135
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Technological Advancement and Trend in Selective Bioanalytical Sample Extraction through State of the Art 3-D Printing Techniques Aiming ‘Sorbent Customization as per need’

& ORCID Icon

Reference

  • Swainson, W. K. Method, Medium and Apparatus for Producing Three-Dimensional Figure Product. 1977, Google Patents.
  • Agrawaal, H.; Thompson, J. Additive Manufacturing (3D Printing) for Analytical Chemistry. Talanta Open 2021, 3, 100036. DOI: 10.1016/j.talo.2021.100036.
  • Grajewski, M.; Hermann, M.; Oleschuk, R. D.; Verpoorte, E.; Salentijn, G. I. Leveraging 3D Printing to Enhance Mass Spectrometry: A Review. Anal. Chim. Acta. 2021, 1166, 338332. DOI: 10.1016/j.aca.2021.338332.
  • Balakrishnan, H. K.; Doeven, E. H.; Merenda, A.; Dumée, L. F.; Guijt, R. M. 3D Printing for the Integration of Porous Materials into Miniaturised Fluidic Devices: A Review. Anal. Chim. Acta. 2021, 1185, 338796. DOI: 10.1016/j.aca.2021.338796.
  • Ambrosi, A.; Pumera, M. 3D-Printing Technologies for Electrochemical Applications. Chem. Soc. Rev. 2016, 45, 2740–2755. DOI: 10.1039/c5cs00714c.
  • Ingle, R. G.; Zeng, S.; Jiang, H.; Fang, W.-J. Current Developments of Bioanalytical Sample Preparation Techniques in Pharmaceuticals. J. Pharm. Anal. 2022, 12, 517–529. DOI: 10.1016/j.jpha.2022.03.001.
  • Smith, K. M.; Xu, Y. Tissue Sample Preparation in Bioanalytical Assays. Bioanalysis 2012, 4, 741–749. DOI: 10.4155/bio.12.19.
  • Boyacı, E.; Rodríguez-Lafuente, Á.; Gorynski, K.; Mirnaghi, F.; Souza-Silva, É. A.; Hein, D.; Pawliszyn, J. Sample Preparation with Solid Phase Microextraction and Exhaustive Extraction Approaches: Comparison for Challenging Cases. Anal. Chim. Acta. 2015, 873, 14–30. DOI: 10.1016/j.aca.2014.12.051.
  • Vas, G.; Vékey, K. Solid‐Phase Microextraction: A Powerful Sample Preparation Tool Prior to Mass Spectrometric Analysis. J. Mass Spectrom. 2004, 39, 233–254. DOI: 10.1002/jms.606.
  • Konieczna, L.; Belka, M.; Okońska, M.; Pyszka, M.; Bączek, T. New 3D-Printed Sorbent for Extraction of Steroids from Human Plasma Preceding LC–MS Analysis. J. Chromatogr. A 2018, 1545, 1–11. DOI: 10.1016/j.chroma.2018.02.040.
  • Abdel-Rehim, M.; Pedersen-Bjergaard, S.; Abdel-Rehim, A.; Lucena, R.; Moein, M. M.; Cárdenas, S.; Miró, M. Microextraction Approaches for Bioanalytical Applications: An Overview. J. Chromatogr. A 2020, 1616, 460790. DOI: 10.1016/j.chroma.2019.460790.
  • Jacobs, M. J.; Pinger, C. W.; Castiaux, A. D.; Maloney, K. J.; Spence, D. M. A Novel 3D-Printed Centrifugal Ultrafiltration Method Reveals in Vivo Glycation of Human Serum Albumin Decreases Its Binding Affinity for Zinc. Metallomics 2020, 12, 1036–1043. DOI: 10.1039/d0mt00123f.
  • Belka, M.; Ulenberg, S.; Bączek, T. Fused Deposition Modeling Enables the Low-Cost Fabrication of Porous, Customized-Shape Sorbents for Small-Molecule Extraction. Anal. Chem. 2017, 89, 4373–4376. DOI: 10.1021/acs.analchem.6b04390.
  • Gupta, V.; Mahbub, P.; Nesterenko, P. N.; Paull, B. A New 3D Printed Radial Flow-Cell for Chemiluminescence Detection: Application in Ion Chromatographic Determination of Hydrogen Peroxide in Urine and Coffee Extracts. Anal. Chim. Acta. 2018, 1005, 81–92. DOI: 10.1016/j.aca.2017.12.039.
  • Gupta, V.; Talebi, M.; Deverell, J.; Sandron, S.; Nesterenko, P. N.; Heery, B.; Thompson, F.; Beirne, S.; Wallace, G. G.; Paull, B. 3D Printed Titanium Micro-Bore Columns Containing Polymer Monoliths for Reversed-Phase Liquid Chromatography. Anal. Chim. Acta. 2016, 910, 84–94. DOI: 10.1016/j.aca.2016.01.012.
  • Mardani, S.; Ojala, L. S.; Uusi-Kyyny, P.; Alopaeus, V. Development of a Unique Modular Distillation Column Using 3D Printing. Chemical Engineering and Processing - Process Intensification 2016, 109, 136–148. DOI: 10.1016/j.cep.2016.09.001.
  • Gross, B.; Lockwood, S. Y.; Spence, D. M. Recent Advances in Analytical Chemistry by 3D Printing. Anal. Chem. 2017, 89, 57–70. DOI: 10.1021/acs.analchem.6b04344.
  • Capel, A. J.; Rimington, R. P.; Lewis, M. P.; Christie, S. D. R. 3D Printing for Chemical, Pharmaceutical and Biological Applications. Nat. Rev. Chem. 2018, 2, 422–436. DOI: 10.1038/s41570-018-0058-y.
  • Bagheri, A.; Jin, J. Photopolymerization in 3D Printing. ACS Appl. Polym. Mater. 2019, 1, 593–611. DOI: 10.1021/acsapm.8b00165.
  • Zhang, J.; Xiao, P. 3D Printing of Photopolymers. Polym. Chem. 2018, 9, 1530–1540. DOI: 10.1039/C8PY00157J.
  • Zorlutuna, P.; Jeong, J. H.; Kong, H.; Bashir, R. Stereolithography‐Based Hydrogel Microenvironments to Examine Cellular Interactions. Adv. Funct. Materials 2011, 21, 3642–3651. DOI: 10.1002/adfm.201101023.
  • Kadimisetty, K.; Mosa, I. M.; Malla, S.; Satterwhite-Warden, J. E.; Kuhns, T. M.; Faria, R. C.; Lee, N. H.; Rusling, J. F. 3D-Printed Supercapacitor-Powered Electrochemiluminescent Protein Immunoarray. Biosens. Bioelectron. 2016, 77, 188–193. DOI: 10.1016/j.bios.2015.09.017.
  • Scott, T. F.; Schneider, A. D.; Cook, W. D.; Bowman, C. N. Photoinduced Plasticity in Cross-Linked Polymers. Science 2005, 308, 1615–1617. DOI: 10.1126/science.1110505.
  • Blasco, E.; Wegener, M.; Barner‐Kowollik, C. Photochemically Driven Polymeric Network Formation: Synthesis and Applications. Adv. Mater. 2017, 29, 1604005.
  • Kade, M. J.; Burke, D. J.; Hawker, C. J. The Power of Thiol‐Ene Chemistry. J. Polym. Sci. A Polym. Chem. 2010, 48, 743–750. DOI: 10.1002/pola.23824.
  • Ligon-Auer, S. C.; Schwentenwein, M.; Gorsche, C.; Stampfl, J.; Liska, R. Toughening of Photo-Curable Polymer Networks: A Review. Polym. Chem. 2016, 7, 257–286. DOI: 10.1039/C5PY01631B.
  • Hoyle, C. E.; Lee, T. Y.; Roper, T. Thiol–Enes: Chemistry of the past with Promise for the Future. J. Polym. Sci. A Polym. Chem. 2004, 42, 5301–5338. DOI: 10.1002/pola.20366.
  • Husár, B.; Ligon, S. C.; Wutzel, H.; Hoffmann, H.; Liska, R. The Formulator’s Guide to anti-Oxygen Inhibition Additives. Prog. Org. Coat. 2014, 77, 1789–1798. DOI: 10.1016/j.porgcoat.2014.06.005.
  • McNair, O. D.; Janisse, A. P.; Krzeminski, D. E.; Brent, D. E.; Gould, T. E.; Rawlins, J. W.; Savin, D. A. Impact Properties of Thiol–Ene Networks. ACS Appl. Mater. Interfaces. 2013, 5, 11004–11013. DOI: 10.1021/am403238g.
  • Oesterreicher, A.; Wiener, J.; Roth, M.; Moser, A.; Gmeiner, R.; Edler, M.; Pinter, G.; Griesser, T. Tough and Degradable Photopolymers Derived from Alkyne Monomers for 3D Printing of Biomedical Materials. Polym. Chem. 2016, 7, 5169–5180. DOI: 10.1039/C6PY01132B.
  • Qin, X.-H.; Gruber, P.; Markovic, M.; Plochberger, B.; Klotzsch, E.; Stampfl, J.; Ovsianikov, A.; Liska, R. Enzymatic Synthesis of Hyaluronic Acid Vinyl Esters for Two-Photon Microfabrication of Biocompatible and Biodegradable Hydrogel Constructs. Polym. Chem. 2014, 5, 6523–6533. DOI: 10.1039/C4PY00792A.
  • Bertlein, S. Thiol–Ene Clickable Gelatin: A Platform Bioink for Multiple 3D Biofabrication Technologies. Adv. Mater. 2017, 29, 1703404.
  • Mongkhontreerat, S.; Öberg, K.; Erixon, L.; Löwenhielm, P.; Hult, A.; Malkoch, M. UV Initiated Thiol–Ene Chemistry: A Facile and Modular Synthetic Methodology for the Construction of Functional 3D Networks with Tunable Properties. J. Mater. Chem. A 2013, 1, 13732–13737. DOI: 10.1039/c3ta12963b.
  • Senyurt, A. F.; Wei, H.; Phillips, B.; Cole, M.; Nazarenko, S.; Hoyle, C. E.; Piland, S. G.; Gould, T. E. Physical and Mechanical Properties of Photopolymerized Thiol − Ene/Acrylates. Macromolecules 2006, 39, 6315–6317. DOI: 10.1021/ma060507f.
  • Sycks, D. G. Tough, Stable Spiroacetal Thiol‐Ene Resin for 3D Printing. J. Appl. Polym. Sci. 2018, 135, 46259.
  • Crivello, J. V. The Discovery and Development of Onium Salt Cationic Photoinitiators. J. Polym. Sci. A Polym. Chem. 1999, 37, 4241–4254. DOI: 10.1002/(SICI)1099-0518(19991201)37:23<4241::AID-POLA1>3.0.CO;2-R.
  • Crivello, J.; Lam, J. Photoinitiated Cationic Polymerization with Triarylsulfonium Salts. J. Polym. Sci. A Polym. Chem. 1996, 34, 3231–3253. DOI: 10.1002/pola.1996.873.
  • Matsumura, S.; Hlil, A. R.; Du, N.; Lepiller, C.; Gaudet, J.; Guay, D.; Shi, Z.; Holdcroft, S.; Hay, A. S. Ionomers for Proton Exchange Membrane Fuel Cells with Sulfonic Acid Groups on the End‐Groups: Novel Branched Poly (Ether‐Ketone) s with 3, 6‐Ditrityl‐9H‐Carbazole End‐Groups. J. Polym. Sci. A Polym. Chem. 2008, 46, 3860–3868. DOI: 10.1002/pola.22690.
  • Crivello, J.; Lam, J. Complex Triarylsulfonium Salt Photoinitiators. I. The Identification, Characterization, and Syntheses of a New Class of Triarylsulfonium Salt Photoinitiators. J. Polym. Sci. Polym. Chem. Ed. 1980, 18, 2677–2695. DOI: 10.1002/pol.1980.170180825.
  • Al Mousawi, A.; Garra, P.; Schmitt, M.; Toufaily, J.; Hamieh, T.; Graff, B.; Fouassier, J. P.; Dumur, F.; Lalevée, J. 3-Hydroxyflavone and N-Phenylglycine in High Performance Photoinitiating Systems for 3D Printing and Photocomposites Synthesis. Macromolecules 2018, 51, 4633–4641. DOI: 10.1021/acs.macromol.8b00979.
  • Al Mousawi, A.; Dumur, F.; Garra, P.; Toufaily, J.; Hamieh, T.; Goubard, F.; Bui, T.; Graff, B.; Gigmes, D.; Pierre Fouassier, J.; et al. Azahelicenes as Visible Light Photoinitiators for Cationic and Radical Polymerization: Preparation of Photoluminescent Polymers and Use in High Performance LED Projector 3D Printing Resins. J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 1189–1199. DOI: 10.1002/pola.28476.
  • Zhang, J.; Dumur, F.; Xiao, P.; Graff, B.; Gigmes, D.; Pierre Fouassier, J.; Lalevée, J. Aminothiazonaphthalic Anhydride Derivatives as Photoinitiators for Violet/Blue LED‐Induced Cationic and Radical Photopolymerizations and 3D‐Printing Resins. J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 1189–1196. DOI: 10.1002/pola.27958.
  • Al Mousawi, A.; Lara, D. M.; Noirbent, G.; Dumur, F.; Toufaily, J.; Hamieh, T.; Bui, T.-T.; Goubard, F.; Graff, B.; Gigmes, D.; et al. Carbazole Derivatives with Thermally Activated Delayed Fluorescence Property as Photoinitiators/Photoredox Catalysts for LED 3D Printing Technology. Macromolecules 2017, 50, 4913–4926. DOI: 10.1021/acs.macromol.7b01114.
  • Cheng, Y.-L.; Huang, K.-C. Preparation and Characterization of Color Photocurable Resins for Full-Color Material Jetting Additive Manufacturing. Polymers 2020, 12, 650. DOI: 10.3390/polym12030650.
  • Kirchmajer, D. M.; Gorkin Iii, R.; In Het Panhuis, M. An Overview of the Suitability of Hydrogel-Forming Polymers for Extrusion-Based 3D-Printing. J. Mater. Chem. B 2015, 3, 4105–4117. DOI: 10.1039/c5tb00393h.
  • Emanuel, M.; Sachs, S. J, M.I. of and Technology. Three-Dimensional Printing Techniques, Editors. 1993, Massachusetts Institute of Technology, Cambridge, Mass.: United States. p. 1–6.
  • Xia, M.; Nematollahi, B.; Sanjayan, J. G. Development of Powder-Based 3D Concrete Printing Using Geopolymers. 3D Concrete Printing Technology. 2019, Elsevier: Oxford. p. 223–240
  • Gibson, I.; et al. Sheet Lamination Processes. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing; Springer: Boston, MA, 2010; 223–252
  • Zhang, C.; Bills, B. J.; Manicke, N. E. J. B. Rapid Prototyping Using 3D Printing in Bioanalytical Research. Future Science 2017, 9, 329–331. DOI: 10.4155/bio-2016-0293.
  • Gross, B. C.; et al. Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences. 2014, ACS Publications.
  • Ventola, C. L., Medical Applications for 3D Printing: Current and Projected Uses. Pharmacy and Therapeutics 2014, 39, 704.
  • Nielsen, A. V.; Beauchamp, M. J.; Nordin, G. P.; Woolley, A. T. 3D Printed Microfluidics. Annu Rev Anal Chem (Palo Alto Calif) 2020, 13, 45–65. DOI: 10.1146/annurev-anchem-091619-102649.
  • He, Y.; Wu, Y.; Fu, J.; Gao, Q.; Qiu, J. Developments of 3D Printing Microfluidics and Applications in Chemistry and Biology: A Review. Electroanalysis 2016, 28, 1658–1678. DOI: 10.1002/elan.201600043.
  • Yazdi, A. A.; et al. 3D Printing: An Emerging Tool for Novel Microfluidics and Lab-On-A-Chip Applications. Microfluidics and Nanofluidics  2016, 20, 1–18.
  • Bishop, G. W.; Satterwhite-Warden, J. E.; Kadimisetty, K.; Rusling, J. F. 3D-Printed Bioanalytical Devices. Nanotechnology 2016, 27, 284002. DOI: 10.1088/0957-4484/27/28/284002.
  • Salentijn, G. I.; Permentier, H. P.; Verpoorte, E. 3D-Printed Paper Spray Ionization Cartridge with Fast Wetting and Continuous Solvent Supply Features. Anal. Chem. 2014, 86, 11657–11665. DOI: 10.1021/ac502785j.
  • Lee, J.-Y.; Tan, W. S.; An, J.; Chua, C. K.; Tang, C. Y.; Fane, A. G.; Chong, T. H. The Potential to Enhance Membrane Module Design with 3D Printing Technology. J. Membr. Sci. 2016, 499, 480–490. DOI: 10.1016/j.memsci.2015.11.008.
  • Tycova, A.; Prikryl, J.; Foret, F. Reproducible Preparation of Nanospray Tips for Capillary Electrophoresis Coupled to Mass Spectrometry Using 3D Printed Grinding Device. Electrophoresis 2016, 37, 924–930. DOI: 10.1002/elps.201500467.
  • Cabot, J. M.; Macdonald, N. P.; Phung, S. C.; Breadmore, M. C.; Paull, B. Fibre-Based Electrofluidics on Low Cost Versatile 3D Printed Platforms for Solute Delivery, Separations and Diagnostics; from Small Molecules to Intact Cells. Analyst 2016, 141, 6422–6431. DOI: 10.1039/c6an01515h.
  • Dixit, C.; Kadimisetty, K.; Rusling, J. 3D-Printed Miniaturized Fluidic Tools in Chemistry and Biology. Trends Analyt. Chem. 2018, 106, 37–52. DOI: 10.1016/j.trac.2018.06.013.
  • Solanki, S.; et al. Microfluidics for Biologists: Fundamentals and Applications. 2016, Springer International Publishing, Cham.
  • O'Connell, T. M.; King, D.; Dixit, C. K.; O'Connor, B.; Walls, D.; Ducrée, J. Sequential Glycan Profiling at Single Cell Level with the Microfluidic Lab-in-a-Trench Platform: A New Era in Experimental Cell Biology. Lab Chip. 2014, 14, 3629–3639. DOI: 10.1039/c4lc00618f.
  • Luka, G.; Ahmadi, A.; Najjaran, H.; Alocilja, E.; DeRosa, M.; Wolthers, K.; Malki, A.; Aziz, H.; Althani, A.; Hoorfar, M.; et al. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. Sensors (Basel) 2015, 15, 30011–30031. DOI: 10.3390/s151229783.
  • Kim, H.; Min, K.-I.; Inoue, K.; Im, D. J.; Kim, D.-P.; Yoshida, J-i Submillisecond Organic Synthesis: Outpacing Fries Rearrangement through Microfluidic Rapid Mixing. Science 2016, 352, 691–694. DOI: 10.1126/science.aaf1389.
  • Du, G.; Fang, Q.; den Toonder, J. M. Microfluidics for Cell-Based High Throughput Screening Platforms—a Review. Anal. Chim. Acta. 2016, 903, 36–50. DOI: 10.1016/j.aca.2015.11.023.
  • Jin, C. E.; Lee, T. Y.; Koo, B.; Sung, H.; Kim, S.-H.; Shin, Y. Rapid Virus Diagnostic System Using Bio-Optical Sensor and Microfluidic Sample Processing. Sens. Actuators, B 2018, 255, 2399–2406. DOI: 10.1016/j.snb.2017.08.197.
  • Pol, R.; Céspedes, F.; Gabriel, D.; Baeza, M. Microfluidic Lab-on-a-Chip Platforms for Environmental Monitoring. TrAC, Trends Anal. Chem. 2017, 95, 62–68. DOI: 10.1016/j.trac.2017.08.001.
  • Gunes, D. Z. Microfluidics for Food Science and Engineering. Curr. Opin. Food Sci. 2018, 21, 57–65. DOI: 10.1016/j.cofs.2018.06.002.
  • Ueland, M.; Blanes, L.; Taudte, R. V.; Stuart, B. H.; Cole, N.; Willis, P.; Roux, C.; Doble, P. Capillary-Driven Microfluidic Paper-Based Analytical Devices for Lab on a Chip Screening of Explosive Residues in Soil. J. Chromatogr. A 2016, 1436, 28–33. DOI: 10.1016/j.chroma.2016.01.054.
  • Chabaud, K. R.; Thomas, J. L.; Torres, M. N.; Oliveira, S.; McCord, B. R. Simultaneous Colorimetric Detection of Metallic Salts Contained in Low Explosives Residue Using a Microfluidic Paper-Based Analytical Device (µPAD). Forensic Chem. 2018, 9, 35–41. DOI: 10.1016/j.forc.2018.03.008.
  • Gomez, F. J. V.; et al. Microchip Electrophoresis‐Single Wall Carbon Nanotube Press‐Transferred Electrodes for Fast and Reliable Electrochemical Sensing of Melatonin and Its Precursors. Electrophoresis 2015, 36, 1880–1885.
  • de Moraes, N. C.; da Silva, E. N. T.; Petroni, J. M.; Ferreira, V. S.; Lucca, B. G. Design of Novel, Simple, and Inexpensive 3D Printing‐Based Miniaturized Electrochemical Platform Containing Embedded Disposable Detector for Analytical Applications. Electrophoresis 2020, 41, 278–286. DOI: 10.1002/elps.201900270.
  • Whitesides, G. M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. DOI: 10.1038/nature05058.
  • Macdonald, N. P.; Currivan, S. A.; Tedone, L.; Paull, B. Direct Production of Microstructured Surfaces for Planar Chromatography Using 3D Printing. Anal. Chem. 2017, 89, 2457–2463. DOI: 10.1021/acs.analchem.6b04546.
  • Gowers, S. A. N.; Curto, V. F.; Seneci, C. A.; Wang, C.; Anastasova, S.; Vadgama, P.; Yang, G.-Z.; Boutelle, M. G. 3D Printed Microfluidic Device with Integrated Biosensors for Online Analysis of Subcutaneous Human Microdialysate. Anal. Chem. 2015, 87, 7763–7770. DOI: 10.1021/acs.analchem.5b01353.
  • Nawada, S.; Dimartino, S.; Fee, C. J. Dispersion Behavior of 3D-Printed Columns with Homogeneous Microstructures Comprising Differing Element Shapes. Chem. Eng. Sci. 2017, 164, 90–98. DOI: 10.1016/j.ces.2017.02.012.
  • Gupta, V.; Beirne, S.; Nesterenko, P. N.; Paull, B. Investigating the Effect of Column Geometry on Separation Efficiency Using 3D Printed Liquid Chromatographic Columns Containing Polymer Monolithic Phases. Anal. Chem. 2018, 90, 1186–1194. DOI: 10.1021/acs.analchem.7b03778.
  • Francisco, K. J. M.; do Lago, C. L. Improving Thermal Control of Capillary Electrophoresis with Mass Spectrometry and Capacitively Coupled Contactless Conductivity Detection by Using 3D Printed Cartridges. Talanta 2018, 185, 37–41. DOI: 10.1016/j.talanta.2018.03.052.
  • Lucklum, F.; Janssen, S.; Lang, W.; Vellekoop, M. J. Miniature 3D Gas Chromatography Columns with Integrated Fluidic Connectors Using High-Resolution Stereolithography Fabrication. Procedia Eng. 2015, 120, 703–706. DOI: 10.1016/j.proeng.2015.08.761.
  • Patrick, W. G.; Nielsen, A. A. K.; Keating, S. J.; Levy, T. J.; Wang, C.-W.; Rivera, J. J.; Mondragón-Palomino, O.; Carr, P. A.; Voigt, C. A.; Oxman, N.; et al. DNA Assembly in 3D Printed Fluidics. PLoS One. 2015, 10, e0143636. DOI: 10.1371/journal.pone.0143636.
  • Comina, G.; Suska, A.; Filippini, D. Low Cost Lab-on-a-Chip Prototyping with a Consumer Grade 3D Printer. Lab Chip. 2014, 14, 2978–2982. DOI: 10.1039/c4lc00394b.
  • Tothill, A. M.; Partridge, M.; James, S. W.; Tatam, R. P. Fabrication and Optimisation of a Fused Filament 3D-Printed Microfluidic Platform. J. Micromech. Microeng. 2017, 27, 35018. DOI: 10.1088/1361-6439/aa5ae3.
  • Erkal, J. L.; Selimovic, A.; Gross, B. C.; Lockwood, S. Y.; Walton, E. L.; McNamara, S.; Martin, R. S.; Spence, D. M. 3D Printed Microfluidic Devices with Integrated Versatile and Reusable Electrodes. Lab Chip. 2014, 14, 2023–2032. DOI: 10.1039/c4lc00171k.
  • Kalkal, A.; Kumar, S.; Kumar, P.; Pradhan, R.; Willander, M.; Packirisamy, G.; Kumar, S.; Malhotra, B. D. Recent Advances in 3D Printing Technologies for Wearable (Bio) Sensors. Addit. Manuf. 2021, 46, 102088. DOI: 10.1016/j.addma.2021.102088.
  • Chanda, K.; J, B.; Balamurali, M. Physical, Chemical and Biochemical Biosensors to Detect Pathogens. Nanotechnology, Food Security and Water Treatment. 2018, 53–86.
  • Marzo, A. M. L.; et al. 3D-Printed Graphene Direct Electron Transfer Enzyme Biosensors. Biosensors and Bioelectronics, 2020, 151, 111980.
  • Katseli, V.; Economou, A.; Kokkinos, C. Smartphone-Addressable 3D-Printed Electrochemical Ring for Nonenzymatic Self-Monitoring of Glucose in Human Sweat. Anal. Chem. 2021, 93, 3331–3336. DOI: 10.1021/acs.analchem.0c05057.
  • Zaidi, N. A.; Tahir, M. W.; Vellekoop, M. J.; Lang, W. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas. Sensors 2017, 17, 2283. DOI: 10.3390/s17102283.
  • Lambert, A.; Valiulis, S.; Cheng, Q. Advances in Optical Sensing and Bioanalysis Enabled by 3D Printing. ACS Sens. 2018, 3, 2475–2491. DOI: 10.1021/acssensors.8b01085.
  • Hull, C. W. Appl., No. 638905, Filed Apparatus for Production of Three-Dimensional Objects by Stereolithography. 1984.
  • Chia, H. N.; Wu, B. M. Recent Advances in 3D Printing of Biomaterials. J. Biol. Eng. 2015, 9, 1–14.
  • Huang, B.; Wu, B.; Han, L.; Lu, Z.; Zhou, W. Preparation of a Novel Cationic Photosensitive Resin (3D-SLR01) for Stereolithography 3D Printing and Determination of Its Some Properties. J. Wuhan Univ. Technol-Mat. Sci. Edit. 2019, 34, 761–768. DOI: 10.1007/s11595-019-2114-y.
  • Deshmane, S.; Kendre, P.; Mahajan, H.; Jain, S. Stereolithography 3D Printing Technology in Pharmaceuticals: A Review. Drug Dev. Ind. Pharm. 2021, 47, 1362–1372. DOI: 10.1080/03639045.2021.1994990.
  • Zhang, X.; Jiang, X. N.; Sun, C. Micro-Stereolithography of Polymeric and Ceramic Microstructures. Sens. Actuators, A 1999, 77, 149–156. DOI: 10.1016/S0924-4247(99)00189-2.
  • Salonitis, K. A Critical Review of Stereolithography Process Modeling. In Virtual modelling and rapid manufacturing—advanced research in virtual and rapid prototyping. 2003, 377–384.
  • Yang, Y.; Zhou, Y.; Lin, X.; Yang, Q.; Yang, G. Printability of External and Internal Structures Based on Digital Light Processing 3D Printing Technique. Pharmaceutics 2020, 12, 207. DOI: 10.3390/pharmaceutics12030207.
  • Adye, D. R.; Ponneganti, S.; Malakar, T. K.; Radhakrishnanand, P.; Murty, U. S.; Banerjee, S.; Borkar, R. M. Extraction of Small Molecule from Human Plasma by Prototyping 3D Printed Sorbent through Extruded Filament for LC-MS/MS Analysis. Anal. Chim. Acta. 2021, 1187, 339142. DOI: 10.1016/j.aca.2021.339142.
  • Adye, D. R.; Jorvekar, S. B.; Murty, U. S.; Banerjee, S.; Borkar, R. M. Analysis of NSAIDs in Rat Plasma Using 3D-Printed Sorbents by LC-MS/MS: An Approach to Pre-Clinical Pharmacokinetic Studies. Pharmaceutics 2023, 15, 978. DOI: 10.3390/pharmaceutics15030978.
  • A, A.; Kumar, A. Classification of Challenges in 3D Printing for Combined Electrochemical and Microfluidic Applications: A Review. RPJ. 2019, 25, 1328–1346. DOI: 10.1108/RPJ-05-2018-0115.
  • Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T.; Hui, D. Additive Manufacturing (3D Printing): a Review of Materials, Methods, Applications and Challenges. Composites Part B: Engineering 2018, 143, 172–196. DOI: 10.1016/j.compositesb.2018.02.012.
  • Ivanova, O.; Williams, C.; Campbell, T. Additive Manufacturing (AM) and Nanotechnology: Promises and Challenges. Rapid Prototyping Journal 2013, 19, 353–364. DOI: 10.1108/RPJ-12-2011-0127.
  • Vaezi, M.; Seitz, H.; Yang, S. A Review on 3D Micro-Additive Manufacturing Technologies. Int. J. Adv. Manuf. Technol. 2013, 67, 1721–1754. DOI: 10.1007/s00170-012-4605-2.
  • Cocovi-Solberg, D. J.; Worsfold, P. J.; Miró, M. Opportunities for 3D Printed Millifluidic Platforms Incorporating on-Line Sample Handling and Separation. TrAC, Trends Anal. Chem. 2018, 108, 13–22. DOI: 10.1016/j.trac.2018.08.007.
  • Sandron, S.; Heery, B.; Gupta, V.; Collins, D. A.; Nesterenko, E. P.; Nesterenko, P. N.; Talebi, M.; Beirne, S.; Thompson, F.; Wallace, G. G.; et al. 3D Printed Metal Columns for Capillary Liquid Chromatography. Analyst 2014, 139, 6343–6347. DOI: 10.1039/c4an01476f.
  • Wang, L.; Gao, W.; Ng, S.; Pumera, M. Chiral Protein–Covalent Organic Framework 3D-Printed Structures as Chiral Biosensors. Anal. Chem. 2021, 93, 5277–5283. DOI: 10.1021/acs.analchem.1c00322.
  • Pantazis, A. K.; Papadakis, G.; Parasyris, K.; Stavrinidis, A.; Gizeli, E. 3D-Printed Bioreactors for DNA Amplification: Application to Companion Diagnostics. Sens. Actuators, B 2020, 319, 128161. DOI: 10.1016/j.snb.2020.128161.
  • Mojena-Medina, D.; Hubl, M.; Bäuscher, M.; Jorcano, J. L.; Ngo, H.-D.; Acedo, P. Real-Time Impedance Monitoring of Epithelial Cultures with Inkjet-Printed Interdigitated-Electrode Sensors. Sensors 2020, 20, 5711. DOI: 10.3390/s20195711.
  • Parate, K.; Rangnekar, S. V.; Jing, D.; Mendivelso-Perez, D. L.; Ding, S.; Secor, E. B.; Smith, E. A.; Hostetter, J. M.; Hersam, M. C.; Claussen, J. C.; et al. Aerosol-Jet-Printed Graphene Immunosensor for Label-Free Cytokine Monitoring in Serum. ACS Appl. Mater. Interfaces. 2020, 12, 8592–8603. DOI: 10.1021/acsami.9b22183.
  • Ali, M. A.; et al. Sensing of COVID‐19 Antibodies in Seconds via Aerosol Jet Nanoprinted Reduced‐Graphene‐Oxide‐Coated 3D Electrodes. Adv Mater. 2021, 33, e2006647.
  • Contreras-Naranjo, J. E.; Perez-Gonzalez, V. H.; Mata-Gómez, M. A.; Aguilar, O. 3D-Printed Hybrid-Carbon-Based Electrodes for Electroanalytical Sensing Applications. Electrochem. Commun. 2021, 130, 107098. DOI: 10.1016/j.elecom.2021.107098.
  • Crevillen, A. G.; Mayorga-Martinez, C. C.; Zelenka, J.; Rimpelová, S.; Ruml, T.; Pumera, M. 3D-Printed Transmembrane Glycoprotein Cancer Biomarker Aptasensor. Appl. Mater. Today 2021, 24, 101153. DOI: 10.1016/j.apmt.2021.101153.
  • He, Z.; Huffman, J.; Curtin, K.; Garner, K. L.; Bowdridge, E. C.; Li, X.; Nurkiewicz, T. R.; Li, P. Composable Microfluidic Plates (cPlate): a Simple and Scalable Fluid Manipulation System for Multiplexed Enzyme-Linked Immunosorbent Assay (ELISA). Anal. Chem. 2020, 93, 1489–1497. DOI: 10.1021/acs.analchem.0c03651.
  • Bai, Y.; Zhang, D.; Guo, Q.; Xiao, J.; Zheng, M.; Yang, J. Study of the Enzyme Activity Change Due to Inkjet Printing for Biosensor Fabrication. ACS Biomater. Sci. Eng. 2021, 7, 787–793. DOI: 10.1021/acsbiomaterials.0c01515.
  • Lehman, S. E.; et al. Biocompliant Composite Au/pHEMA Plasmonic Scaffolds for 3D Cell Culture and Noninvasive Sensing of Cellular Metabolites. Adv. Healthc. Mater. 2021, 10, 2001040.
  • Cao, L.; Han, G.-C.; Xiao, H.; Chen, Z.; Fang, C. A Novel 3D Paper-Based Microfluidic Electrochemical Glucose Biosensor Based on rGO-TEPA/PB Sensitive Film. Anal. Chim. Acta. 2020, 1096, 34–43. DOI: 10.1016/j.aca.2019.10.049.
  • Su, C.-K.; Yen, S.-C.; Li, T.-W.; Sun, Y.-C. Enzyme-Immobilized 3D-Printed Reactors for Online Monitoring of Rat Brain Extracellular Glucose and Lactate. Anal. Chem. 2016, 88, 6265–6273. DOI: 10.1021/acs.analchem.6b00272.
  • Mattio, E.; Ollivier, N.; Robert-Peillard, F.; Di Rocco, R.; Branger, C.; Margaillan, A.; Brach-Papa, C.; Knoery, J.; Bonne, D.; Boudenne, J.-L.; et al. Modified 3D-Printed Device for Mercury Determination in Waters. Anal. Chim. Acta. 2019, 1082, 78–85. DOI: 10.1016/j.aca.2019.06.062.
  • Wang, L.; Pumera, M. Recent Advances of 3D Printing in Analytical Chemistry: Focus on Microfluidic, Separation, and Extraction Devices. TrAC, Trends Anal. Chem. 2021, 135, 116151. DOI: 10.1016/j.trac.2020.116151.
  • Beauchamp, M. J.; Nielsen, A. V.; Gong, H.; Nordin, G. P.; Woolley, A. T. 3D Printed Microfluidic Devices for Microchip Electrophoresis of Preterm Birth Biomarkers. Anal. Chem. 2019, 91, 7418–7425. DOI: 10.1021/acs.analchem.9b01395.
  • Harney, D. J.; Hutchison, A. T.; Hatchwell, L.; Humphrey, S. J.; James, D. E.; Hocking, S.; Heilbronn, L. K.; Larance, M. Proteomic Analysis of Human Plasma during Intermittent Fasting. J. Proteome Res. 2019, 18, 2228–2240. DOI: 10.1021/acs.jproteome.9b00090.
  • Huang, X.; Wang, D.; He, B.; Liu, Q.; Hu, L.; Jiang, G. A 3D-Printed Modularized Purification System for Rapid, High-Throughput MALDI-MS Analysis of Small-Volume Biological Samples. Chem Commun (Camb) 2020, 56, 1637–1640. DOI: 10.1039/c9cc08832f.
  • Mao, D.; Li, W.; Zhang, F.; Yang, S.; Isak, A. N.; Song, Y.; Guo, Y.; Cao, S.; Zhang, R.; Feng, C.; et al. Nanocomposite of Peroxidase-like Cucurbit [6] Uril with Enzyme-Encapsulated ZIF-8 and Application for Colorimetric Biosensing. ACS Appl. Mater. Interfaces. 2021, 13, 39719–39729. DOI: 10.1021/acsami.1c09340.
  • Sharafeldin, M.; Chen, T.; Ozkaya, G. U.; Choudhary, D.; Molinolo, A. A.; Gutkind, J. S.; Rusling, J. F. Detecting Cancer Metastasis and Accompanying Protein Biomarkers at Single Cell Levels Using a 3D-Printed Microfluidic Immunoarray. Biosens. Bioelectron. 2021, 171, 112681. DOI: 10.1016/j.bios.2020.112681.
  • Ulenberg, S.; Georgiev, P.; Belka, M.; Ślifirski, G.; Wróbel, M.; Chodkowski, A.; Król, M.; Herold, F.; Bączek, T. Understanding Performance of 3D-Printed Sorbent in Study of Metabolic Stability. J. Chromatogr. A 2020, 1629, 461501. DOI: 10.1016/j.chroma.2020.461501.
  • Cheng, H.; Yi, L.; Wu, J.; Li, G.; Zhao, G.; Xiao, Z.; Hu, B.; Zhao, L.; Tian, J. Drug Preconcentration and Direct Quantification in Biofluids Using 3D-Printed Paper Cartridge. Biosens. Bioelectron. 2021, 189, 113266. DOI: 10.1016/j.bios.2021.113266.
  • Park, C.; Abafogi, A. T.; Ponnuvelu, D. V.; Song, I.; Ko, K.; Park, S. Enhanced Luminescent Detection of Circulating Tumor Cells by a 3D Printed Immunomagnetic Concentrator. Biosensors 2021, 11, 278. DOI: 10.3390/bios11080278.
  • Chen, C.; Mehl, B. T.; Munshi, A. S.; Townsend, A. D.; Spence, D. M.; Martin, R. S. 3D-Printed Microfluidic Devices: Fabrication, Advantages and Limitations—a Mini Review. Anal. Methods 2016, 8, 6005–6012. DOI: 10.1039/C6AY01671E.
  • Szynkiewicz, D.; et al. Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and Its Application to the Fabrication of a Microextraction Device. Anal. Chem. 2023.
  • Hearn, M. T. Trends in Additive Manufacturing of Chromatographic and Membrane Materials. Curr. Opin. Chem. Eng. 2017, 18, 90–98. DOI: 10.1016/j.coche.2017.11.003.
  • Kalsoom, U.; Nesterenko, P. N.; Paull, B. Current and Future Impact of 3D Printing on the Separation Sciences. TrAC, Trends Anal. Chem. 2018, 105, 492–502. DOI: 10.1016/j.trac.2018.06.006.
  • Koning, S.; Janssen, H.-G.; Brinkman, U. A. T. Modern Methods of Sample Preparation for GC Analysis. Chroma. 2009, 69, 33–78. DOI: 10.1365/s10337-008-0937-3.
  • Wang, H.; Cocovi-Solberg, D. J.; Hu, B.; Miró, M. 3D-Printed Microflow Injection Analysis Platform for Online Magnetic Nanoparticle Sorptive Extraction of Antimicrobials in Biological Specimens as a Front End to Liquid Chromatographic Assays. Anal. Chem. 2017, 89, 12541–12549. DOI: 10.1021/acs.analchem.7b03767.
  • Martínez-Jarquín, S.; Moreno-Pedraza, A.; Cázarez-García, D.; Winkler, R. Automated Chemical Fingerprinting of Mexican Spirits Derived from Agave (Tequila and Mezcal) Using Direct-Injection Electrospray Ionisation (DIESI) and Low-Temperature Plasma (LTP) Mass Spectrometry. Anal. Methods 2017, 9, 5023–5028. DOI: 10.1039/C7AY00793K.
  • Martínez-Jarquín, S.; Moreno-Pedraza, A.; Guillén-Alonso, H.; Winkler, R. Template for 3D Printing a Low-Temperature Plasma Probe. Anal. Chem. 2016, 88, 6976–6980. DOI: 10.1021/acs.analchem.6b01019.
  • Su, C.-K.; Peng, P.-J.; Sun, Y.-C. Fully 3D-Printed Preconcentrator for Selective Extraction of Trace Elements in Seawater. Anal. Chem. 2015, 87, 6945–6950. DOI: 10.1021/acs.analchem.5b01599.
  • Belka, M.; Konieczna, L.; Okońska, M.; Pyszka, M.; Ulenberg, S.; Bączek, T. Application of 3D-Printed Scabbard-like Sorbent for Sample Preparation in Bioanalysis Expanded to 96-Wellplate High-Throughput Format. Anal. Chim. Acta. 2019, 1081, 1–5. DOI: 10.1016/j.aca.2019.05.078.
  • De Middeleer, G.; Dubruel, P.; De Saeger, S. Molecularly Imprinted Polymers Immobilized on 3D Printed Scaffolds as Novel Solid Phase Extraction Sorbent for Metergoline. Anal. Chim. Acta. 2017, 986, 57–70. DOI: 10.1016/j.aca.2017.07.059.
  • Kertesz, V.; Weiskittel, T. M.; Van Berkel, G. J. An Enhanced Droplet-Based Liquid Microjunction Surface Sampling System Coupled with HPLC-ESI-MS/MS for Spatially Resolved Analysis. Anal. Bioanal. Chem. 2015, 407, 2117–2125. DOI: 10.1007/s00216-014-8287-5.
  • Tang, Y.-R.; Yang, H.-H.; Urban, P. L. Prototype of an Interface for Hyphenating Distillation with Gas Chromatography and Mass Spectrometry. Mass Spectrom (Tokyo) 2017, 6, S0061. DOI: 10.5702/massspectrometry.S0061.
  • Su, C.-K.; Chen, W.-C. 3D-Printed, TiO2 NP–Incorporated Minicolumn Coupled with ICP-MS for Speciation of Inorganic Arsenic and Selenium in High-Salt-Content Samples. Mikrochimica acta. 2018, 185, 268.
  • Calderilla, C.; Maya, F.; Cerdà, V.; Leal, L. O. 3D Printed Device Including Disk-Based Solid-Phase Extraction for the Automated Speciation of Iron Using the Multisyringe Flow Injection Analysis Technique. Talanta 2017, 175, 463–469. DOI: 10.1016/j.talanta.2017.07.028.
  • Calderilla, C.; Maya, F.; Cerdà, V.; Leal, L. O. Direct Photoimmobilization of Extraction Disks on “Green State” 3D Printed Devices. Talanta 2019, 202, 67–73. DOI: 10.1016/j.talanta.2019.04.026.
  • Bickham, A. V.; Pang, C.; George, B. Q.; Topham, D. J.; Nielsen, J. B.; Nordin, G. P.; Woolley, A. T. 3D Printed Microfluidic Devices for Solid-Phase Extraction and on-Chip Fluorescent Labeling of Preterm Birth Risk Biomarkers. Anal. Chem. 2020, 92, 12322–12329. DOI: 10.1021/acs.analchem.0c01970.
  • Parker, E. K.; Nielsen, A. V.; Beauchamp, M. J.; Almughamsi, H. M.; Nielsen, J. B.; Sonker, M.; Gong, H.; Nordin, G. P.; Woolley, A. T. 3D Printed Microfluidic Devices with Immunoaffinity Monoliths for Extraction of Preterm Birth Biomarkers. Anal. Bioanal. Chem. 2019, 411, 5405–5413. DOI: 10.1007/s00216-018-1440-9.
  • Fichou, D.; Morlock, G. E. Open-Source-Based 3D Printing of Thin Silica Gel Layers in Planar Chromatography. Anal. Chem. 2017, 89, 2116–2122. DOI: 10.1021/acs.analchem.6b04813.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.