molecularly Imprinted Polymer-Carbon Paste Electrode (MIP-CPE)-Based Sensors for the Sensitive Detection of Organic and Inorganic Environmental Pollutants: A Review. Trends Environ. Anal. Chem. 2021, 32, e00144. DOI: 10.1016/j.teac.2021.e00144.
  • Vasapollo, G.; Sole, R.; Del; Mergola, L.; Lazzoi, M. R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly Imprinted Polymers: Present and Future Prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. DOI: 10.3390/ijms12095908.
  • Kaya, S. I.; Cetinkaya, A.; Ozkan, S. A. Latest Advances in Determination of Bisphenols with Nanomaterials, Molecularly Imprinted Polymers and Aptamer Based Electrochemical Sensors. Crit. Rev. Anal. Chem. 2022, 52, 1223–1243. DOI: 10.1080/10408347.2020.1864719.
  • Cetinkaya, A.; Bilge, S.; Karadurmus, L.; Sınağ, A.; Ozkan, S. A. The Role and the Place of Ionic Liquids in Molecularly Imprinted Polymer-Based Electrochemical Sensors Development for Sensitive Drug Assay. TrAC - Trends Anal. Chem. 2022, 147, 116512. DOI: 10.1016/j.trac.2021.116512.
  • Cetinkaya, A.; Yıldız, E.; Kaya, S. I.; Çorman, M. E.; Uzun, L.; Ozkan, S. A. A Green Synthesis Route to Develop Molecularly Imprinted Electrochemical Sensor for Selective Detection of Vancomycin from Aqueous and Serum Samples. Green Anal. Chem. 2022, 2, 100017. DOI: 10.1016/j.greeac.2022.100017.
  • Adumitrăchioaie, A.; Tertiș, M.; Cernat, A.; Săndulescu, R.; Cristea, C. Electrochemical Methods Based on Molecularly Imprinted Polymers for Drug Detection. A Review. Int. J. Electrochem. Sci. 2018, 13, 2556–2576. DOI: 10.20964/2018.03.75.
  • van Nostrum, C. F. Molecular Imprinting: A New Tool for Drug Innovation. Drug Discov. Today Technol. 2005, 2, 119–124. DOI: 10.1016/j.ddtec.2005.05.004.
  • Jalilian, N.; Ebrahimzadeh, H.; Asgharinezhad, A. A.; Khodayari, P. Magnetic Molecularly Imprinted Polymer for the Selective Dispersive Micro Solid Phase Extraction of Phenolphthalein in Urine Samples and Herbal Slimming Capsules Prior to HPLC-PDA Analysis. Microchem. J. 2021, 160, 105712. DOI: 10.1016/j.microc.2020.105712.
  • Liu, Y.; Dang, X.; Zhang, S.; Hu, Y.; Chen, H. Migration Detection of Six Aromatic Amines in Polyamide Food Contact Materials by HPLC after Molecularly Imprinted Polymer Pipette Tip Solid Phase Extraction. Food Packag. Shelf Life 2023, 36, 101029. DOI: 10.1016/j.fpsl.2023.101029.
  • Zhang, W.; Zhang, T.; Chen, Y. Simultaneous Quantification of Cyt c Interactions with HSP27 and Bcl-XL Using Molecularly Imprinted Polymers (MIPs) Coupled with Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)-Based Targeted Proteomics. J. Proteomics 2019, 192, 188–195. DOI: 10.1016/j.jprot.2018.09.001.
  • Shahzad, A.; Majeed, A.; Lahiq, A. A.; Alqahtani, T.; Alqahtani, A. M.; Bashir, K.; Hussain, M.; Fu, Q. Preparation and Characterization of Dummy Template Molecularly Imprinted Polymers Coupled with HPLC for Selective Extraction of Spiked Cloprostenol from Milk Samples. Arab. J. Chem. 2023, 16, 105045. DOI: 10.1016/j.arabjc.2023.105045.
  • Kardani, F.; Mirzajani, R.; Tamsilian, Y.; Kiasat, A. The Residual Determination of 39 Antibiotics in Meat and Dairy Products Using Solid-Phase Microextraction Based on Deep Eutectic Solvents@UMCM-1 Metal-Organic Framework/Molecularly Imprinted Polymers with HPLC-UV. Food Chem. Adv. 2023, 2, 100173. DOI: 10.1016/j.focha.2022.100173.
  • Zhang, J. W.; Tan, L.; Yuan, J.; Bin; Qiao, R. F.; Wang, C. Z.; Yang, F. Q.; Zhou, L.; Di; Zhang, Q. H.; Xia, Z. N.; Yuan, C. S. Extraction of Activated Epimedium Glycosides in Vivo and in Vitro by Using Bifunctional-Monomer Chitosan Magnetic Molecularly Imprinted Polymers and Identification by UPLC-Q-TOF-MS. Talanta 2020, 219, 121350. DOI: 10.1016/j.talanta.2020.121350.
  • Ma, M.; Wu, T.; Sun, G.; Zhang, S. Determination of Testosterone in Serum by Magnetic Molecularly Imprinted Polymer-Coupled Nano-ESI-MS. Anal. Biochem. 2022, 653, 114719. DOI: 10.1016/j.ab.2022.114719.
  • Ramalho, R. R. F.; Pereira, I.; da S. Lima, G.; dos Santos, G. F.; Maciel, L. I. L.; Simas, R. C.; Vaz, B. G. Fumonisin B1 Analysis in Maize by Molecularly Imprinted Polymer Paper Spray Ionization Mass Spectrometry (MIP-PSI-MS). J. Food Compos. Anal. 2022, 107, 104362. DOI: 10.1016/j.jfca.2021.104362.
  • Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular Imprinting: Perspectives and Applications. Chem. Soc. Rev. 2016, 45, 2137–2211. DOI: 10.1039/c6cs00061d.
  • Cheong, W. J.; Yang, S. H.; Ali, F. Molecular Imprinted Polymers for Separation Science: A Review of Reviews. J. Sep. Sci. 2013, 36, 609–628. DOI: 10.1002/jssc.201200784.
  • Shahar, T.; Tal, N.; Mandler, D. Molecularly Imprinted Polymer Particles: Formation, Characterization and Application. Colloids Surf. A Physicochem. Eng. Asp. 2016, 495, 11–19. DOI: 10.1016/j.colsurfa.2016.01.027.
  • Bajaj, A.; Buchholz, M.; Choudhary, S.; Altintas, Z. Molecularly Imprinted Polymer Sensors: A Bridge to Advanced Diagnostics; Elsevier: Cambridge, MA, 2023. DOI: 10.1016/B978-0-323-88431-0.00008-9.
  • Li, J.; Wei, G.; Zhang, Y. Molecularly Imprinted Polymers as Recognition Elements in Sensors; Elsevier B.V.: Amsterdam, The Netherlands, 2012. DOI: 10.1016/B978-0-444-56331-6.00002-5.
  • Gui, R.; Jin, H.; Guo, H.; Wang, Z. Recent Advances and Future Prospects in Molecularly Imprinted Polymers-Based Electrochemical Biosensors. Biosens. Bioelectron. 2018, 100, (August 2017), 56–70. DOI: 10.1016/j.bios.2017.08.058.
  • Ni, X.; Tang, X.; Wang, D.; Zhang, J.; Zhao, L.; Gao, J.; He, H.; Dramou, P. Research Progress of Sensors Based on Molecularly Imprinted Polymers in Analytical and Biomedical Analysis. J. Pharm. Biomed. Anal. 2023, 235, 115659. DOI: 10.1016/j.jpba.2023.115659.
  • Florea, A.; Feier, B.; Cristea, C. In Situ Analysis Based on Molecularly Imprinted Polymer Electrochemical Sensors, 1st ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2019; Vol. 86. DOI: 10.1016/bs.coac.2019.05.005.
  • Wang, L.; Pagett, M.; Zhang, W. Molecularly Imprinted Polymer (MIP) Based Electrochemical Sensors and Their Recent Advances in Health Applications. Sens. Actuators Rep. 2023, 5, 100153. DOI: 10.1016/j.snr.2023.100153.
  • Cetinkaya, A.; Unal, M. A.; Nazır, H.; Çorman, M. E.; Uzun, L.; Ozkan, S. A. Two Different Molecularly Imprinted Polymeric Coating Techniques for Creating Sensitive and Selective Electrochemical Sensors for the Detection of Ribavirin. Sens. Actuators B Chem. 2023, 389, 133914. DOI: 10.1016/j.snb.2023.133914.
  • Florea, A.; Feier, B.; Cristea, C. In Situ Analysis Based on Molecularly Imprinted Polymer Electrochemical Sensors. In Comprehensive Analytical Chemistry; Elsevier B.V.: Amsterdam, The Netherlands, 2019; Vol. 86, pp 193–234. DOI: 10.1016/bs.coac.2019.05.005.
  • Moreira Gonçalves, L. Electropolymerized Molecularly Imprinted Polymers: Perceptions Based on Recent Literature for Soon-to-Be World-Class Scientists. Curr. Opin. Electrochem. 2021, 25, 100640. DOI: 10.1016/j.coelec.2020.09.007.
  • Cetinkaya, A.; Kaya, S. I.; Çorman, M. E.; Karakaya, M.; Bellur Atici, E.; Ozkan, S. A. A Highly Sensitive and Selective Electrochemical Sensor Based on Computer-Aided Design of Molecularly Imprinted Polymer for the Determination of Leflunomide. Microchem. J. 2022, 179, 107496. DOI: 10.1016/j.microc.2022.107496.
  • Çorman, M. E.; Cetinkaya, A.; Armutcu, C.; Bellur Atici, E.; Uzun, L.; Ozkan, S. A. A Sensitive and Selective Electrochemical Sensor Based on Molecularly Imprinted Polymer for the Assay of Teriflunomide. Talanta 2022, 249, 123689. DOI: 10.1016/j.talanta.2022.123689.
  • Paruli, E.; Soppera, O.; Haupt, K.; Gonzato, C. Photopolymerization and Photostructuring of Molecularly Imprinted Polymers. ACS Appl. Polym. Mater. 2021, 3, 4769–4790. DOI: 10.1021/acsapm.1c00661.
  • Fuchs, Y.; Soppera, O.; Haupt, K. Photopolymerization and Photostructuring of Molecularly Imprinted Polymers for Sensor Applications-A Review. Anal. Chim. Acta 2012, 717, 7–20. DOI: 10.1016/j.aca.2011.12.026.
  • Kaya, S. I.; Cetinkaya, A.; Atici, E. B.; Çorman, M. E.; Uzun, L.; Ozkan, S. A. Electrochemical Sensing of Aclidinium Bromide with Metal Ion-Assisted Molecularly Imprinted Films. Microchem. J. 2023, 184, 108128. DOI: 10.1016/j.microc.2022.108128.
  • Cetinkaya, A.; Kaya, S. I.; Alahmad, W.; Bellur Atici, E.; Ozkan, S. A. Designing an Electrochemical Sensor Based on ZnO Nanoparticle-Supported Molecularly Imprinted Polymer for Ultra-Sensitive and Selective Detection of Sorafenib. Anal. Chim. Acta 2023, 1280, 341866. DOI: 10.1016/j.aca.2023.341866.
  • Sulym, I.; Cetinkaya, A.; Yence, M.; Çorman, M. E.; Uzun, L.; Ozkan, S. A. Novel Electrochemical Sensor Based on Molecularly Imprinted Polymer Combined with L-His-MWCNTs@PDMS-5 Nanocomposite for Selective and Sensitive Assay of Tetracycline. Electrochim. Acta 2022, 430, 141102. DOI: 10.1016/j.electacta.2022.141102.
  • Kaya, S. I.; Bakirhan, N. K.; Corman, M. E.; Uzun, L.; Ozkan, S. A. Comparative MIP Sensor Technique: Photopolymerization or Thermal Polymerization for the Sensitive Determination of Anticancer Drug Regorafenib in Different Matrixes. Mikrochim. Acta 2023, 190, 397. DOI: 10.1007/s00604-023-05963-0.
  • Kaya, S. I.; Majidian, M.; Ozcelikay-Akyildiz, G.; Cetinkaya, A.; Topal, B. D.; Atici, E. B.; Ozkan, S. A. A Comparative Study of Molecular Imprinting Techniques Used for Fabrication of Electrochemical Sensor of Olaparib. J. Electrochem. Soc. 2023, 170, 096502. DOI: 10.1149/1945-7111/acf620.
  • Yang, X.; Pei, W.; Wei, C.; Yang, X.; Zhang, H.; Wang, Y.; Yuan, M.; Gui, Q.; Liu, Y.; Wang, Y.; Chen, H. Chemical Polymerization of Conducting Polymer Poly(3,4-Ethylenedioxythiophene) onto Neural Microelectrodes. Sens. Actuators A Phys. 2023, 349, 114022. DOI: 10.1016/j.sna.2022.114022.
  • Hui, Y.; Bian, C.; Xia, S.; Tong, J.; Wang, J. Synthesis and Electrochemical Sensing Application of Poly(3,4-Ethylenedioxythiophene)-Based Materials: A Review. Anal. Chim. Acta. 2018, 1022, 1–19. DOI: 10.1016/j.aca.2018.02.080.
  • Adumitrăchioaie, A.; Tertiș, M.; Cernat, A.; Săndulescu, R.; Cristea, C. Electrochemical Methods Based on Molecularly Imprinted Polymers for Drug Detection. A Review. Int. J. Electrochem. Sci. 2018, 13, 2556–2576. DOI: 10.20964/2018.03.75.
  • Afsharara, H.; Asadian, E.; Mostafiz, B.; Banan, K.; Bigdeli, S. A.; Hatamabadi, D.; Keshavarz, A.; Hussain, C. M.; Keçili, R.; Ghorbani-Bidkorpeh, F. Molecularly Imprinted Polymer-Modified Carbon Paste Electrodes (MIP-CPE): A Review on Sensitive Electrochemical Sensors for Pharmaceutical Determinations. TrAC, Trends Anal. Chem. 2023, 160, 116949. DOI: 10.1016/j.trac.2023.116949.
  • Herrera-Chacón, A.; Cetó, X.; del Valle, M. Molecularly Imprinted Polymers - towards Electrochemical Sensors and Electronic Tongues. Anal. Bioanal. Chem. 2021, 413, 6117–6140. DOI: 10.1007/s00216-021-03313-8.
  • Siddiqui, M. R.; AlOthman, Z. A.; Rahman, N. Analytical Techniques in Pharmaceutical Analysis: A Review. Arab. J. Chem. 2017, 10, S1409–S1421. DOI: 10.1016/j.arabjc.2013.04.016.
  • The Analysis of Drugs in Biological Fluids, 2nd ed.; CRC Press: Florida, 2018. DOI: 10.1201/9780203737194.
  • Preda, D.; Jinga, M. L.; David, I. G.; Radu, G. L. Determination of Dipyridamole Using a MIP-Modified Disposable Pencil Graphite Electrode. Chemosensors 2023, 11, 400. DOI: 10.3390/chemosensors11070400.
  • Ozcelikay, G.; Cetinkaya, A.; Atici, E. B.; Ozkan, S. A. The Electrochemical Quantitation Method for Sugammadex via a Molecularly Imprinted Polymer-Based Sensor. Anal. Methods 2023, 15, 2309–2317. DOI: 10.1039/D3AY00452J.
  • Elmalahany, N. S.; Abdel‐Tawab, M. A.; Elwy, H. M.; Fahmy, H. M.; El Nashar, R. M. Design and Application of Molecularly Imprinted Electrochemical Sensor for the New Generation Antidiabetic Drug Saxagliptin. Electroanalysis 2023, 35, e202200313. DOI: 10.1002/elan.202200313.
  • Zidarič, T.; Majer, D.; Maver, T.; Finšgar, M.; Maver, U. The Development of an Electropolymerized, Molecularly Imprinted Polymer (MIP) Sensor for Insulin Determination Using Single-Drop Analysis. Analyst 2023, 148, 1102–1115. DOI: 10.1039/D2AN02025D.
  • Cetinkaya, A.; Kaya, S. I.; Atici, E. B.; Çorman, M. E.; Uzun, L.; Ozkan, S. A. A Semi-Covalent Molecularly Imprinted Electrochemical Sensor for Rapid and Selective Detection of Tiotropium Bromide. Anal. Bioanal. Chem. 2022, 414, 8023–8033. DOI: 10.1007/s00216-022-04335-6.
  • Hassan, S. S. M.; Kamel, A. H.; Fathy, M. A. All-Solid-State Paper-Based Potentiometric Combined Sensor Modified with Reduced Graphene Oxide (RGO) and Molecularly Imprinted Polymer for Monitoring Losartan Drug in Pharmaceuticals and Biological Samples. Talanta 2023, 253, 123907. DOI: 10.1016/j.talanta.2022.123907.
  • Liu, Y.; Xia, Y.; Tang, Y.; Chen, Y.; Cao, J.; Zhao, F.; Zeng, B. A Ratiometric Electrochemical Sensor Based on Cu-Coordinated Molecularly Imprinted Polymer and Porous Carbon Supported Ag Nanoparticles for Highly Sensitive and Selective Detection of Perphenazine. Anal. Chim. Acta 2022, 1227, 340301. DOI: 10.1016/j.aca.2022.340301.
  • Hassan, S. S. M.; Kamel, A. H.; Fathy, M. A. A Novel Screen-Printed Potentiometric Electrode with Carbon Nanotubes/Polyaniline Transducer and Molecularly Imprinted Polymer for the Determination of Nalbuphine in Pharmaceuticals and Biological Fluids. Anal. Chim. Acta 2022, 1227, 340239. DOI: 10.1016/j.aca.2022.340239.
  • Abdel-Haleem, F. M.; Gamal, E.; Rizk, M. S.; Madbouly, A.; El Nashar, R. M.; Anis, B.; Elnabawy, H. M.; Khalil, A. S. G.; Barhoum, A. Molecularly Imprinted Electrochemical Sensor-Based Fe2O3@MWCNTs for Ivabradine Drug Determination in Pharmaceutical Formulation, Serum, and Urine Samples. Front. Bioeng. Biotechnol. 2021, 9, 648704. DOI: 10.3389/fbioe.2021.648704.
  • Busardo, F. P.; Pichini, S.; Pellegrini, M.; Montana, A.; Lo Faro, A. F.; Zaami, S.; Graziano, S. Correlation between Blood and Oral Fluid Psychoactive Drug Concentrations and Cognitive Impairment in Driving under the Influence of Drugs. CN 2017, 16, 84–96. DOI: 10.2174/1570159X15666170828162057.
  • Özbek, O.; Berkel, C.; Isildak, Ö. Applications of Potentiometric Sensors for the Determination of Drug Molecules in Biological Samples. Crit. Rev. Anal. Chem. 2022, 52, 768–779. DOI: 10.1080/10408347.2020.1825065.
  • Hadland, S. E.; Levy, S. Objective Testing. Child Adolesc. Psychiatr. Clin. N. Am. 2016, 25, 549–565. DOI: 10.1016/j.chc.2016.02.005.
  • Manhas, S.; Bajaj, A.; Jain, B.; Kumar, D.; Singh, J.; Shukla, S.; Jain, R. Molecularly Imprinted Polymer-Based Dispersive Solid-Phase Extraction for the Selective Determination of Carisoprodol in Biological and Pharmaceutical Samples. New J. Chem. 2023, 47, 14436–14446. DOI: 10.1039/D3NJ01983G.
  • Reza Siavashi; Hadi Beitollahi. Molecularly Imprinted Polymer Based Sensor for Measuring of Levodopa: Evaluation as a Modifier for Glassy Carbon Electrode in Electrochemically Detection.Russ J Electrochem, 2023, 59 (1), 70–78. DOI: 10.1134/S1023193523010093.
  • Ren, S.; Cheng, S.; Wang, Q.; Zheng, Z. Molecularly Imprinted Voltammetric Sensor Sensibilized by Nitrogen‐Vacancy Graphitized Carbon Nitride and Ag‐MWCNTs towards the Detection of Acetaminophen. J. Mol. Recognit. 2022, 35, e2992. DOI: 10.1002/jmr.2992.
  • Hatamluyi, B.; Sadeghzadeh, S.; Sadeghian, R.; Mirimoghaddam, M. M.; Boroushaki, M. T. A Signal On-off Ratiometric Electrochemical Sensing Platform Coupled with a Molecularly Imprinted Polymer and CuCo2O4/NCNTs Signal Amplification for Selective Determination of Gemcitabine. Sens. Actuators B Chem. 2022, 371, 132552. DOI: 10.1016/j.snb.2022.132552.
  • Lu, H.; Liu, M.; Cui, H.; Huang, Y.; Li, L.; Ding, Y. An Advanced Molecularly Imprinted Electrochemical Sensor Based Bifunctional Monomers for Highly Sensitive Detection of Nitrofurazone. Electrochim. Acta 2022, 427, 140858. DOI: 10.1016/j.electacta.2022.140858.
  • Karadurmus, L.; Ozcelikay, G.; Armutcu, C.; Ozkan, S. A. Electrochemical Chiral Sensor Based on Molecularly Imprinted Polymer for Determination of (1S,2S)-Pseudoephedrine in Dosage Forms and Biological Sample. Microchem. J. 2022, 181, 107820. DOI: 10.1016/j.microc.2022.107820.
  • Ozkan, E.; Çorman, M. E.; Nemutlu, E.; Ozkan, S. A.; Kır, S. Development of an Electrochemical Sensor Based on Porous Molecularly Imprinted Polymer via Photopolymerization for Detection of Somatostatin in Pharmaceuticals and Human Serum. Electroanal. Chem. 2022, 919, 116554. DOI: 10.1016/j.jelechem.2022.116554.
  • Abo Elalaa, A. S.; Abdel‐Hamied Abdel‐Tawab, M.; Abdel Ghani, N. T.; El Nashar, R. M. Computational Design and Application of Molecularly Imprinted/MWCNT Based Electrochemical Sensor for the Determination of Silodosin. Electroanalysis 2022, 34, 1802–1820. DOI: 10.1002/elan.202200085.
  • Lee, K.; Jepson, W. Drivers and Barriers to Urban Water Reuse: A Systematic Review. Water Secur. 2020, 11, 100073. DOI: 10.1016/j.wasec.2020.100073.
  • Aus der Beek, T.; Weber, F.-A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the Environment-Global Occurrences and Perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. DOI: 10.1002/etc.3339.
  • Georgescu-State, R.; van Staden, J. F.; Staden, R.-I. S.; State, R. N. Electrochemical Platform Based on Molecularly Imprinted Polymer with Zinc Oxide Nanoparticles and Multiwalled Carbon Nanotubes Modified Screen-Printed Carbon Electrode for Amaranth Determination. Microchim. Acta 2023, 190, 229. DOI: 10.1007/s00604-023-05811-1.
  • Liu, P.; Zhang, R.; Zheng, L.; Cao, Q. An Electrochemical Sensor for Trimethoprim Based on a Magnetic Molecularly Imprinted Carbon Paste Electrode. Chemosensors 2023, 11, 339. DOI: 10.3390/chemosensors11060339.
  • Zhang, Q.; Liu, Q.; He, P. Fully Optimized New Sensitive Electrochemical Device for the Selective Determination of 6-Thioguanine Anticancer Drug in Wastewater and Biological Samples. Chemosphere 2023, 330, 138634. DOI: 10.1016/j.chemosphere.2023.138634.
  • Vu, O. T.; Nguyen, Q. H.; Nguy Phan, T.; Luong, T. T.; Eersels, K.; Wagner, P.; Truong, L. T. N. Highly Sensitive Molecularly Imprinted Polymer-Based Electrochemical Sensors Enhanced by Gold Nanoparticles for Norfloxacin Detection in Aquaculture Water. ACS Omega 2023, 8, 2887–2896. DOI: 10.1021/acsomega.2c04414.
  • Seguro, I.; Rebelo, P.; Pacheco, J. G.; Delerue-Matos, C. Electropolymerized, Molecularly Imprinted Polymer on a Screen-Printed Electrode—A Simple, Fast, and Disposable Voltammetric Sensor for Trazodone. Sensors 2022, 22, 2819. DOI: 10.3390/s22072819.
  • Rebelo, P.; Pacheco, J. G.; Voroshylova, I. V.; Melo, A.; Cordeiro, M. N. D. S.; Delerue-Matos, C. A Simple Electrochemical Detection of Atorvastatin Based on Disposable Screen-Printed Carbon Electrodes Modified by Molecularly Imprinted Polymer: Experiment and Simulation. Anal. Chim. Acta 2022, 1194, 339410. DOI: 10.1016/j.aca.2021.339410.
  • Lu, H.; Cui, H.; Duan, D.; Li, L.; Ding, Y. A Novel Molecularly Imprinted Electrochemical Sensor Based on a Nitrogen-Doped Graphene Oxide Quantum Dot and Molybdenum Carbide Nanocomposite for Indometacin Determination. Analyst 2021, 146, 7178–7186. DOI: 10.1039/D1AN01665B.
  • Elmasry, M. R.; Tawfik, S. M.; Kattaev, N.; Lee, Y.-I. Ultrasensitive Detection and Removal of Carbamazepine in Wastewater Using UCNPs Functionalized with Thin-Shell MIPs. Microchem. J. 2021, 170, 106674. DOI: 10.1016/j.microc.2021.106674.
  • Koçak, İ. ZnO and Au Nanoparticles Supported Highly Sensitive and Selective Electrochemical Sensor Based on Molecularly Imprinted Polymer for Sulfaguanidine and Sulfamerazine Detection. J. Pharm. Biomed. Anal. 2023, 234, 115518. DOI: 10.1016/j.jpba.2023.115518.
  • Saher, A.; Abdallah, A. B.; Fathi, A.; Molouk, S.; Mortada, W. I.; Khalifa, M. E. MIP/GO/GCE Sensor for the Determination of Aminophylline in Pharmaceutical Ingredients and Urine Samples. Anal. Bioanal. Chem. Res. 2023, 10, 435–443.
  • Ozcelikay, G.; Cetinkaya, A.; Atici, E. B.; Ozkan, S. A. The Electrochemical Quantitation Method for Sugammadex via a Molecularly Imprinted Polymer-Based Sensor. Anal. Methods 2023, 15, 2309–2317. DOI: 10.1039/D3AY00452J.
  • Zhou, B.; Sheng, X.; Xie, H.; Zhou, S.; Huang, L.; Zhang, Z.; Zhu, Y.; Zhong, M. Molecularly Imprinted Electrochemistry Sensor Based on AuNPs/RGO Modification for Highly Sensitive and Selective Detection of Nitrofurazone. Food Anal. Methods 2023, 16, 709–720. DOI: 10.1007/s12161-023-02447-y.
  • Wang, M.; Cetó, X.; del Valle, M. A Sensor Array Based on Molecularly Imprinted Polymers and Machine Learning for the Analysis of Fluoroquinolone Antibiotics. ACS Sens. 2022, 7, 3318–3325. DOI: 10.1021/acssensors.2c01260.
  • Liu, Y.; Xia, Y.; Tang, Y.; Chen, Y.; Cao, J.; Zhao, F.; Zeng, B. A Ratiometric Electrochemical Sensor Based on Cu-Coordinated Molecularly Imprinted Polymer and Porous Carbon Supported Ag Nanoparticles for Highly Sensitive and Selective Detection of Perphenazine. Anal. Chim. Acta 2022, 1227, 340301. DOI: 10.1016/j.aca.2022.340301.
  • Hatamluyi, B.; Sadeghzadeh, S.; Sadeghian, R.; Mirimoghaddam, M. M.; Boroushaki, M. T. A Signal On-off Ratiometric Electrochemical Sensing Platform Coupled with a Molecularly Imprinted Polymer and CuCo2O4/NCNTs Signal Amplification for Selective Determination of Gemcitabine. Sens. Actuators B Chem. 2022, 371, 132552. DOI: 10.1016/j.snb.2022.132552.
  • Li, G.; Wu, J.; Qi, X.; Wan, X.; Liu, Y.; Chen, Y.; Xu, L. Molecularly Imprinted Polypyrrole Film-Coated Poly(3,4-Ethylenedioxythiophene):Polystyrene Sulfonate-Functionalized Black Phosphorene for the Selective and Robust Detection of Norfloxacin. Mater. Today Chem. 2022, 26, 101043. DOI: 10.1016/j.mtchem.2022.101043.
  • Lu, H.; Liu, M.; Cui, H.; Huang, Y.; Li, L.; Ding, Y. An Advanced Molecularly Imprinted Electrochemical Sensor Based Bifunctional Monomers for Highly Sensitive Detection of Nitrofurazone. Electrochim. Acta 2022, 427, 140858. DOI: 10.1016/j.electacta.2022.140858.
  • Zhou, Q.; Sasaki, Y.; Ohshiro, K.; Fan, H.; Montagna, V.; Gonzato, C.; Haupt, K.; Minami, T. An Organic Transistor for the Selective Detection of Tropane Alkaloids Utilizing a Molecularly Imprinted Polymer. J. Mater. Chem. B 2022, 10, 6808–6815. DOI: 10.1039/D2TB01067D.
  • Tang, X.; Gu, Y.; Tang, P.; Liu, L. Electrochemical Sensor Based on Magnetic Molecularly Imprinted Polymer and Graphene-UiO-66 Composite Modified Screen-Printed Electrode for Cannabidiol Detection. Int. J Electrochem. Sci. 2022, 17, 220562. DOI: 10.20964/2022.05.64.
  • Cetinkaya, A.; Kaya, S. I.; Çorman, M. E.; Karakaya, M.; Bellur Atici, E.; Ozkan, S. A. A Highly Sensitive and Selective Electrochemical Sensor Based on Computer-Aided Design of Molecularly Imprinted Polymer for the Determination of Leflunomide. Microchem. J. 2022, 179, 107496. DOI: 10.1016/j.microc.2022.107496.
  • Abdallah, A. B.; Saher, A.; Molouk, A. F. S.; Mortada, W. I.; Khalifa, M. E. Applications of Electrochemical Techniques for Determination of Anticoagulant Drug (Rivaroxaban) in Real Samples. Biosens. Bioelectron. 2022, 208, 114213. DOI: 10.1016/j.bios.2022.114213.
  • Pereira, A.; Cervini, P.; Rivera, V.; Cavalheiro, É. Graphite-Polyurethane Composite Electrode Modified with Molecularly Imprinted Polymer for Determination of Diclofenac. J. Braz. Chem. Soc. 2022, 9, 1–16. DOI: 10.21577/0103-5053.20210138.
  • Abu Shama, N.; Aşır, S.; Ozsoz, M.; Göktürk, I.; Türkmen, D.; Yılmaz, F.; Denizli, A. Gold-Modified Molecularly Imprinted N-Methacryloyl-(l)-Phenylalanine-Containing Electrodes for Electrochemical Detection of Dopamine. Bioengineering 2022, 9, 87. DOI: 10.3390/bioengineering9030087.
  • Vahidifar, M.; Es’haghi, Z.; Oghaz, N. M.; Mohammadi, A. A.; Kazemi, M. S. Multi-Template Molecularly Imprinted Polymer Hybrid Nanoparticles for Selective Analysis of Nonsteroidal Anti-Inflammatory Drugs and Analgesics in Biological and Pharmaceutical Samples. Environ. Sci. Pollut. Res. Int. 2022, 29, 47416–47435. DOI: 10.1007/s11356-021-18308-2.
  • Wadie, M.; Marzouk, H. M.; Rezk, M. R.; Abdel-Moety, E. M.; Tantawy, M. A. A Sensing Platform of Molecular Imprinted Polymer-Based Polyaniline/Carbon Paste Electrodes for Simultaneous Potentiometric Determination of Alfuzosin and Solifenacin in Binary Co-Formulation and Spiked Plasma. Anal. Chim. Acta 2022, 1200, 339599. DOI: 10.1016/j.aca.2022.339599.
  • Wang, M.; Cetó, X.; del Valle, M. A Novel Electronic Tongue Using Electropolymerized Molecularly Imprinted Polymers for the Simultaneous Determination of Active Pharmaceutical Ingredients. Biosens. Bioelectron. 2022, 198, 113807. DOI: 10.1016/j.bios.2021.113807.
  • Kaya, S. I.; Cetinkaya, A.; Ozcelikay, G.; Çorman, M. E.; Karakaya, M.; Bellur Atici, E.; Ozkan, S. A. Computational Design and Fabrication of a Highly Selective and Sensitive Molecularly Imprinted Electrochemical Sensor for the Detection of Enzalutamide. Electroanal. Chem. 2022, 907, 116030. DOI: 10.1016/j.jelechem.2022.116030.
  • Kuşat, K.; Şanli, S.; Timur, S.; Akgöl, S. Selective Nanosensor Based on Folic Acid Imprinted Nanostructures. Turk. J. Chem. 2022, 46, 1210–1225. DOI: 10.55730/1300-0527.3428.
  • Velayati, S.; Saadati, F.; Shayani-Jam, H.; Shekari, A.; Valipour, R.; Reza Yaftian, M. Fabrication and Evaluation of a Molecularly Imprinted Polymer Electrochemical Nanosensor for the Sensitive Monitoring of Phenobarbital in Biological Samples. Microchem. J. 2022, 174, 107063. DOI: 10.1016/j.microc.2021.107063.
  • Li, Y.; Xiong, Y. Molecularly Imprinted Electrochemical Sensor for Detection of Prednisolone in Human Plasma as a Doping Agent in Sports. Int. J. Electrochem. Sci. 2021, 16, 211033. DOI: 10.20964/2021.10.41.
  • Hassan Pour, B.; Haghnazari, N.; Keshavarzi, F.; Ahmadi, E.; Zarif, B. R. A Sensitive Sensor Based on Molecularly Imprinted Polypyrrole on Reduced Graphene Oxide Modified Glassy Carbon Electrode for Nevirapine Analysis. Anal. Methods 2021, 13, 4767–4777. DOI: 10.1039/D1AY00500F.
  • Rebelo, P.; Pacheco, J. G.; Voroshylova, I. V.; Cordeiro, M. N. D. S.; Delerue-Matos, C. Development of a Molecular Imprinted Electrochemiluminescence Sensor for Amitriptyline Detection: From MD Simulations to Experimental Implementation. Electrochim. Acta 2021, 397, 139273. DOI: 10.1016/j.electacta.2021.139273.
  • Majdi, M.; Mizani, F.; Mohammad-Khah, A. Determination of Dexamethasone Disodium Phosphate Using Potentiometric Sensors Based on Molecularly Imprinted Polymer in Flow Injection and Batch Systems. Anal. Bioanal. Electrochem. 2021, 13, 139–159.
  • Cetinkaya, A.; Kaya, S. I.; Ozcelikay, G.; Atici, E. B.; Ozkan, S. A. A Molecularly Imprinted Electrochemical Sensor Based on Highly Selective and an Ultra-Trace Assay of Anti-Cancer Drug Axitinib in Its Dosage Form and Biological Samples. Talanta 2021, 233, 122569. DOI: 10.1016/j.talanta.2021.122569.
  • Medetalibeyoğlu, H. An Investigation on Development of a Molecular Imprinted Sensor with Graphitic Carbon Nitride (g-C3N4) Quantum Dots for Detection of Acetaminophen. Carbon Lett. 2021, 31, 1237–1248. DOI: 10.1007/s42823-021-00247-0.
  • Ermiş, N.; Tinkiliç, N. Development of an Electrochemical Sensor for Selective Determination of Dopamine Based on Molecularly Imprinted Poly(P‐Aminothiophenol) Polymeric Film. Electroanalysis 2021, 33, 1491–1501. DOI: 10.1002/elan.202060556.
  • Garcia, S. M.; Wong, A.; Khan, S.; Sotomayor, M. D. P. T. A Simple, Sensitive and Efficient Electrochemical Platform Based on Carbon Paste Electrode Modified with Fe3O4@MIP and Graphene Oxide for Folic Acid Determination in Different Matrices. Talanta 2021, 229, 122258. DOI: 10.1016/j.talanta.2021.122258.
  • Mahnashi, M. H.; Mahmoud, A. M.; Alhazzani, K.; Alanazi, A. Z.; Alaseem, A. M.; Algahtani, M. M.; El-Wekil, M. M. Ultrasensitive and Selective Molecularly Imprinted Electrochemical Oxaliplatin Sensor Based on a Novel Nitrogen-Doped Carbon Nanotubes/Ag@Cu MOF as a Signal Enhancer and Reporter Nanohybrid. Microchim. Acta 2021, 188, 124. DOI: 10.1007/s00604-021-04781-6.
  • Seguro, I.; Pacheco, J. G.; Delerue-Matos, C. Low Cost, Easy to Prepare and Disposable Electrochemical Molecularly Imprinted Sensor for Diclofenac Detection. Sensors (Basel) 2021, 21, 1975. DOI: 10.3390/s21061975.
  • Afzali, M.; Mostafavi, A.; Afzali, Z.; Shamspur, T. Designing a Rapid and Selective Electrochemical Nanosensor Based on Molecularly Imprinted Polymer on the Fe3O4/MoS2/Glassy Carbon Electrode for Detection of Immunomodulatory Drug Pomalidomide. Microchem. J. 2021, 164, 106039. DOI: 10.1016/j.microc.2021.106039.
  • El‐Beshlawy, M. M.; Abdel‐Haleem, F. M.; Barhoum, A. Molecularly Imprinted Potentiometric Sensor for Nanomolar Determination of Pioglitazone Hydrochloride in Pharmaceutical Formulations. Electroanalysis 2021, 33, 1244–1254. DOI: 10.1002/elan.202060141.
  • Oghli, A. H.; Soleymanpour, A. Pencil Graphite Electrode Modified with Nitrogen-Doped Graphene and Molecular Imprinted Polyacrylamide/Sol-Gel as an Ultrasensitive Electrochemical Sensor for the Determination of Fexofenadine in Biological Media. Biochem. Eng. J. 2021, 167, 107920. DOI: 10.1016/j.bej.2020.107920.
  • Massumi, S.; Ahmadi, E.; Akbari, A.; Gholivand, M. B. Highly Sensitive and Selective Sensor Based on Molecularly Imprinted Polymer for Voltammetric Determination of Nevirapine in Biological Samples. Electroanal. Chem. 2020, 876, 114508. DOI: 10.1016/j.jelechem.2020.114508.
  • Tawab, M. A. H. A.; El-Moghny, M. G. A.; El Nashar, R. M. Computational Design of Molecularly Imprinted Polymer for Electrochemical Sensing and Stability Indicating Study of Sofosbuvir. Microchem. J. 2020, 158, 105180. DOI: 10.1016/j.microc.2020.105180.
  • Cheng, J.; Li, Y.; Zhong, J.; Lu, Z.; Wang, G.; Sun, M.; Jiang, Y.; Zou, P.; Wang, X.; Zhao, Q.; et al. Molecularly Imprinted Electrochemical Sensor Based on Biomass Carbon Decorated with MOF-Derived Cr2O3 and Silver Nanoparticles for Selective and Sensitive Detection of Nitrofurazone. Chem. Eng. J. 2020, 398, 125664. DOI: 10.1016/j.cej.2020.125664.
  • Shi, X.; Zuo, Y.; Jia, X.; Wu, X.; Jing, N.; Wen, B.; Mi, X. A Novel Molecularly Imprinted Sensor Based on Gold Nanoparticles/Reduced Graphene Oxide/Single-Walled Carbon Nanotubes Nanocomposite for the Detection of Pefloxacin. Int. J. Electrochem. Sci. 2020, 15, 9683–9697. DOI: 10.20964/2020.10.38.
  • Mourad, R.; El Badry Mohamed, M.; Frag, E. Y. Z.; El‐Boraey, H. A.; EL‐Sanafery, S. S. A Novel Molecularly Imprinted Potentiometric Sensor for the Fast Determination of Bisoprolol Fumarate in Biological Samples. Electroanalysis 2021, 33, 66–74. DOI: 10.1002/elan.202060043.
  • Afzali, M.; Mostafavi, A.; Shamspur, T. A Novel Electrochemical Sensor Based on Magnetic Core@Shell Molecularly Imprinted Nanocomposite (Fe3O4@Graphene Oxide@MIP) for Sensitive and Selective Determination of Anticancer Drug Capecitabine. Arab. J. Chem. 2020, 13, 6626–6638. DOI: 10.1016/j.arabjc.2020.06.018.
  • Bi, H.; Wu, Y.; Wang, Y.; Liu, G.; Ning, G.; Xu, Z. A Molecularly Imprinted Polymer Combined with Dual Functional Au@Fe3O4 Nanocomposites for Sensitive Detection of Kanamycin. Electroanal. Chem. 2020, 870, 114216. DOI: 10.1016/j.jelechem.2020.114216.
  • Lu, Z.; Li, Y.; Liu, T.; Wang, G.; Sun, M.; Jiang, Y.; He, H.; Wang, Y.; Zou, P.; Wang, X.; et al. A Dual-Template Imprinted Polymer Electrochemical Sensor Based on AuNPs and Nitrogen-Doped Graphene Oxide Quantum Dots Coated on NiS2/Biomass Carbon for Simultaneous Determination of Dopamine and Chlorpromazine. Chem. Eng. J. 2020, 389, 124417. DOI: 10.1016/j.cej.2020.124417.
  • Surya, S. G.; Khatoon, S.; Ait Lahcen, A.; Nguyen, A. T. H.; Dzantiev, B. B.; Tarannum, N.; Salama, K. N. A Chitosan Gold Nanoparticles Molecularly Imprinted Polymer Based Ciprofloxacin Sensor. RSC Adv. 2020, 10, 12823–12832. DOI: 10.1039/D0RA01838D.
  • Rebelo, P.; Pacheco, J. G.; Cordeiro, M. N. D. S.; Melo, A.; Delerue-Matos, C. Azithromycin Electrochemical Detection Using a Molecularly Imprinted Polymer Prepared on a Disposable Screen-Printed Electrode. Anal. Methods 2020, 12, 1486–1494. DOI: 10.1039/C9AY02566A.
  • Hassan, S. S. M.; Kamel, A. H.; Amr, A. E.-G. E.; Hashem, H. M.; Bary, E. M. A. Imprinted Polymeric Beads-Based Screen-Printed Potentiometric Platforms Modified with Multi-Walled Carbon Nanotubes (MWCNTs) for Selective Recognition of Fluoxetine. Nanomaterials (Basel) 2020, 10, 572. DOI: 10.3390/nano10030572.
  • Hashem, H. M.; Hassan, S. S. M.; Kamel, A. H.; Amr, A. E.-G. E.; AbdelBary, E. M. Cost-Effective Potentiometric Platforms Modified with Multi-Walled Carbon Nanotubes (MWCNTs) and Based on Imprinted Receptors for Fluvoxamine Assessment. Polymers (Basel) 2020, 12, 673. DOI: 10.3390/polym12030673.
  • Malekzadeh, M.; Mohadesi, A.; Karimi, M. A.; Ranjbar, M. Development of A New Electrochemical Sensor Based on Zr-MOF/MIP for Sensitive Diclofenac Determination. Anal. Bioanal. Electrochem. 2020, 12, 402–414.
  • Abdallah, N. A. Solid-Contact ISE for the Potentiometric Determination of Melitracen Hydrochloride in Pharmaceutical Tablets and Human Plasma. J. Electrochem. Soc. 2020, 167, 047504. DOI: 10.1149/1945-7111/ab7182.
  • Motaharian, A.; Naseri, K.; Mehrpour, O.; Shoeibi, S. Electrochemical Determination of Atypical Antipsychotic Drug Quetiapine Using Nano-Molecularly Imprinted Polymer Modified Carbon Paste Electrode. Anal. Chim. Acta 2020, 1097, 214–221. DOI: 10.1016/j.aca.2019.11.020.
  • Nezhadali, A.; Biabani, M. Electrochemical Sensor for Selective Determination of Ketorolac Tromethamine Based on Molecularly Imprinting Polypyrrole Modified with Functionalized Multi-Wall Carbon Nanotubes in Pharmaceutical and Biological Samples. Anal. Bioanal. Electrochem. 2020, 12, 48–62.
  • Ricardo Teixeira Tarley, C.; de Cássia Mendonça, J.; Rianne da Rocha, L.; Boareto Capelari, T.; Carolyne Prete, M.; Cecílio Fonseca, M.; Midori de Oliveira, F.; César Pereira, A.; Luiz Scheel, G.; Bastos Borges, K.; Gava Segatelli, M. Development of a Molecularly Imprinted Poly(Acrylic Acid)‐MWCNT Nanocomposite Electrochemical Sensor for Tramadol Determination in Pharmaceutical Samples. Electroanalysis 2020, 32, 1130–1137. DOI: 10.1002/elan.201900148.
  • Sooraj, M. P.; Nair, A. S.; Pillai, S. C.; Hinder, S. J.; Mathew, B. CuNPs Decorated Molecular Imprinted Polymer on MWCNT for the Electrochemical Detection of L-DOPA. Arab. J. Chem. 2020, 13, 2483–2495. DOI: 10.1016/j.arabjc.2018.06.002.
  • Nair, A. S.; Sooraj, M. P. Molecular Imprinted Polymer-Wrapped AgNPs-Decorated Acid-Functionalized Graphene Oxide as a Potent Electrochemical Sensor for Ibuprofen. J. Mater. Sci. 2020, 55, 3700–3711. DOI: 10.1007/s10853-019-04258-1.
  • Sun, Y.; He, J.; Waterhouse, G. I. N.; Xu, L.; Zhang, H.; Qiao, X.; Xu, Z. A Selective Molecularly Imprinted Electrochemical Sensor with GO@COF Signal Amplification for the Simultaneous Determination of Sulfadiazine and Acetaminophen. Sens. Actuators B Chem. 2019, 300, 126993. DOI: 10.1016/j.snb.2019.126993.
  • Alizadeh, T.; Karimian, N.; Ganjali, M. R. A Carbon Nanotubes/Graphite Paste Electrode Impregnated with Stavudine-Imprinted Polymer as a Stavudine Selective Sensor. Ionics (Kiel)2019, 25, 6071–6081. DOI: 10.1007/s11581-019-03081-7.
  • Bergamin, B.; Pupin, R.; Wong, A.; Sotomayor, M. A New Electrochemical Platform Based on a Polyurethane Composite Electrode Modified with Magnetic Nanoparticles Coated with Molecularly Imprinted Polymer for the Determination of Estradiol Valerate in Different Matrices. J. Braz. Chem. Soc. 2019, 30, 2344–2354. DOI: 10.21577/0103-5053.20190142.
  • Ganjali, M.; Jamshidpour, T.; Rezapour, M. A Biomimetic Potentiometric Membrane Sensor Using Molecularly Imprinted Nano-Polymer for Furosemide Drug Analysis. Anal. Bioanal. Electrochem. 2019, 11, 1467–1481.
  • Amatatongchai, M.; Sitanurak, J.; Sroysee, W.; Sodanat, S.; Chairam, S.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P. A. Highly Sensitive and Selective Electrochemical Paper-Based Device Using a Graphite Screen-Printed Electrode Modified with Molecularly Imprinted Polymers Coated Fe3O4@Au@SiO2 for Serotonin Determination. Anal. Chim. Acta 2019, 1077, 255–265. DOI: 10.1016/j.aca.2019.05.047.
  • Hassan, S. S. M.; Amr, A. E.-G. E.; Abd El-Naby, H.; El-Naggar, M.; Kamel, A. H.; Khalifa, N. M. Novel Aminoacridine Sensors Based on Molecularly Imprinted Hybrid Polymeric Membranes for Static and Hydrodynamic Drug Quality Control Monitoring. Materials (Basel) 2019, 12, 3327. DOI: 10.3390/ma12203327.
  • Mirzajani, R.; Arefiyan, E. Construction and Evaluation of a Graphene Oxide Functionalized Aminopropyltriethoxy Silane Surface Molecularly Imprinted Polymer Potentiometric Sensor for Dipyridamole Detection in Urine and Pharmaceutical Samples. J. Braz. Chem. Soc. 2019, 30, 1874–1886. DOI: 10.21577/0103-5053.20190097.
  • Rawool, C. R.; Srivastava, A. K. A Dual Template Imprinted Polymer Modified Electrochemical Sensor Based on Cu Metal Organic Framework/Mesoporous Carbon for Highly Sensitive and Selective Recognition of Rifampicin and Isoniazid. Sens. Actuators B Chem. 2019, 288, 493–506. DOI: 10.1016/j.snb.2019.03.032.
  • Liu, Z.; Jin, M.; Lu, H.; Yao, J.; Wang, X.; Zhou, G.; Shui, L. Molecularly Imprinted Polymer Decorated 3D-Framework of Functionalized Multi-Walled Carbon Nanotubes for Ultrasensitive Electrochemical Sensing of Norfloxacin in Pharmaceutical Formulations and Rat Plasma. Sens. Actuators B Chem. 2019, 288, 363–372. DOI: 10.1016/j.snb.2019.02.097.
  • Feier, B.; Blidar, A.; Pusta, A.; Carciuc, P.; Cristea, C. Electrochemical Sensor Based on Molecularly Imprinted Polymer for the Detection of Cefalexin. Biosensors (Basel) 2019, 9, 31. DOI: 10.3390/bios9010031.
  • Zarezadeh, A.; Rajabi, H. R.; Sheydaei, O.; Khajehsharifi, H. Application of a Nano-Structured Molecularly Imprinted Polymer as an Efficient Modifier for the Design of Captopril Drug Selective Sensor: Mechanism Study and Quantitative Determination. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 94, 879–885. DOI: 10.1016/j.msec.2018.10.042.
  • Mostafavi, M.; Yaftian, M. R.; Piri, F.; Shayani-Jam, H. A New Diclofenac Molecularly Imprinted Electrochemical Sensor Based upon a Polyaniline/Reduced Graphene Oxide Nano-Composite. Biosens. Bioelectron. 2018, 122, 160–167. DOI: 10.1016/j.bios.2018.09.047.
  • El-Wekil, M. M.; Mahmoud, A. M.; Marzouk, A. A.; Alkahtani, S. A.; Ali, R.; Novel Molecularly Imprinted Sensing Platform, A. Based on MWCNTs/AuNPs Decorated 3D Starfish like Hollow Nickel Skeleton as a Highly Conductive Nanocomposite for Selective and Ultrasensitive Analysis of a Novel Pan-Genotypic Inhibitor Velpatasvir in Body Fluids. J. Mol. Liq. 2018, 271, 105–111. DOI: 10.1016/j.molliq.2018.08.105.
  • Wang, Y.; Cheng, J.; Liu, X.; Ding, F.; Zou, P.; Wang, X.; Zhao, Q.; Rao, H. C 3 N 4 Nanosheets/Metal–Organic Framework Wrapped with Molecularly Imprinted Polymer Sensor: Fabrication, Characterization, and Electrochemical Detection of Furosemide. ACS Sustain. Chem. Eng. 2018, 6, 16847–16858. DOI: 10.1021/acssuschemeng.8b04179.
  • Jafari, S.; Dehghani, M.; Nasirizadeh, N.; Azimzadeh, M. An Azithromycin Electrochemical Sensor Based on an Aniline MIP Film Electropolymerized on a Gold Nano Urchins/Graphene Oxide Modified Glassy Carbon Electrode. Electroanal. Chem. 2018, 829, 27–34. DOI: 10.1016/j.jelechem.2018.09.053.
  • Panahi, Y.; Motaharian, A.; Hosseini, M. R. M.; Mehrpour, O. High Sensitive and Selective Nano-Molecularly Imprinted Polymer Based Electrochemical Sensor for Midazolam Drug Detection in Pharmaceutical Formulation and Human Urine Samples. Sens. Actuators B Chem. 2018, 273, 1579–1586. DOI: 10.1016/j.snb.2018.07.069.
  • Hasanah, A. N.; Susanti, I. Molecularly Imprinted Polymers for Pharmaceutical Impurities: Design and Synthesis Methods. Polymers (Basel) 2023, 15, 3401. DOI: 10.3390/polym15163401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.