131
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Analytical Strategies to Investigate Molecular Signaling, Proteomics, Extraction and Quantification of Withanolides – A Comprehensive Review

&

References

  • Chatterjee, S.; Srivastava, S.; Khalid, A.; Singh, N.; Sangwan, R. S.; Sidhu, O. P.; Roy, R.; Khetrapal, C. L.; Tuli, R. Comprehensive Metabolic Fingerprinting of Withania somnifera Leaf and Root Extracts. Phytochemistry 2010, 71, 1085–1094. DOI: 10.1016/j.phytochem.2010.04.001.
  • Chen, L.-X.; He, H.; Qiu, F. Natural Withanolides: An Overview. Nat. Prod. Rep. 2011, 28, 705–740. DOI: 10.1039/c0np00045k.
  • Wei, Z.; Li, T.; Sun, Y.; Su, H.; Zeng, Y.; Wang, Q.; Kuang, H. Daturataturin A, a Withanolide in Datura metel L., Induces HaCaT Autophagy through the PI3K‐Akt‐mTOR Signaling Pathway. Phytother. Res. 2021, 35, 1546–1558. DOI: 10.1002/ptr.6921.
  • Kaul, S. C.; Wadhwa, R. Science of Ashwagandha: Preventive and Therapeutic Potentials; Springer International Publishing: Cham, 2017. DOI: 10.1007/978-3-319-59192-6.
  • Mirjalili, M.; Moyano, E.; Bonfill, M.; Cusido, R.; Palazón, J. Steroidal Lactones from Withania somnifera, an Ancient Plant for Novel Medicine. Molecules 2009, 14, 2373–2393. DOI: 10.3390/molecules14072373.
  • Dhar, N.; Razdan, S.; Rana, S.; Bhat, W. W.; Vishwakarma, R.; Lattoo, S. K. A Decade of Molecular Understanding of Withanolide Biosynthesis and in Vitro Studies in Withania somnifera (L.) Dunal: Prospects and Perspectives for Pathway Engineering. Front. Plant Sci. 2015, 6, 1031. DOI: 10.3389/fpls.2015.01031.
  • Banerjee, P.; Satapathy, M.; Mukhopahayay, A.; Das, P. Leaf Extract Mediated Green Synthesis of Silver Nanoparticles from Widely Available Indian Plants: Synthesis, Characterization, Antimicrobial Property and Toxicity Analysis. Bioresour. Bioprocess 2014, 1, 3. DOI: 10.1186/s40643-014-0003-y.
  • Huang, M.; He, J.-X.; Hu, H.-X.; Zhang, K.; Wang, X.-N.; Zhao, B.-B.; Lou, H.-X.; Ren, D.-M.; Shen, T. Withanolides from the Genus Physalis : A Review on Their Phytochemical and Pharmacological Aspects. J. Pharm. Pharmacol. 2020, 72, 649–669. DOI: 10.1111/jphp.13209.
  • Mukherjee, P. K.; Banerjee, S.; Biswas, S.; Das, B.; Kar, A.; Katiyar, C. K. Withania somnifera (L.) Dunal – Modern Perspectives of an Ancient Rasayana from Ayurveda. J. Ethnopharmacol. 2021, 264, 113157. DOI: 10.1016/j.jep.2020.113157.
  • Dar, N. J.; Hamid, A.; Ahmad, M. Pharmacologic Overview of Withania somnifera, the Indian Ginseng. Cell Mol. Life Sci. 2015, 72, 4445–4460. DOI: 10.1007/s00018-015-2012-1.
  • Afewerky, H. K.; Ayodeji, A. E.; Tiamiyu, B. B.; Orege, J. I.; Okeke, E. S.; Oyejobi, A. O.; Bate, P. N. N.; Adeyemi, S. B. Critical Review of the Withania somnifera (L.) Dunal: Ethnobotany, Pharmacological Efficacy, and Commercialization Significance in Africa. Bull. Natl. Res. Cent. 2021, 45, 176. DOI: 10.1186/s42269-021-00635-6.
  • Rajalakshmy, M. R.; Geetha, G. Isolation and Identification of Withasomnine, Withanolides and Butein from Industrial Herbal Marc of Withania somnifera (L.) Dunal 2016, 7, 116–124.
  • van Meer, P.; Raber, J. Mouse Behavioural Analysis in Systems Biology. Biochem. J. 2005, 389, 593–610. DOI: 10.1042/BJ20042023.
  • Suresh Babu, C. V.; Song, E. J.; Babar, S. M. E.; Yoo, Y. S. Capillary Electrophoresis of Signaling Molecules. Biomed. Chromatogr. 2007, 21, 890–897. DOI: 10.1002/bmc.867.
  • Tomita, M. Whole-Cell Simulation: A Grand Challenge of the 21st Century. Trends Biotechnol. 2001, 19, 205–210. DOI: 10.1016/S0167-7799(01)01636-5.
  • Spence, D. M. Bioanalytical Challenges for Analytical Chemists. Analyst 2004, 129, 102–104. DOI: 10.1039/b315024k.
  • Babu, C. V. S.; Song, E. J.; Babar, S. M. E.; Wi, M. H.; Yoo, Y. S. Capillary Electrophoresis at the Omics Level: Towards Systems Biology. Electrophoresis 2006, 27, 97–110. DOI: 10.1002/elps.200500511.
  • Wang, J.; Zhang, H.; Kaul, A.; Li, K.; Priyandoko, D.; Kaul, S. C.; Wadhwa, R. Effect of Ashwagandha Withanolides on Muscle Cell Differentiation. Biomolecules 2021, 11, 1454. DOI: 10.3390/biom11101454.
  • Ichikawa, H.; Takada, Y.; Shishodia, S.; Jayaprakasam, B.; Nair, M. G.; Aggarwal, B. B. Withanolides Potentiate Apoptosis, Inhibit Invasion, and Abolish Osteoclastogenesis through Suppression of Nuclear Factor-ΚB (NF-ΚB) Activation and NF-ΚB–Regulated Gene Expression. Mol. Cancer Ther. 2006, 5, 1434–1445. DOI: 10.1158/1535-7163.MCT-06-0096.
  • Li, T.; Wei, Z.; Sun, Y.; Wang, Q.; Kuang, H. Withanolides, Extracted from Datura metel L. Inhibit Keratinocyte Proliferation and Imiquimod-Induced Psoriasis-Like Dermatitis via the STAT3/P38/ERK1/2 Pathway. Molecules 2019, 24, 2596. DOI: 10.3390/molecules24142596.
  • Samadi, A. K.; Cohen, S. M.; Mukerji, R.; Chaguturu, V.; Zhang, X.; Timmermann, B. N.; Cohen, M. S.; Person, E. A. Natural Withanolide Withaferin a Induces Apoptosis in Uveal Melanoma Cells by Suppression of Akt and C-MET Activation. Tumour Biol. 2012, 33, 1179–1189. DOI: 10.1007/s13277-012-0363-x.
  • Sun, G. Y.; Li, R.; Cui, J.; Hannink, M.; Gu, Z.; Fritsche, K. L.; Lubahn, D. B.; Simonyi, A. Withania somnifera and Its Withanolides Attenuate Oxidative and Inflammatory Responses and up-Regulate Antioxidant Responses in BV-2 Microglial Cells. Neuromolecular Med. 2016, 18, 241–252. DOI: 10.1007/s12017-016-8411-0.
  • Lv, T.-Z.; Wang, G.-S. Antiproliferation Potential of Withaferin a on Human Osteosarcoma Cells via the Inhibition of G2/M Checkpoint Proteins. Exp. Ther. Med. 2015, 10, 323–329. DOI: 10.3892/etm.2015.2480.
  • Aebersold, R.; Mann, M. Mass Spectrometry-Based Proteomics. Nature 2003, 422, 198–207. DOI: 10.1038/nature01511.
  • Sharma, P.; Bhardwaj, R.; Yadav, A.; Sharma, R. A. In Vivo and in Vitro Variation in Protein Profiling in Withania somnifera (L.) Dunal. Res. J. Phytochem. 2014, 8, 25–34. DOI: 10.3923/rjphyto.2014.25.34.
  • Dom, M.; Offner, F.; Vanden Berghe, W.; Van Ostade, X. Proteomic Characterization of Withaferin A-Targeted Protein Networks for the Treatment of Monoclonal Myeloma Gammopathies. J. Proteomics 2018, 179, 17–29. DOI: 10.1016/j.jprot.2018.02.013.
  • Kumar, R.; Nayak, D.; Somasekharan, S. P. SILAC-Based Quantitative MS Approach Reveals Withaferin a Regulated Proteins in Prostate Cancer. J. Proteomics 2021, 247, 104334. DOI: 10.1016/j.jprot.2021.104334.
  • Akhtar, N.; Baig, M. W.; Haq, I.; Rajeeve, V.; Cutillas, P. R. Withanolide Metabolites Inhibit PI3K/AKT and MAPK Pro-Survival Pathways and Induce Apoptosis in Acute Myeloid Leukemia Cells. Biomedicines 2020, 8, 333. DOI: 10.3390/biomedicines8090333.
  • Avinash, B.; Venu, R.; Prasad, T. N. V. K. V.; Alpha Raj, M.; Srinivasa Rao, K.; Srilatha, C. Synthesis and Characterisation of Neem Leaf Extract, 2, 3‐Dehydrosalanol and Quercetin Dihydrate Mediated Silver Nano Particles for Therapeutic Applications. IET Nanobiotechnol. 2017, 11, 383–389. DOI: 10.1049/iet-nbt.2016.0095.
  • Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S. L. Green Synthesis of Silver Nanoparticles Using Plant Extracts and Their Antimicrobial Activities: A Review of Recent Literature. RSC Adv. 2021, 11, 2804–2837. DOI: 10.1039/D0RA09941D.
  • Tripathi, D.; Modi, A.; Narayan, G.; Rai, S. P. Green and Cost Effective Synthesis of Silver Nanoparticles from Endangered Medicinal Plant Withania coagulans and Their Potential Biomedical Properties. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 100, 152–164. DOI: 10.1016/j.msec.2019.02.113.
  • Karimi, M.; Raofie, F. Preparation of Withaferin a Nanoparticles Extracted from Withania somnifera by the Expansion of Supercritical Fluid Solution. Phytochem. Anal. 2020, 31, 957–967. DOI: 10.1002/pca.2968.
  • Dhar, N.; Rana, S.; Bhat, W. W.; Razdan, S.; Pandith, S. A.; Khan, S.; Dutt, P.; Dhar, R. S.; Vaishnavi, S.; Vishwakarma, R.; et al. Dynamics of Withanolide Biosynthesis in Relation to Temporal Expression Pattern of Metabolic Genes in Withania somnifera (L.) Dunal: A Comparative Study in Two Morpho-Chemovariants. Mol. Biol. Rep. 2013, 40, 7007–7016. DOI: 10.1007/s11033-013-2820z.
  • Kiani, B. H.; Haq, I.; Alhodaib, A.; Basheer, S.; Fatima, H.; Naz, I.; Ur-Rehman, T. Comparative Evaluation of Biomedical Applications of Zinc Nanoparticles Synthesized by Using Withania somnifera Plant Extracts. Plants (Basel) 2022, 11, 1525. DOI: 10.3390/plants11121525.
  • Perez-Vazquez, A.; Carpena, M.; Barciela, P.; Cassani, L.; Simal-Gandara, J.; Prieto, M. A. Pressurized Liquid Extraction for the Recovery of Bioactive Compounds from Seaweeds for Food Industry Application: A Review. Antioxidants (Basel) 2023, 12, 612. DOI: 10.3390/antiox12030612.
  • Carabias-Martínez, R.; Rodríguez-Gonzalo, E.; Revilla-Ruiz, P.; Hernández-Méndez, J. Pressurized Liquid Extraction in the Analysis of Food and Biological Samples. J. Chromatogr. A 2005, 1089, 1–17. DOI: 10.1016/j.chroma.2005.06.072.
  • Nieto, A.; Borrull, F.; Pocurull, E.; Marcé, R. M. Pressurized Liquid Extraction: A Useful Technique to Extract Pharmaceuticals and Personal-Care Products from Sewage Sludge. TrAC Trends Anal. Chem. 2010, 29, 752–764. DOI: 10.1016/j.trac.2010.03.014.
  • Aziz, R.; Sarmidi, M.; Kumaresan, S.; Taher, Z.; Foo, D. Phytochemical Processing: The Next Emerging Field in Chemical Engineering-Aspects and Opportunities. J. Kejuruter. Kim. Malaysia 2004, 3.
  • Gupta, A. K.; Dhua, S.; Sahu, P. P.; Abate, G.; Mishra, P.; Mastinu, A. Variation in Phytochemical, Antioxidant and Volatile Composition of Pomelo Fruit (Citrus grandis (L.) Osbeck) during Seasonal Growth and Development. Plants (Basel) 2021, 10, 1941. DOI: 10.3390/plants10091941.
  • Uwineza, P. A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. DOI: 10.3390/molecules25173847.
  • Fabricant, D. S.; Farnsworth, N. R. The Value of Plants Used in Traditional Medicine for Drug Discovery. Environ Health Perspect. 2001, 109 Suppl 1, 69–75. DOI: 10.1289/ehp.01109s169.
  • Nyiredy, S. Separation Strategies of Plant Constituents–Current Status. J. Chromatogr. B Analyt. Technol. Biomed Life Sci. 2004, 812, 35–51. DOI: 10.1016/j.jchromb.2004.08.046.
  • Rasul, M. G. Conventional Extraction Methods Use in Medicinal Plants, Their Advantages and Disadvantages. Int. J. Basic Sci. Appl. Comput. 2018, 2, 10–14.
  • Sik, B.; Hanczné, E. L.; Kapcsándi, V.; Ajtony, Z. Conventional and Nonconventional Extraction Techniques for Optimal Extraction Processes of Rosmarinic Acid from Six Lamiaceae Plants as Determined by HPLC-DAD Measurement. J. Pharm. Biomed. Anal. 2020, 184, 113173. DOI: 10.1016/j.jpba.2020.113173.
  • Cacace, J. E.; Mazza, G. Mass Transfer Process during Extraction of Phenolic Compounds from Milled Berries. J. Food Eng. 2003, 59, 379–389. DOI: 10.1016/S0260-8774(02)00497-1.
  • Co, M.; Fagerlund, A.; Engman, L.; Sunnerheim, K.; Sjöberg, P. J. R.; Turner, C. Extraction of Antioxidants from Spruce (Picea abies) Bark Using Eco‐Friendly Solvents. Phytochem. Anal. 2012, 23, 1–11. DOI: 10.1002/pca.1316.
  • Chemat, F.; Abert Vian, M.; Fabiano-Tixier, A.-S.; Nutrizio, M.; Režek Jambrak, A.; Munekata, P. E. S.; Lorenzo, J. M.; Barba, F. J.; Binello, A.; Cravotto, G. A Review of Sustainable and Intensified Techniques for Extraction of Food and Natural Products. Green Chem. 2020, 22, 2325–2353. DOI: 10.1039/C9GC03878G.
  • Ganzera, M.; Choudhary, M.; Khan, I. Quantitative HPLC Analysis of Withanolides in Withania somnifera. Fitoterapia 2003, 74, 68–76. DOI: 10.1016/S0367-326X(02)00325-8.
  • Kumar, S.; Singh, R.; Gajbhiye, N.; Dhanani, T. Extraction Optimization for Phenolic- and Withanolide-Rich Fractions From. J. AOAC Int. 2018, 101, 1773–1780. DOI: 10.5740/jaoacint.18-0081.
  • Armenta, S.; de la Guardia, M. Green Chromatography for the Analysis of Foods of Animal Origin. TrAC Trends Anal. Chem. 2016, 80, 517–530. DOI: 10.1016/j.trac.2015.06.012.
  • Ballesteros-Vivas, D.; Álvarez-Rivera, G.; del Pilar Sánchez-Camargo, A.; Ibáñez, E.; Parada-Alfonso, F.; Cifuentes, A. A Multi-Analytical Platform Based on Pressurized-Liquid Extraction, in Vitro Assays and Liquid Chromatography/Gas Chromatography Coupled to High Resolution Mass Spectrometry for Food by-Products Valorisation. Part 1: Withanolides-Rich Fractions from Golde. J. Chromatogr. A 2019, 1584, 155–164. DOI: 10.1016/j.chroma.2018.11.055.
  • Rehman, M.; Khan, F.; Niaz, K. Introduction to Natural Products Analysis. In Recent advances in natural products analysis; 2020. DOI: 10.1016/B978-0-12-816455-6.00001-9.
  • Dhanani, T.; Shah, S.; Gajbhiye, N. A.; Kumar, S. Effect of Extraction Methods on Yield, Phytochemical Constituents and Antioxidant Activity of Withania somnifera. Arab. J. Chem. 2017, 10, S1193–S1199. DOI: 10.1016/j.arabjc.2013.02.015.
  • Jyothi, D.; Khanam, S.; Sultana, R. Optimization of Microwave Assisted Extraction of Withanolides from Roots of Ashwagandha and Its Comparison with Conventional Extraction Method. Int. J. Pharm. Pharm. Sci. 2010, 2, 46–50.
  • Weggler, B. A.; Gruber, B.; Teehan, P.; Jaramillo, R.; Dorman, F. L. Inlets and sampling. In Separation Science and Technology; Elsevier 2020, Vol. 12, pp 141–203. DOI: 10.1016/B978-0-12-813745-1.00005-2.
  • Haghighi, A.; Khajenoori, M. Subcritical Water Extraction. In Mass Transfer – Advances in Sustainable Energy and Environment Oriented Numerical Modeling; InTech: London, 2013. DOI: 10.5772/54993.
  • Nile, S. H.; Nile, A.; Gansukh, E.; Baskar, V.; Kai, G. Subcritical Water Extraction of Withanosides and Withanolides from Ashwagandha (Withania somnifera L) and Their Biological Activities. Food Chem. Toxicol. 2019, 132, 110659. DOI: 10.1016/j.fct.2019.110659.
  • Sinha, D.; Mukherjee, S.; Chowdhury, S. Methods of Extraction of Phytochemicals. In Isolation, Characterization, and Therapeutic Applications of Natural Bioactive Compounds; IGI Global, 2022, pp 250–279. DOI: 10.4018/978-1-6684-7337-5.ch010.
  • Taylor, L. T. Supercritical Fluid Chromatography for the 21st Century. J. Supercrit. Fluids 2009, 47, 566–573. DOI: 10.1016/j.supflu.2008.09.012.
  • Balkrishna, A.; Nain, P.; Chauhan, A.; Sharma, N.; Gupta, A.; Ranjan, R.; Varshney, A. Super Critical Fluid Extracted Fatty Acids from Withania Somnifera Seeds Repair Psoriasis-Like Skin Lesions and Attenuate Pro-Inflammatory Cytokines (TNF-α and IL-6) Release. Biomolecules 2020, 10, 185. DOI: 10.3390/biom10020185.
  • Korn, M. Titrimetry: Photometric. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2019. DOI: 10.1016/B978-0-12-409547-2.14573-1.
  • McGill, C. Titrimetry | Photometric. In Encyclopedia of Analytical Science; Elsevier: Scotland, 2005; pp 121–124. DOI: 10.1016/B0-12-369397-7/00627-0.
  • Kekina, H.; Shevchuk, O.; Golubkina, N. A.; Logvinenko, L.; Khlipenko, L.; Molchanova, A. V.; Caruso, G. Antioxidant Properties and Elemental Composition of Withania somnifera L. Agric. Food 2019, 7, 93–101.
  • Gulati, S., Madan, V. K., Singh, S., Singh, I., Dusyant. Chemical and Phytochemical Composition of Ashwagandha (Withania somnifera L.) Roots.Asian J. Chem., 2017, 29 (8), 1683–1686. DOI: 10.14233/ajchem.2017.20536.
  • Johri, S.; Jamwal, U.; Rasool, S.; Kumar, A.; Verma, V.; Qazi, G. N. Purification and Characterization of Peroxidases from Withania somnifera (AGB 002) and Their Ability to Oxidize IAA. Plant Sci 2005, 169, 1014–1021. DOI: 10.1016/j.plantsci.2005.05.015.
  • Bilia, A. R. Pharmaceutical Analysis | Plant Extracts. In Encyclopedia of Analytical Science; Elsevier: Amsterdam, 2005; pp 116–126. DOI: 10.1016/B0-12-369397-7/00457-X.
  • J, K.; K. S, K.; R, S.; R. R, H.; Kaaviya, A. A.; P, S.; ; K. S, L. A Review of Analytical Methods for the Determination of Clopidogrel in Pharmaceuticals and Biological Matrices. Crit. Rev. Anal. Chem. 2018, 48, 119–131. DOI: 10.1080/10408347.2018.1427548.
  • Ajage, R. K.; Kasture, S. Validated UV Spectroscopic Method for the Estimation of Three Marker Compounds in Marketed Polyherbal Ayurvedic Formulation. Der Pharm. Lett. 2014, 6, 160–166.
  • Abdel-Wadood, H. M.; Mohamed, N. A.; Mahmoud, A. M. Validated Spectrofluorometric Methods for Determination of Amlodipine Besylate in Tablets. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008, 70, 564–570. DOI: 10.1016/j.saa.2007.07.055.
  • Holzgrabe, U. Quantitative NMR Spectroscopy in Pharmaceutical Applications. Prog. Nucl. Magn. Reson. Spectrosc. 2010, 57, 229–240. DOI: 10.1016/j.pnmrs.2010.05.001.
  • Namdeo, A.; Sharma, A.; Yadav, K.; Gawande, R.; Mahadik, K.; Lopez-Gresa, M.; Kim, H.; Choi, Y.; Verpoorte, R. Metabolic Characterization of Withania Somnifera from Different Regions of India Using NMR Spectroscopy. Planta Med 2011, 77, 1958–1964. DOI: 10.1055/s-0031-1279997.
  • Gika, H.; Kaklamanos, G.; Manesiotis, P.; Theodoridis, G. Chromatography: High-Performance Liquid Chromatography. In Encyclopedia of Food and Health; Elsevier: New York, 2016; pp 93–99. DOI: 10.1016/B978-0-12-384947-2.00159-8.
  • Ali, A.; Maher, S.; Khan, S. A.; Chaudhary, M. I.; Musharraf, S. G. Sensitive Quantification of Six Steroidal Lactones in Withania Coagulans Extract by UHPLC Electrospray Tandem Mass Spectrometry. Steroids 2015, 104, 176–181. DOI: 10.1016/j.steroids.2015.09.011.
  • Rajasekar, S.; Elango, R. Estimation of Alkaloid Content of Ashwagandha (Withania somnifera) with HPLC Methods. J. Exp. Sci. 2011, 2, 39–41.
  • Yaseen Malik, M.; Taneja, I.; Raju, K. S. R.; Rahaman Gayen, J.; Singh, S. P.; Sangwand, N. S.; Wahajuddin, M. RP-HPLC Separation of Isomeric Withanolides: Method Development, Validation and Application to in Situ Rat Permeability Determination. J. Chromatogr. Sci. 2017, 55, 729–735. DOI: 10.1093/chromsci/bmx027.
  • Chaurasiya, N.; Das; Uniyal, G. C.; Lal, P.; Misra, L.; Sangwan, N. S.; Tuli, R.; Sangwan, R. S. Analysis of Withanolides in Root and Leaf OfWithania Somnifera by HPLC with Photodiode Array and Evaporative Light Scattering Detection. Phytochem. Anal. 2008, 19, 148–154. DOI: 10.1002/pca.1029.
  • Patil, D.; Gautam, M.; Mishra, S.; Karupothula, S.; Gairola, S.; Jadhav, S.; Pawar, S.; Patwardhan, B. Determination of Withaferin a and Withanolide a in Mice Plasma Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry: Application to Pharmacokinetics after Oral Administration of Withania somnifera Aqueous Extract. J. Pharm. Biomed. Anal. 2013, 80, 203–212. DOI: 10.1016/j.jpba.2013.03.001.
  • Ankad, G. M.; Pai, S. R.; Hiremath, J.; Hegde, H. V. Traditional Horticulture Practices Increase the Production of Selected Withanolides in Withania somnifera (L.) Dunal—A RP-UFLC Analysis. J. Chromatogr. Sci. 2020, 58, 899–906. DOI: 10.1093/chromsci/bmaa057.
  • Khajuria, R. K.; Suri, K. A.; Gupta, R. K.; Satti, N. K.; Amina, M.; Suri, O. P.; Qazi, G. N. Separation, Identification, and Quantification of Selected Withanolides in Plant Extracts of Withania somnifera by HPLC‐UV(DAD) – Positive Ion Electrospray Ionisation–Mass Spectrometry. J. Sep. Sci. 2004, 27, 541–546. DOI: 10.1002/jssc.200301690.
  • Gajula, S.; Devi, P. S.; Raju, B. Comparative Study of Withaferin a and Withanolide a in Different Cultivators of Withania Somnifera by RP-HPLC Method. SSRN J. 2020. DOI: 10.2139/ssrn.3530709.
  • Koshy, R.; Anand, M. S.; Murali, B.; Brunelle, S. L. Determination of Withanolides in Withania somnifera by Liquid Chromatography: Single-Laboratory Validation, First Action 2015.17. J. AOAC Int. 2016, 99, 1444–1458. DOI: 10.5740/jaoacint.16-0202.
  • Gajbhiye, N. A.; Makasana, J.; Kumar, S. Accumulation of Three Important Bioactive Compounds in Different Plant Parts of Withania somnifera and Its Determination by the LC–ESI-MS-MS (MRM) Method. J. Chromatogr. Sci. 2015, 53, 1749–1756. DOI: 10.1093/chromsci/bmv088.
  • Patial, P.; Gota, V. Rapid and Sensitive Method for Determination of Withaferin-A in Human Plasma by HPLC. Bioanalysis 2011, 3, 285–289. DOI: 10.4155/bio.10.207.
  • Sharma, V. HPLC-PDA Method for Quantification of Withaferin-A and Withanolide-A in Diploid (N = 12) and Tetraploid (N = 24) Cytotypes of "Indian Ginseng" Withania somnifera (L.) Dunal from North India. Int. J. Indig. Med. Plants 2013, 46, 2051–4263.
  • Chandra, P.; Kannujia, R.; Saxena, A.; Srivastava, M.; Bahadur, L.; Pal, M.; Singh, B. P.; Kumar Ojha, S.; Kumar, B. Quantitative Determination of Multi Markers in Five Varieties of Withania somnifera Using Ultra-High Performance Liquid Chromatography with Hybrid Triple Quadrupole Linear Ion Trap Mass Spectrometer Combined with Multivariate Analysis: Application to Phar. J. Pharm. Biomed. Anal. 2016, 129, 419–426. DOI: 10.1016/j.jpba.2016.07.032.
  • Abouzid, S. F.; El-Bassuony, A. A.; Nasib, A.; Khan, S.; Qureshi, J.; Choudhary, M. I. Withaferin a Production by Root Cultures of Withania Coagulans. Int. J. Appl. Res. Nat. Prod. 2010, 3, 23–27.
  • Kaufmann, B.; Souverain, S.; Cherkaoui, S.; Christen, P.; Veuthey, J.-L. Rapid Liquid Chromatographic-Mass Spectrometric Analysis of Withanolides in Crude Plant Extracts by Use of a Monolithic Column. Chromatographia 2002, 56, 137–141. DOI: 10.1007/BF02493201.
  • Dr Pratima, A.; Tatke, D. S. S. J.; Y. G, D. S. Marker Based Standardization of Formulations Containing Ashwagandha Using Withaferin a by HPLC. World, J. Pharm. Res. 2013, 3, 441–451.
  • Thorat, S. A.; Poojari, P.; Kaniyassery, A.; Kiran, K. R.; Satyamoorthy, K.; Mahato, K. K.; Muthusamy, A. Red Laser-Mediated Alterations in Seed Germination, Growth, Pigments and Withanolide Content of Ashwagandha [Withania somnifera (L.) Dunal]. J. Photochem. Photobiol. B 2021, 216, 112144. DOI: 10.1016/j.jphotobiol.2021.112144.
  • Patil, D.; Gautam, M.; Jadhav, U.; Mishra, S.; Karupothula, S.; Gairola, S.; Jadhav, S.; Patwardhan, B. Physicochemical Stability and Biological Activity of Withania somnifera Extract under Real-Time and Accelerated Storage Conditions. Planta Med. 2010, 76, 481–488. DOI: 10.1055/s-0029-1186220.
  • Manwar, J.; Mahadik, K.; Paradkar, A.; Takle, S.; Lohidasan, S.; Patil, S. Determination of Withanolides from the Roots and Herbal Formulation of Withania somnifera by HPLC Using DAD and ELSD Detector. Der Pharm. Sin 2012, 3, 41.
  • Girme, A.; Saste, G.; Pawar, S.; Balasubramaniam, A. K.; Musande, K.; Darji, B.; Satti, N. K.; Verma, M. K.; Anand, R.; Singh, R.; et al. Investigating 11 Withanosides and Withanolides by UHPLC–PDA and Mass Fragmentation Studies from Ashwagandha (Withania somnifera). ACS Omega 2020, 5, 27933–27943. DOI: 10.1021/acsomega.0c03266.
  • Modi, S. J.; Tiwari, A.; Ghule, C.; Pawar, S.; Saste, G.; Jagtap, S.; Singh, R.; Deshmukh, A.; Girme, A.; Hingorani, L. Pharmacokinetic Study of Withanosides and Withanolides from Withania Somnifera Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS). Molecules 2022, 27, 1476. DOI: 10.3390/molecules27051476.
  • Kotteswari, M.; Rao, M. R. K.; Kumar, S.; Prabhu, K.; Sundaram, R. L.; Dinakar, S. GC MS Analysis of One Ayurvedic Preparation ‘Aswagandharishtam. Biomed. Pharmacol. J. 2018, 11, 1061–1072. DOI: 10.13005/bpj/1467.
  • Ram, M.; Abdin, M. Z.; Khan, M. A.; Jha, P. HPTLC Fingerprint Analysis: A Quality Control for Authentication of Herbal Phytochemicals. In High-Performance Thin-Layer Chromatography (HPTLC); Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp 105–116. DOI: 10.1007/978-3-642-14025-9_7.
  • Nayak, P.; Upadhyaya, S.; Upadhyaya, A. HPTLC Method for Analysis of Withaferin-A in Ashwagandha (Withania somnifera). J. Planar Chromatogr. Mod. TLC 2009, 22, 197–200. DOI: 10.1556/JPC.22.2009.3.7.
  • Devkar, S.; Badhe, Y.; Jagtap, S.; Hegde, M. Quantification of Major Bioactive Withanolides in Withania somnifera (Ashwagandha) Roots by HPTLC for Rapid Validation of Ayurvedic Products. J. Planar Chromatogr. Mod. TLC 2012, 25, 290–294. DOI: 10.1556/JPC.25.2012.4.2.
  • Jirge, S.; Tatke, P.; Gabhe, S. Y. Development and Validation of a Novel HPTLC Method for Simultaneous Estimation of Betasitosteroldglucoside and Withaferin A. Int. J. Pharm. Pharm. Sci. 2011, 3, 227–230.
  • Tomar, V.; Beuerle, T.; Sircar, D. A Validated HPTLC Method for the Simultaneous Quantifications of Three Phenolic Acids and Three Withanolides from Withania somnifera Plants and Its Herbal Products. J. Chromatogr. B Analyt. Technol. Biomed Life Sci. 2019, 1124, 154–160. DOI: 10.1016/j.jchromb.2019.06.009.
  • Mahadevan, N.; Rahul, P. K.; Subburaju, T.; Suresh, B. HPTLC Analysis of Withaferine a from an Herbal Extract and Polyherbal Formulations. J. Sep. Sci. 2003, 26, 1707–1709. DOI: 10.1002/jssc.200301552.
  • Cherkaoui, S.; Cahours, X.; Veuthey, J. Analysis of Selected Withanolides in Plant Extract by Capillary Electrochromatography and Microemulsion Electrokinetic Chromatography. Electrophoresis 2003, 24, 336–342. DOI: 10.1002/elps.200390043.
  • Sharma, V.; Gupta, A. P.; Bhandari, P.; Gupta, R. C.; Singh, B. A Validated and Densitometric HPTLC Method for the Quantification of Withaferin-A and Withanolide-A in Different Plant Parts of Two Morphotypes of Withania somnifera. Chroma 2007, 66, 801–804. DOI: 10.1365/s10337-007-0396-2.
  • Raut, R. G. Analytical Study of Balaashwagandha Taila. Ayurpharm Int. J. Ayurveda Allied Sci. 2014, 3, 171–176.
  • Mistry, N.; Shah, P.; Patel, K.; Hingorani, L. Simultaneous Estimation of Stigmasterol and Withaferin a in Union Total Herbal Formulation Using Validated HPTLC Method. J. App. Pharm. Sci. 2015, 5, 159–166. DOI: 10.7324/JAPS.2015.50825.
  • Patel, J.; Lahiri, S.; Shah, M. Development of a New Method for Identification and Estimation of Withania somnifera Root, and a Method for Quantitative Analysis of Withaferin a in Young and Old Roots. J. Planar Chromatogr. Mod. TLC 2009, 22, 283–286. DOI: 10.1556/JPC.22.2009.4.8.
  • Gautam, M.; Diwanay, S.; Gairola, S.; Shinde, Y.; Jadhav, S.; Patwardhan, B. Immune Response Modulation to DPT Vaccine by Aqueous Extract of Withania somnifera in Experimental System. Int. Immunopharmacol. 2004, 4, 841–849. DOI: 10.1016/j.intimp.2004.03.005.
  • Pati, P. K.; Sharma, M.; Salar, R. K.; Sharma, A.; Gupta, A. P.; Singh, B. Studies on Leaf Spot Disease of Withania somnifera and Its Impact on Secondary Metabolites. Indian J. Microbiol. 2008, 48, 432–437. DOI: 10.1007/s12088-008-0053-y.
  • Pai, V.; Chandrashekar, K.; Rao, P.; Setty, M. High-Performance Thin-Layer noChromatography Marker-Based Standardization of Piperine, Asiaticoside, and Withanolide-A in the Developed Polyherbal Formulation and in Vitro Evaluation of Acetylcholinesterase Inhibition. Phcog. Mag. 2019, 15, 256. DOI: 10.4103/pm.pm_5_19.
  • Huber, C. G.; Hölzl, G. Hyphenation of Capillary Electrochromatography and Mass Spectrometry: Instrumental Aspects. Sep. Syst. Appl. 2001, 271–316. DOI: 10.1016/S0301-4770(01)80080-4.
  • Khyati, S. A preliminary physico-chemical assay of ashwagandha granules a pilot study. 2011.
  • Zhou, W.; Yang, S.; Wang, P. G. Matrix Effects and Application of Matrix Effect Factor. Bioanalysis 2017, 9, 1839–1844. DOI: 10.4155/bio-2017-0214.
  • Mishra, D.; Patnaik, S. GC-MS Analysed Phyto-Chemicals and Antibacterial Activity of Withania somnifera (L.) Dunal Extract in the Context of Treatment to Liver Cirrhosis. Biomed. Pharmacol. J. 2020, 13, 71–78. DOI: 10.13005/bpj/1862.
  • Mishra, A.; Prajapati, N.; Choyal, A.; Shankar Rao, K.; P. Desmukh, M. Experimental Studies on Haragourirasa w.s.r to Mritani Lohani Rasi Bhavanti. IJAR 2020, 8, 883–887. DOI: 10.21474/IJAR01/11563.
  • Valko, K. L. Chromatographic Technique to Support ADMET&DMPK in Early Drug Discovery. ADMET DMPK 2018, 6, 71–73. DOI: 10.5599/admet.559.
  • Yang, L.; Meng, X.; Kuang, H. Comparisons of the Pharmacokinetic and Tissue Distribution Profiles of Withanolide B after Intragastric Administration of the Effective Part of Datura metel L. in Normal and Psoriasis Guinea Pigs. J. Chromatogr. B Analyt. Technol. Biomed Life Sci. 2018, 1083, 284–288. DOI: 10.1016/j.jchromb.2018.02.022.
  • Christian, M. Steroids – Chemical Constituents of Withania Somnifera Dunal through Tlc and Hptlc. Int. Res. J. Chem. 2013, 2, 10–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.